
instead of

Motivation

Three Decades of Runtime Attacks

Morris Worm
1988

Code
Injection

AlephOne
1996

return-into-
libc

Solar Designer
1997

Borrowed
Code Chunk
Exploitation

Krahmer
2005

Return-oriented
programming

Shacham
CCS 2007

Continuing Arms
Race

…

Recent Attacks

Cisco Router Exploit [2016]
Million CISCO ASA Firewalls potentially
vulnerable to attacks

The Million Dollar Dissident [2016]
Government targeted human rights
defender with a chain of zero-day exploits
to infect his iPhone with spyware.

Adversary

Attacks on Tor Browser [2013]
FBI Admits It Controlled Tor Servers
Behind Mass Malware Attack.

Adversary

MMS

Stagefright [Drake, BlackHat 2015]
These issues in Stagefright code critically
expose 95% of Android devices, an
estimated 950 million devices

Relevance and Impact

• Web browsers repeatedly exploited in pwn2own contests
• Zero-day issues exploited in Stuxnet/Duqu [Microsoft, BH 2012]
• iOS jailbreak

High Impact of Attacks

• Microsoft EMET includes a ROP detection engine
• Microsoft Control Flow Guard (CFG) in Windows 10
• Google‘s compiler extension VTV (Virtual Table Verification)
• Intel’s Hardware Extension CET (Control-flow Enforcement Technology)

Industry Efforts on Defenses

• A large body of recent literature on attacks and defenses

Hot Topic of Research

Can either be bypassed, or may not
be sufficiently effective
[Davi et al, Blackhat2014], [Liebchen et al CCS2015],
[Schuster, et al S&P2015]

Runtime Attacks & Defenses:
Continuing Arms Race

ROP wo Returns,
Out-of-Control,

Stitching the
Gadgets, SROP, JIT-

ROP, BlindROP,
COOP, StackDefiler,

"Missing the
point(er)"

Attacks
CFI, ROPGuard,

BinCFI, ROPecker,
kBouncer, CCFIR,
vTint, vfGuard,

SafeDispatch, MoCFI,
RockJIT, TVip,

StackArmor, CPI/CPS,
Oxymoron, XnR,

Isomeron,
O-CFI,

Readactor,
HAFIX,

...

Defenses
Still seeking practical and
secure solutions

The whole story …..

Runtime Attacks

A

B

DC

E F

Adversary

A

B

DC

E F

Data flow
Program flow

corrupt code pointerinject malicious
code

corrupt code
pointer

Code-Injection Attack Code-Reuse Attack
Basic Blocks (BBL)
Entry: instruction target of a branch
(e.g., first instruction of a function)
Exit: Any branch
(e.g., indirect or direct jump/call, return)

XX

Data Execution Prevention

DEP

Return-oriented Programing (ROP):
Prominent Code-Reuse Attack

ROP shown to be
Turing-complete

ROP: Basic Ideas/Steps
 Use small instruction sequences instead of whole

functions
 Instruction sequences have length 2 to 5
 All sequences end with a return instruction, or an

indirect jump/call
 Instruction sequences chained together as gadgets
 Gadget perform particular task, e.g., load, store,

xor, or branch
 Attacks launched by combining gadgets
 Generalization of return-to-libc

Threat Model: Code-reuse Attacks

Application

Code

Data

Code

Data

RX

RW

RX

RW

? ?

?

?

?

?

?

?
?

?

?
?

?
?
?

Writable ⊕ Executable1

Opaque Memory Layout2

Disclose readable Memory3

Manipulate writable Memory4

Computing Engine5

Data

Code

Data

Code

Data

Data

Main Defenses against Code Reuse

1. Code Randomization

2. Control-Flow Integrity (CFI)

Randomization vs. CFI

Randomization Control-flow Integrity
Low Performance

Overhead

Scales well to complex
Software (OS, browser)

Formal Security
(Explicit Control Flow

Checks)

Tradeoff:
Performance & Security

Challenging to integrate
in complex software,

coverage

Information Disclosure
hard to prevent

High entropy required

EPISODE I
Code Randomization

Make gadgets locations unpredictable

Fine-Grained ASLR

 Instruction reordering/substitution within a BBL
ORP [Pappas et al., IEEE S&P 2012]

