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Three Decades of Runtime Attacks

Morris Worm
1988

Code 
Injection

AlephOne
1996

return-into-
libc

Solar Designer
1997

Borrowed 
Code Chunk 
Exploitation

Krahmer
2005

Return-oriented 
programming

Shacham
CCS 2007

Continuing Arms 
Race

…



Recent Attacks

Cisco Router Exploit [2016]
Million CISCO ASA Firewalls potentially 
vulnerable to attacks

The Million Dollar Dissident [2016]
Government targeted human rights 
defender with a chain of zero-day exploits 
to infect his iPhone with spyware.

Adversary

Attacks on Tor Browser [2013]
FBI Admits It Controlled Tor Servers 
Behind Mass Malware Attack.

Adversary

MMS

Stagefright [Drake, BlackHat 2015]
These issues in Stagefright code critically 
expose 95% of Android devices, an 
estimated 950 million devices



Relevance and Impact

• Web browsers repeatedly exploited in pwn2own contests
• Zero-day issues exploited in Stuxnet/Duqu [Microsoft, BH 2012]
• iOS jailbreak

High Impact of Attacks

• Microsoft EMET includes a ROP detection engine
• Microsoft Control Flow Guard (CFG) in Windows 10
• Google‘s compiler extension VTV (Virtual Table Verification)
• Intel’s Hardware Extension CET (Control-flow Enforcement Technology) 

Industry Efforts on Defenses

• A large body of recent literature on attacks and defenses

Hot Topic of Research

Can either be bypassed, or may not 
be sufficiently effective
[Davi et al, Blackhat2014], [Liebchen et al CCS2015], 
[Schuster, et al S&P2015]



Runtime Attacks & Defenses: 
Continuing Arms Race

ROP wo Returns, 
Out-of-Control, 

Stitching the 
Gadgets, SROP, JIT-

ROP, BlindROP,
COOP, StackDefiler,

"Missing the 
point(er)"

Attacks
CFI, ROPGuard, 

BinCFI, ROPecker, 
kBouncer, CCFIR, 
vTint, vfGuard, 

SafeDispatch, MoCFI, 
RockJIT, TVip, 

StackArmor, CPI/CPS, 
Oxymoron, XnR, 

Isomeron, 
O-CFI,

Readactor,
HAFIX,

...

Defenses
Still seeking practical and 
secure solutions



The whole story ….. 



Runtime Attacks

A

B

DC

E F

Adversary

A

B

DC

E F

Data flow
Program flow

corrupt code pointerinject malicious
code

corrupt code
pointer

Code-Injection Attack Code-Reuse Attack
Basic Blocks (BBL) 
Entry: instruction target of a branch 
(e.g., first instruction of a function)
Exit: Any branch 
(e.g., indirect or direct jump/call, return)

XX

Data Execution Prevention

DEP



Return-oriented Programing (ROP): 
Prominent Code-Reuse Attack

ROP shown to be 
Turing-complete



ROP: Basic Ideas/Steps
 Use small instruction sequences instead of whole 

functions
 Instruction sequences have length 2 to 5 
 All sequences end with a return instruction, or an 

indirect jump/call
 Instruction sequences chained together as gadgets
 Gadget perform particular task, e.g., load, store, 

xor, or branch
 Attacks launched by combining gadgets
 Generalization of return-to-libc



Threat Model: Code-reuse Attacks

Application

Code

Data

Code

Data

RX

RW

RX

RW

? ?

?

?

?

?

?

?
?

?

?
?

?
?
?

Writable ⊕ Executable1

Opaque Memory Layout2

Disclose readable Memory3

Manipulate writable Memory4

Computing Engine5

Data

Code

Data

Code

Data

Data



Main Defenses against Code Reuse

1. Code Randomization

2. Control-Flow Integrity (CFI)



Randomization vs. CFI

Randomization Control-flow Integrity
Low Performance 

Overhead

Scales well to complex 
Software (OS, browser)

Formal Security
(Explicit Control Flow 

Checks)

Tradeoff: 
Performance & Security

Challenging to integrate  
in complex software,  

coverage 

Information Disclosure 
hard to prevent

High entropy required



EPISODE I 
Code Randomization

Make gadgets locations unpredictable



Fine-Grained ASLR

 Instruction reordering/substitution within a BBL
ORP [Pappas et al., IEEE S&P 2012] 

 Randomizing each instruction‘s location:
ILR [Hiser et al., IEEE S&P 2012]

 Permutation of BBLs:
STIR [Wartell et al., CCS 2012] & XIFER [with Davi et al., AsiaCCS 2013]