 Randomizing each instruction‘s location:
ILR [Hiser et al., IEEE S&P 2012]

 Permutation of BBLs:
STIR [Wartell et al., CCS 2012] & XIFER [with Davi et al., AsiaCCS 2013]

Library (e.g., libc)

Application Run 1

Instruction
Sequence 3 RET

Instruction
Sequence 2 RET

Instruction
Sequence 1 RET

Library (e.g., libc)

Application Run 2

Instruction
Sequence 2 RET

Instruction
Sequence 1 RET

Instruction
Sequence 3 RET

Randomization: Memory Leakage Problem

Direct memory disclosure
• Pointer leakage on code pages
• e.g., direct call and jump instruction

Indirect memory disclosure
• Pointer leakage on data pages such as stack or heap
• e.g., return addresses, function pointers, pointers in

vTables

Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space Layout Randomization

IEEE Security and Privacy 2013, and Blackhat 2013
Kevin Z. Snow, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen,

Fabian Monrose, Ahmad-Reza Sadeghi

JIT-ROP:
Bypassing Randomization via

Direct Memory Disclosure

Just-In-Time ROP:
Direct Memory Disclosure

Undermines fine-grained ASLR1

Shows memory disclosures are far more
damaging than believed2

Can be instantiated with real-world exploit 3

Readactor:
Practical Code Randomization Resilient to Memory Disclosure

IEEE Security and Privacy 2015
Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,

Ahmad-Reza Sadeghi, Stefan Brunthaler, Michael Franz

Readactor: Towards Resilience to
Memory Disclosure

Pointers

Return Address

RW

ApplicationRX
Static Attack

(Fine-grained)
Randomization

Trampoline

Function_B
<instructions>
call Function_A
pop ebx
pop ecx
ret

Direct code
disclosure

Indirect code
disclosure

Trampoline
Reuse Attacks

Register
randomization

Execute-only
Memory

Code-pointer
hiding

Attack Timeline

Morris Worm /
Return to libc [Solar
Designer Bugtraq’97]

Just-In-Time ROP [Snow et
al. IEEE S&P’13]

Isomeron (Attack) [Davi et
al. NDSS’15]

Function_A?

?
?

?

??
?

?

? ?
Execute-

only
Memory

(XoM)

Function_B
<instructions>
call Function_A
pop ebx
pop ecx
ret

XoM

Trampoline Target
pop ebx
pop ecx
ret
? ?? ??

Code Randomization:
Attack & Defense Techniques

Code Randomization:
Attack & Defense Techniques

PointersRW

ApplicationRX

Trampoline

Function
Reuse Attacks

Trampoline
Reuse for
Single Function
PointersTrampolines &

Booby Traps

Attack Timeline

Counterfeit Object-oriented
Programming (COOP)
[Schuster et al. IEEE S&P’15]? ??? ?XoM

XoM

Function Pointer

virt. Function1
virt. Function2

Virtual Table

X-Virtual Table
vFunc2 Tramp

vFunc1 Tramp
Booby Trap

Ptr X-virt table

XoM
Brute-force
Attacks on
Entropy Booby Traps

Terminate Process

Crash-Resistant Oriented
Programming [Gawlik et al.
NDSS’16]

JIT CodeJIT Code
Attacks

Same Protection
as for AOT Code

Attack Surface
Large enough?

?

Code Randomization:
Attack & Defense Techniques

EPISODE II
Control-Flow Integrity (CFI)

Restricting indirect targets
to a pre-defined control-flow graph

Original CFI Label Checking
[Abadi et al., CCS 2005 & TISSEC 2009]

label_A
ENTRY
asm_ins, …
EXIT

BBL A

A

C B
label_B
ENTRY
asm_ins, …
EXIT

BBL B

CFI CHECK:
EXIT(A) -> label_B ?

Two Questions
1. Benign and correct execution?

2. Runtime enforcement?

CFI: CFG Analysis and Coverage Problem

CFG Analysis
• Conservative “points-to” analysis
• e.g., over-approximate to avoid breaking the program

CFG Coverage
• Precision of CFG analysis determines security of CFI

policy
• e.g., more precise more secure

Which Instructions to Protect?