Library (e.g., libc)

Application Run 1

Instruction
Sequence 3 RET

Instruction
Sequence 2 RET

Instruction
Sequence 1 RET

Library (e.g., libc)

Application Run 2

Instruction
Sequence 2 RET

Instruction
Sequence 1 RET

Instruction
Sequence 3 RET



Randomization: Memory Leakage Problem 

Direct memory disclosure
• Pointer leakage on code pages 
• e.g., direct call and jump instruction 

Indirect memory disclosure
• Pointer leakage on data pages such as stack or heap
• e.g., return addresses, function pointers, pointers in 

vTables



Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space Layout Randomization

IEEE Security and Privacy 2013, and Blackhat 2013
Kevin Z. Snow, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, 

Fabian Monrose, Ahmad-Reza Sadeghi

JIT-ROP: 
Bypassing Randomization via 

Direct Memory Disclosure



Just-In-Time ROP: 
Direct Memory Disclosure 

Undermines fine-grained ASLR1

Shows memory disclosures are far more 
damaging than believed2

Can be instantiated with real-world exploit 3



Readactor: 
Practical Code Randomization Resilient to Memory Disclosure

IEEE Security and Privacy 2015
Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, 

Ahmad-Reza Sadeghi, Stefan Brunthaler, Michael Franz

Readactor: Towards Resilience to 
Memory Disclosure



Pointers

Return Address

RW

ApplicationRX
Static Attack

(Fine-grained)
Randomization

Trampoline

Function_B
<instructions>
call Function_A
pop ebx
pop ecx
ret

Direct code
disclosure

Indirect code
disclosure

Trampoline
Reuse Attacks

Register
randomization

Execute-only
Memory

Code-pointer
hiding

Attack Timeline

Morris Worm / 
Return to libc [Solar 
Designer Bugtraq’97]

Just-In-Time ROP [Snow et 
al. IEEE S&P’13]

Isomeron (Attack) [Davi et 
al. NDSS’15]

Function_A?

?
?

?

??
?

?

? ?
Execute-

only 
Memory

(XoM)

Function_B
<instructions>
call Function_A
pop ebx
pop ecx
ret

XoM

Trampoline Target
pop ebx
pop ecx
ret
? ?? ??

Code Randomization:
Attack & Defense Techniques

Code Randomization:
Attack & Defense Techniques



PointersRW

ApplicationRX

Trampoline

Function
Reuse Attacks

Trampoline
Reuse for
Single Function
PointersTrampolines &

Booby Traps

Attack Timeline

Counterfeit Object-oriented 
Programming (COOP)
[Schuster et al. IEEE S&P’15]? ??? ?XoM

XoM

Function Pointer

virt. Function1
virt. Function2

Virtual Table

X-Virtual Table
vFunc2 Tramp

vFunc1 Tramp
Booby Trap

Ptr X-virt table

XoM
Brute-force
Attacks on
Entropy Booby Traps 

Terminate Process

Crash-Resistant Oriented 
Programming [Gawlik et al. 
NDSS’16]

JIT CodeJIT Code 
Attacks

Same Protection
as for AOT Code

Attack Surface
Large enough?

?

Code Randomization:
Attack & Defense Techniques



EPISODE II
Control-Flow Integrity (CFI)

Restricting indirect targets
to a pre-defined control-flow graph



Original CFI Label Checking
[Abadi et al., CCS 2005 & TISSEC 2009]

label_A
ENTRY
asm_ins, …
EXIT

BBL A

A

C B
label_B
ENTRY
asm_ins, …
EXIT

BBL B

CFI CHECK:
EXIT(A) -> label_B ?

Two Questions
1. Benign and correct execution?

2. Runtime enforcement?



CFI: CFG Analysis and Coverage Problem 

CFG Analysis 
• Conservative “points-to” analysis 
• e.g., over-approximate to avoid breaking the program

CFG Coverage 
• Precision of CFG analysis determines security of CFI 

policy
• e.g., more precise more secure



Which Instructions to Protect?