• Purpose: Return to calling function
• CFI Relevance: Return address located on stackReturns

• Purpose: switch tables, dispatch to library functions
• CFI Relevance: Target address taken from either

processor register or memory

Indirect
Jumps

• Purpose: call through function pointer, virtual table calls
• CFI Relevance: Target address taken from either processor

register or memory

Indirect
Calls

Label Granularity: Trade-Offs (1/2)
 Many CFI checks are required if unique labels are

assigned per node

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) ==
[Label_3, Label_4, Label_5]

CFI Check

Basic Block

Label

Label Granularity: Trade-Offs (2/2)
 Optimization step: Merge labels to allow single CFI check
 However, this allows for unintended control-flow paths

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) == Label_3
CFI Check

Basic Block

Label

Label_3

Label_3

Exit(C) == Label_3

Label Problem for Returns
 Static CFI label checking

leads to coarse-grained
protection for returns

B

R

AA‘ B‘
CALL

RET

Label_1 Label_2
Shadow Stack
Backup storage for

return addresses

Return Addr A’

Return Addr …

CALL RET

Backup State Check

 Shadow stack allows for
fine-grained return
address protection but
incurs higher overhead

Forward-
Edge CFI

Backward
-Edge CFI

Exit(R) == [Label_1, Label_2]

…

Forward- vs. Backward-Edge
 Some CFI schemes consider only forward-edge CFI

 Google’s VTV and IFCC [Tice et al., USENIX Sec 2015]
 SAFEDISPATCH [Jang et al., NDSS 2014]
 And many more: TVIP, VTint, vfguard

 Assumption: Backward-edge CFI through stack
protection

 Problems of stack protections:
 Stack Canaries: memory disclosure of canary
 ASLR (base address randomization of stack): memory

disclosure of base address
 Variable reordering (memory disclosure)

Losing Control:
On the Effectiveness of Control-Flow Integrity under Stack Attacks

ACM CCS 2015
Christopher Liebchen, Marco Negro, Per Larsen, Lucas Davi, Ahmad-Reza
Sadeghi, Stephen Crane, Mohaned Qunaibit, Michael Franz, Mauro Conti

StackDefiler

• Goal:
• Bypass fine-grained Control-Flow Integrity
• IFCC & VTV (CFI implementations by Google for GCC and

LLVM)

• Approach:
• Due to optimization by compiler critical CFI pointer is

spilled on the stack
• StackDefiler discloses the stack address and overwrites

the spilled CFI pointer
• At restoring of spilled registers a malicious CFI pointer is

used for future CFI checks
• No stack-based vulnerability needed

Bypassing (Coarse-grained) CFI

COOP
IEEE S&P 2015

Felix Schuster, Thomas Tendyck,
Christopher Liebchen, Lucas Davi,

Ahmad-Reza Sadeghi, Thorsten Holz

USENIX Security 2014
Lucas Davi, Daniel Lehmann,

Ahmad-Reza Sadeghi, Fabian Monrose

Coarse-grained CFI: Lessons Learned

1. Too many call sites available
→ Restrict returns to their actual caller (shadow stack)

2. Heuristics are ad-hoc and ineffective
→ Adjusted sequence length leads to high false positive

3. Too many indirect jump and call targets
 Resolving indirect jumps and calls is non-trivial
→ Compromise: Compiler support

Control-Flow Integrity

Out of control
[Göktas et al.,

IEEE S&P 2014]

Size does matter
[Göktas et al.,

USENIX Sec. 2014]

Stitching the gadgets
[Davi et al.,

USENIX Sec. 2014]

ROP is still dangerous
[Carlini et al.,

USENIX Sec. 2014]

COOP
[Schuster et al.,
IEEE S&P 2015]

Control-Flow Bending
[Carlini et al.,

USENIX Sec. 2015]

StackDefiler
[Conti et al.,
CCS 2015]

FlowStich
[Hu et al.,

USENIX Sec. 2015]

Control Jujutsu
[Evans et al.,

CCS 2015]

Signal-oriented
Programming (SROP)

[Bosman et al.,
IEEE S&P 2014]

Hardware CFI

Why Leveraging Hardware for CFI ?

Efficiency Security

CFI_RETURN

CFI_JUMP

CFI_CALL

CFI Memory

Branch
Targets

Dedicated CFI instructions Isolated CFI storage

Why CFI Processor Support?

CFI Processor Support based on Instruction set
architecture (ISA) extensions

Dedicated CFI instructions

Avoids offline training phase

Instant attack detection

CFI control state:
Binding CFI data to CFI state and instructions

Strategy Without Tactics:
Policy-Agnostic Hardware-Enhanced Control-Flow Integrity

Design Automation Conference (DAC 2016)
Dean Sullivan, Orlando Arias, Lucas Davi, Per Larsen,

Ahmad-Reza Sadeghi, Yier Jin

HAFIX++

Objectives
Backward-Edge and

Forward-Edge CFI
Stateful, CFI policy agnostic

No burden on developer No code annotations/changes

Security Hardware protection
On-Chip Memory for CFI Data
No unintended sequences

High performance < 3% overhead

Enabling technology All applications can use CFI
features
Support of Multitasking

Compatibility to legacy code CFI and non-CFI code on same
platform

insn

HAFIX++ Fine-Grained CFI State Model

State 0
Idle

State 1
CFI

execution

CFI
enabled

CFI disabled

State 1
CFI

execution

State 2
Save FE call

target

State 3
CFI Check

State 4
Stop

execution

pre-call

call/jmp

State 2
Save FE jump

target

pre-jump

X

Initialization FE Control-Flow

State 1
CFI

execution

BE Control-Flow

State 2
Save return

target

pre-call

State 3
CFI Check

ret

State 4
Stop

execution

X

• Support for both CFI/non-CFI processes

• Strict enforcement of unique forward-
edge control-flow targets

• Strict enforcement of unique backward-
edge control-flow targets

cfibr Issued at call site setup Backward (BW) Edge

cfiret Issue at return site check BW Edge

cfiprc Issued at call site setup call target

cfiprj Issued at jump site setup jump target

cfichk Issued at call/jmp target check Forward (FW) Edge

HAFIX++ ISA Extensions

• Fine-grained forward edge control-flow policy
• Separation of call/jump
• Unique label per target

• Fine-grained backward edge control-flow policy
• Return to only most recently issued return label

Label State
Stack (LSS)

Label State
Register (LSR)

Indirect Call Policy

State 0
Normal Execution

Label State
Stack (LSS)

CFI State
Only CFI instructions

allowed

CFIBR label_A1

CFIRET label_A1

Function A
CALL *reg

Code

Function B
Code
RET

…

label_A1

Label State
Register (LSR)

label_B

CFILSR label_B

CFICHK label_B

Function A

CALL *reg
CFIRET label_A1

Function B

Code
RET

CFILSR label_B

Code

CFIBR label_A1

CFICHK label_B

A1

B

Function Return Policy

State 0
Normal Execution Label State

Stack (LSS)

CFI State
Only CFI instructions

allowed

CFIBR label_A1

CFIRET label_A1

Function A
CALL B
Code

Function B
Code
RET

…

label_A1

Function A

CALL B
CFIRET label_A1

Function B

Code
RET

CFIBR label_A1

Code
A1

HAFIX++ Pipeline

DecodeFetch MemoryExecute Write

insn1CFIinsn2insn3insn4insn5

NOP

CFI Control Unit

CFI

CFI Label State
Memory

label

Forward CFI to Control Unit

Convert CFI to NOP

Label access in dedicated memory

label

Label does not match
→ Stop Execution

Forward label to CFI Control Unit to check activity

Function A (25) Function B (31)

insn
CFICHK 25

CFIBR 251
CFIPRC 31
CALL *reg

insn

insn

CFICHK
31

insn

JMP *reg
CFIPRJ 252

CFICHK
252
insnCFICHK
252

RET

CFIBR
253CFIPRC
45
CALL *reg

CFIRET 251

CFIRET
253
insn

RET

insn

Label State StackLabel State Register
25 12251

Push Label 251 onto LSS

31

Store Label 31 to LSR

Call Function B

Label 31 valid
Return to Function A

Pop label off stack
and validate

Store Label 252

252

Label 252 valid

Challenges …

Architectural Issues
• Runtime overhead caused by CFI instrumentation

o Initializing and validating the CFI state upon every FW/BW edge
o I-cache pressure during instruction fetch
o Effective CPI