• Purpose: Return to calling function
• CFI Relevance: Return address located on stackReturns

• Purpose: switch tables, dispatch to library functions
• CFI Relevance: Target address taken from either 

processor register or memory

Indirect 
Jumps

• Purpose: call through function pointer, virtual table calls
• CFI Relevance: Target address taken from either processor 

register or memory

Indirect 
Calls



Label Granularity: Trade-Offs (1/2)
 Many CFI checks are required if unique labels are 

assigned per node

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) == 
[Label_3, Label_4, Label_5]

CFI Check

Basic Block

Label



Label Granularity: Trade-Offs (2/2)
 Optimization step: Merge labels to allow single CFI check
 However, this allows for unintended control-flow paths

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) == Label_3
CFI Check

Basic Block

Label

Label_3

Label_3

Exit(C) == Label_3



Label Problem for Returns
 Static CFI label checking 

leads to coarse-grained 
protection for returns

B

R

AA‘ B‘
CALL

RET

Label_1 Label_2
Shadow Stack
Backup storage for 

return addresses

Return Addr A’

Return Addr …

CALL RET

Backup State Check

 Shadow stack allows for 
fine-grained return
address protection but 
incurs higher overhead

Forward-
Edge CFI

Backward
-Edge CFI

Exit(R) == [Label_1, Label_2]

…



Forward- vs. Backward-Edge
 Some CFI schemes consider only forward-edge CFI

 Google’s VTV and IFCC [Tice et al., USENIX Sec 2015]
 SAFEDISPATCH [Jang et al., NDSS 2014]
 And many more: TVIP, VTint, vfguard

 Assumption: Backward-edge CFI through stack 
protection

 Problems of stack protections:
 Stack Canaries: memory disclosure of canary
 ASLR (base address randomization of stack): memory 

disclosure of base address
 Variable reordering (memory disclosure)



Losing Control: 
On the Effectiveness of Control-Flow Integrity under Stack Attacks

ACM CCS 2015
Christopher Liebchen, Marco Negro, Per Larsen, Lucas Davi, Ahmad-Reza 
Sadeghi, Stephen Crane, Mohaned Qunaibit, Michael Franz, Mauro Conti



StackDefiler

• Goal:
• Bypass fine-grained Control-Flow Integrity
• IFCC & VTV (CFI implementations by Google for GCC and 

LLVM)

• Approach:
• Due to optimization by compiler critical CFI pointer is 

spilled on the stack
• StackDefiler discloses the stack address and overwrites 

the spilled CFI pointer
• At restoring of spilled registers a malicious CFI pointer is 

used for future CFI checks
• No stack-based vulnerability needed



Bypassing (Coarse-grained) CFI

COOP
IEEE S&P 2015

Felix Schuster, Thomas Tendyck, 
Christopher Liebchen, Lucas Davi, 

Ahmad-Reza Sadeghi, Thorsten Holz

USENIX Security 2014 
Lucas Davi, Daniel Lehmann, 

Ahmad-Reza Sadeghi, Fabian Monrose



Coarse-grained CFI: Lessons Learned

1. Too many call sites available
→ Restrict returns to their actual caller (shadow stack)

2. Heuristics are ad-hoc and ineffective
→ Adjusted sequence length leads to high false positive 

3. Too many indirect jump and call targets
 Resolving indirect jumps and calls is non-trivial
→ Compromise: Compiler support 

Control-Flow Integrity

Out of control 
[Göktas et al.,

IEEE S&P 2014]

Size does matter 
[Göktas et al., 

USENIX Sec. 2014]

Stitching the gadgets 
[Davi et al., 

USENIX Sec. 2014]

ROP is still dangerous 
[Carlini et al., 

USENIX Sec. 2014]

COOP
[Schuster et al., 
IEEE S&P 2015]

Control-Flow Bending
[Carlini et al., 

USENIX Sec. 2015]

StackDefiler
[Conti et al.,
CCS 2015]

FlowStich
[Hu et al., 

USENIX Sec. 2015]

Control Jujutsu
[Evans et al.,

CCS 2015]

Signal-oriented 
Programming (SROP)

[Bosman et al., 
IEEE S&P 2014]



Hardware CFI



Why Leveraging Hardware for CFI ? 

Efficiency Security

CFI_RETURN

CFI_JUMP

CFI_CALL

CFI Memory

Branch
Targets

Dedicated CFI instructions Isolated CFI storage



Why CFI Processor Support? 

CFI Processor Support based on Instruction set 
architecture (ISA) extensions

Dedicated CFI instructions

Avoids offline training phase

Instant attack detection

CFI control state: 
Binding CFI data to CFI state and instructions



Strategy Without Tactics: 
Policy-Agnostic Hardware-Enhanced Control-Flow Integrity

Design Automation Conference (DAC 2016)
Dean Sullivan, Orlando Arias, Lucas Davi, Per Larsen, 

Ahmad-Reza Sadeghi, Yier Jin

HAFIX++



Objectives
Backward-Edge and 

Forward-Edge CFI
Stateful, CFI policy agnostic

No burden on developer No code annotations/changes

Security Hardware protection
On-Chip Memory for CFI Data
No unintended sequences

High performance < 3% overhead 

Enabling technology All applications can use CFI 
features
Support of Multitasking 

Compatibility to legacy code CFI and non-CFI code on same 
platform



insn

HAFIX++ Fine-Grained CFI State Model

State 0
Idle

State 1
CFI

execution

CFI
enabled

CFI disabled

State 1
CFI

execution

State 2
Save FE call 

target

State 3
CFI Check

State 4
Stop

execution

pre-call

call/jmp

State 2
Save FE jump 

target

pre-jump

X

Initialization FE Control-Flow

State 1
CFI

execution

BE Control-Flow

State 2
Save return 

target

pre-call

State 3
CFI Check

ret

State 4
Stop

execution

X

• Support for both CFI/non-CFI processes

• Strict enforcement of unique forward-
edge control-flow targets

• Strict enforcement of unique backward-
edge control-flow targets



cfibr Issued at call site  setup Backward (BW) Edge

cfiret Issue at return site  check BW Edge

cfiprc Issued at call site setup call target

cfiprj Issued at jump site  setup jump target

cfichk Issued at call/jmp target  check Forward (FW) Edge

HAFIX++ ISA Extensions

• Fine-grained forward edge control-flow policy
• Separation of call/jump
• Unique label per target

• Fine-grained backward edge control-flow policy
• Return to only most recently issued return label

Label State 
Stack (LSS)

Label State 
Register (LSR)



Indirect Call Policy

State 0
Normal Execution

Label State 
Stack (LSS)

CFI State
Only CFI instructions 

allowed

CFIBR label_A1

CFIRET label_A1

Function A
CALL *reg

Code

Function B
Code
RET

…

label_A1

Label State 
Register (LSR)

label_B

CFILSR label_B

CFICHK label_B

Function A

CALL *reg
CFIRET label_A1

Function B

Code
RET

CFILSR label_B

Code

CFIBR label_A1

CFICHK label_B

A1

B



Function Return Policy

State 0
Normal Execution Label State 

Stack (LSS)

CFI State
Only CFI instructions 

allowed

CFIBR label_A1

CFIRET label_A1

Function A
CALL B 
Code

Function B
Code
RET

…

label_A1

Function A

CALL B
CFIRET label_A1

Function B

Code
RET

CFIBR label_A1

Code
A1



HAFIX++ Pipeline

DecodeFetch MemoryExecute Write

insn1CFIinsn2insn3insn4insn5

NOP

CFI Control Unit

CFI

CFI Label State 
Memory

label

Forward CFI to Control Unit

Convert CFI to NOP

Label access in dedicated memory

label

Label does not match
→ Stop Execution

Forward label to CFI Control Unit to check activity



Function A (25) Function B (31)

insn
CFICHK 25

CFIBR 251
CFIPRC 31
CALL                       *reg

insn

insn

CFICHK 
31

insn

JMP                        *reg
CFIPRJ 252

CFICHK 
252
insnCFICHK 
252

RET

CFIBR 
253CFIPRC 
45
CALL                       *reg

CFIRET 251

CFIRET 
253
insn

RET

insn

Label State StackLabel State Register
25 12251

Push Label 251 onto LSS

31

Store Label 31 to LSR

Call Function B

Label 31 valid
Return  to Function A

Pop label off stack 
and validate

Store Label 252

252

Label 252 valid



Challenges …



Architectural Issues
• Runtime overhead caused by CFI instrumentation 

o Initializing and validating the CFI state upon every FW/BW edge 
o I-cache pressure during instruction fetch
o Effective CPI

• Runtime overhead and problems caused by hardware
o Branch instruction occur about every 3-5 instructions
o CFI instructions/operations around every one of them
o Memory access for CFI metadata is slow 
o CFI metadata could be corrupted if considered data (StackDefiler) 
o CFI metadata could be a bottleneck if placed in code



The Multiple Callers Problem

Function A
CFIPRC
CALL                       *reg

Function B
CFIPRC
CALL                       *reg

Fn M

Fn N Fn O

Fn P Fn R

Fn S Fn T

Fn U

Fn Q

Common Callee

45

45 45

45

45

33

33 33

33

Label confusion!

45 33

• We can not assign both 45 and 33 at the same time.
• We could assign a common label to all targets

• Introduces erroneous edges in the Control Flow Graph
→ Call targets must be disjointed! Use a trampoline!