• Runtime overhead and problems caused by hardware
o Branch instruction occur about every 3-5 instructions
o CFI instructions/operations around every one of them
o Memory access for CFI metadata is slow
o CFI metadata could be corrupted if considered data (StackDefiler)
o CFI metadata could be a bottleneck if placed in code

The Multiple Callers Problem

Function A
CFIPRC
CALL *reg

Function B
CFIPRC
CALL *reg

Fn M

Fn N Fn O

Fn P Fn R

Fn S Fn T

Fn U

Fn Q

Common Callee

45

45 45

45

45

33

33 33

33

Label confusion!

45 33

• We can not assign both 45 and 33 at the same time.
• We could assign a common label to all targets

• Introduces erroneous edges in the Control Flow Graph
→ Call targets must be disjointed! Use a trampoline!

System Challenges

Sharing CFI subsystem resources1

Separation of process states2

Handling CFI Module Exceptions3

Handling of legacy code4

The Scheduling Issue

Label State Stack
0003

9265

7932

1415

3589

LSSP

Process 1

1618

Label State
Register

This is running

Label State Stack
0002

8182

0452

0287

7182

8459

3536

LSSP

Process 2

5772

Label State
Register

This is being scheduled

The Scheduling Issue

Label State Stack
0003

9265

7932

1415

3589

LSSP

Process 1

1618

Label State
Register

This is running

Label State Stack

Process 2

Label State
Register

This is being scheduled

The Stack Issue

Label State Stack
0003

9265

7932

2643

7950

1415

3589

3846

3832

2884

LSSP

We ran out of stack
space! What do we do?

The Process Control Block

• Representation of a process to the kernel
• In Linux, look for task_struct in
include/linux/sched.h

• Information contains:
• Execution state (runnable, suspended, zombie…)
• Virtual memory allocations
• Process owner
• Process group
• Process id
• I/O status information
• CPU context state

Kernel Scheduler Additions

read current CFI awareness
if CFI is enabled

backup CFI state for current
read next CFI awareness
if CFI is enabled

restore CFI state for next
else

disable CFI subsystem

Process 1 -- PCB

TASK_RUNNING

CFI_ON
CFI Context

…

Process 2 -- PCB

TASK_RUNNING

CFI_ON

…

The Scheduling Issue Resolved

Label State Stack
0003

9265

7932

1415

3589

LSSP

CFI Subsystem

1618

Label State
Register

CFI Context

0002

8182

0452

0287

7182

8459

3536

LSSP

5772

Process 1 -- PCB

TASK_RUNNING

CFI_ON
CFI Context

…

Process 2 -- PCB

TASK_RUNNING

CFI_OFF

…

The Scheduling Issue Resolved

Label State Stack
0003

9265

7932

1415

3589

LSSP

CFI Subsystem

1618

Label State
Register

CFI Context

Your stack still overflows
or underflows for that matter

• We use the PCB already, add things there
on overflow:

copy bottom half of current’s LSS to PCB
move top half of LSS to bottom
set LSSP to new location

on underflow:
get bottom half of current’s LSS from PCB
set LSSP to new location

Process 1 -- PCB

TASK_RUNNING

CFI_ON
CFI Context

…

The Stack Issue Resolved

Label State Stack
0003

9265

7932

1415

3589

LSSP

CFI Subsystem

1618

Label State
Register

2643

7950

3846

3832

2884

CFI Faults

• The CFI subsystem detected a CFI violation
• Add kernel log entry with CFI fault information
• Send SIGKILL to offending process

• This kills the process with no chance of a signal handler
running

Related Works

 HCFI:
 New instructions to track control flow
 Combines and relocates instructions into pipeline bubble slots
 Single threaded, embedded applications only

 Intel CET:
 Shadow stack for return addresses
 New register ssp for the shadow stack
 Conventional move instructions cannot be used in shadow stack
 New instructions to operate on shadow stack
 New instruction for indirect call/jump targets: branchend
 Any indirect call/jump can target any valid indirect branch target

Control-flow Enforcement Technology
[Intel 2016]

Function A
call [D1]A1

call [D2]A2

insA3

returnA4

Function B
ENDBRANCH
push eax
pop eax
return

B1

B2

B3

B4

Shadow Stack
A2

Data
B1D1

B1D2

Stack
A2A3

✔

✘✔

B3

✘
Function C
ENDBRANCH
…
return

C1

C2

C3

C1

✔

Control-flow Enforcement Technology
[Intel 2016]

• Backward edge:
• Shadow stack detects return-address manipulation
• Shadow stack protected, cannot be accessed by attacker
• New register ssp for the shadow stack
• Conventional move instructions cannot be used in shadow stack
• New instructions to operate on shadow stack

• Forward edge:
• New instruction for indirect call/jump targets: branchend
• Any indirect call/jump can target any valid indirect branch target
• Could be combined with fine-grained compiler-based CFI (LLVM

CFI)

Comparison with HAFIX++

BE-Support FE-Support Shared library
& Multitasking Granularity Overhead

XFI
Budiu et al, ASID 2006 Coarse 3.75%

HAFIX
Davi et al., DAC 2015

Coarse 2%

LandHere
http://landhere.galois.com

Coarse N/A

HCFI
Christoulakis et al.,

CODASPY 2016
Fine 1%

Intel CET
https://software.intel.com/site
s/default/files/managed/4d/2a

/control-flow-enforcement-
technology-preview.pdf

Coarse N/A

HAFIX++
Sullivan et al., DAC 2016

Fine 1.75%

Can branch to any call/jump target
with endbranch inst.

Architectural dependent
optimizations

	Slide Number 1
	Slide Number 2
	Three Decades of Runtime Attacks
	Recent Attacks
	Relevance and Impact
	Slide Number 6
	Slide Number 7
	Runtime Attacks
	Slide Number 9
	ROP: Basic Ideas/Steps
	Threat Model: Code-reuse Attacks
	Main Defenses against Code Reuse��1. Code Randomization��2. Control-Flow Integrity (CFI)�
	Randomization vs. CFI
	EPISODE I �Code Randomization�Make gadgets locations unpredictable
	Fine-Grained ASLR
	Randomization: Memory Leakage Problem
	Slide Number 17
	Just-In-Time ROP: �Direct Memory Disclosure
	Readactor: Towards Resilience to Memory Disclosure
	Slide Number 20
	Slide Number 21
	�EPISODE II�Control-Flow Integrity (CFI)�Restricting indirect targets �to a pre-defined control-flow graph
	Original CFI Label Checking� [Abadi et al., CCS 2005 & TISSEC 2009]
	CFI: CFG Analysis and Coverage Problem
	Which Instructions to Protect?
	Label Granularity: Trade-Offs (1/2)
	Label Granularity: Trade-Offs (2/2)
	Label Problem for Returns
	Forward- vs. Backward-Edge
	Losing Control: �On the Effectiveness of Control-Flow Integrity under Stack Attacks�ACM CCS 2015�Christopher Liebchen, Marco Negro, Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Stephen Crane, Mohaned Qunaibit, Michael Franz, Mauro Conti�
	StackDefiler
	�Bypassing (Coarse-grained) CFI�
	Coarse-grained CFI: Lessons Learned
	Hardware CFI�
	Why Leveraging Hardware for CFI ?
	Why CFI Processor Support?
	HAFIX++
	Objectives
	Slide Number 40
	HAFIX++ ISA Extensions
	Indirect Call Policy
	Function Return Policy
	HAFIX++ Pipeline
	Slide Number 45
	Challenges …
	Architectural Issues
	The Multiple Callers Problem
	System Challenges
	The Scheduling Issue
	The Scheduling Issue
	The Stack Issue
	The Process Control Block
	Kernel Scheduler Additions
	The Scheduling Issue Resolved
	The Scheduling Issue Resolved
	Your stack still overflows�or underflows for that matter
	The Stack Issue Resolved
	CFI Faults
	Related Works
	Control-flow Enforcement Technology �[Intel 2016]
	Control-flow Enforcement Technology �[Intel 2016]
	Comparison with HAFIX++