System Challenges

Sharing CFI subsystem resources1

Separation of process states2

Handling CFI Module Exceptions3

Handling of legacy code4



The Scheduling Issue

Label State Stack
0003

9265

7932

1415

3589

LSSP

Process 1

1618

Label State 
Register

This is running

Label State Stack
0002

8182

0452

0287

7182

8459

3536

LSSP

Process 2

5772

Label State 
Register

This is being scheduled



The Scheduling Issue

Label State Stack
0003

9265

7932

1415

3589

LSSP

Process 1

1618

Label State 
Register

This is running

Label State Stack

Process 2

Label State 
Register

This is being scheduled



The Stack Issue

Label State Stack
0003

9265

7932

2643

7950

1415

3589

3846

3832

2884

LSSP

We ran out of stack 
space! What do we do?



The Process Control Block

• Representation of a process to the kernel
• In Linux, look for task_struct in 
include/linux/sched.h

• Information contains:
• Execution state (runnable, suspended, zombie…)
• Virtual memory allocations
• Process owner
• Process group
• Process id
• I/O status information
• CPU context state



Kernel Scheduler Additions

read current CFI awareness
if CFI is enabled

backup CFI state for current
read next CFI awareness
if CFI is enabled

restore CFI state for next
else

disable CFI subsystem



Process 1 -- PCB

TASK_RUNNING

CFI_ON
CFI Context

…

Process 2 -- PCB

TASK_RUNNING

CFI_ON

…

The Scheduling Issue Resolved

Label State Stack
0003

9265

7932

1415

3589

LSSP

CFI Subsystem

1618

Label State 
Register

CFI Context

0002

8182

0452

0287

7182

8459

3536

LSSP

5772



Process 1 -- PCB

TASK_RUNNING

CFI_ON
CFI Context

…

Process 2 -- PCB

TASK_RUNNING

CFI_OFF

…

The Scheduling Issue Resolved

Label State Stack
0003

9265

7932

1415

3589

LSSP

CFI Subsystem

1618

Label State 
Register

CFI Context



Your stack still overflows
or underflows for that matter

• We use the PCB already, add things there
on overflow:

copy bottom half of current’s LSS to PCB
move top half of LSS to bottom
set LSSP to new location

on underflow:
get bottom half of current’s LSS from PCB
set LSSP to new location



Process 1 -- PCB

TASK_RUNNING

CFI_ON
CFI Context

…

The Stack Issue Resolved

Label State Stack
0003

9265

7932

1415

3589

LSSP

CFI Subsystem

1618

Label State 
Register

2643

7950

3846

3832

2884



CFI Faults

• The CFI subsystem detected a CFI violation
• Add kernel log entry with CFI fault information
• Send SIGKILL to offending process

• This kills the process with no chance of a signal handler 
running



Related Works

 HCFI:
 New instructions to track control flow
 Combines and relocates instructions into pipeline bubble slots
 Single threaded, embedded applications only

 Intel CET:
 Shadow stack for return addresses
 New register ssp for the shadow stack
 Conventional move instructions cannot be used in shadow stack
 New instructions to operate on shadow stack
 New instruction for indirect call/jump targets: branchend
 Any indirect call/jump can target any valid indirect branch target



Control-flow Enforcement Technology 
[Intel 2016]

Function A
call [D1]A1

call [D2]A2

insA3

returnA4

Function B
ENDBRANCH
push eax
pop  eax
return

B1

B2

B3

B4

Shadow Stack
A2

Data
B1D1

B1D2

Stack
A2A3

✔

✘✔

B3

✘
Function C
ENDBRANCH
…
return

C1

C2

C3

C1

✔



Control-flow Enforcement Technology 
[Intel 2016]

• Backward edge:
• Shadow stack detects return-address manipulation
• Shadow stack protected, cannot be accessed by attacker
• New register ssp for the shadow stack
• Conventional move instructions cannot be used in shadow stack
• New instructions to operate on shadow stack

• Forward edge:
• New instruction for indirect call/jump targets: branchend
• Any indirect call/jump can target any valid indirect branch target
• Could be combined with fine-grained compiler-based CFI (LLVM 

CFI)



Comparison with HAFIX++

BE-Support FE-Support Shared library
& Multitasking Granularity Overhead

XFI
Budiu et al, ASID 2006 Coarse 3.75%

HAFIX
Davi et al., DAC 2015

Coarse 2%

LandHere
http://landhere.galois.com

Coarse N/A

HCFI
Christoulakis et al., 

CODASPY 2016
Fine 1%

Intel CET
https://software.intel.com/site
s/default/files/managed/4d/2a

/control-flow-enforcement-
technology-preview.pdf

Coarse N/A

HAFIX++
Sullivan et al., DAC 2016

Fine 1.75%

Can branch to any call/jump target 
with endbranch inst.

Architectural dependent 
optimizations
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