
 

  

Rooting every Android 
From extension to exploitation 

Di Shen (@returnsme), James Fang (@id3lr) 
KEEN LAB TENCENT (@KEEN_LAB) 



2 

OVERVIEW 3 

WI-FI CHIPSETS FOR ANDROID 3 
WEXT ATTACK SURFACE ANALYSIS 3 
USE DEVICE SPECIFIC VULNERABILITIES TO ROOT THEM ALL 6 

CASE STUDIES 7 

STACK OVERFLOW VULNERABILITY IN QUALCOMM WEXT 7 
DATA SECTION OVERFLOW VULNERABILITY IN MTK WEXT 10 
THE OVERFLOW 10 
HOW TO EXPLOIT 11 
LEAKING VALUES 11 
KERNEL CODE EXECUTION 12 
USE-AFTER-FREE VULNERABILITY IN BROADCOM WEXT 12 
CVE-2016-2475 13 
ANDROID-ID-24739315 15 
HOW TO TRIGGER 16 
RACING AND OBJECT RE-FILLING 18 
HEAP SPRAYING BY SENDMMSG 18 
HAPPY ROOING 19 

GOOGLE’S LATEST MITIGATION 20 

CONCLUSION 21 

 

  



3 

 
From extension to exploitation 

Rooting every Android 
Di Shen (@returnsme), James Fang(@idl3r) 
Keen Lab Tencent (@keen_lab) 

Overview 
In this section we are going to discuss the implementation of Wireless Extension (WEXT) 
subsystem in Android. We are going to analyse the attack surface of WEXT API and reveal its 
potential weakness. 

Wi-Fi chipsets for Android 
All existing Android builds use Linux as its kernel. As a mobile-oriented system, it heavily 
relies on Wi-Fi and cellular data for communication. For its Wi-Fi part, Android adopted 
Wireless Extension (WEXT) as its standard API to manage Wi-Fi hardware. 

The Wireless Extension (WEXT) was designed by Jean Tourrilhes in 1997. It has been widely 
used for 20 years, yet its design still meets the demanding of modern Wi-Fi hardware. It was 
designed a wireless API which would allow the user to manipulate any wireless networking 
device in a standard and uniform way.  

Although a newer standard, cfg80211, is likely to replace WEXT in the near future, yet it still 
provides backward compatibility, which means the same user interface still exists in the kernel. 
It worth mentioning that newer standard doesn’t necessarily mean more secured kernel, as 
common security flaws are still discovered in drivers adopting cfg80211 standard. In fact, 
WEXT drivers may arguably be more secure since it attracts more attention from researchers. 

WEXT Attack Surface Analysis 
The user-space interface of WEXT consists of two main components: a procfs node and ioctl 
through sockets. 

The procfs node is /proc/net/wireless. It is read-only and supplies only statistical information on 
each of the wireless interfaces. From its implementation in /net/wireless/wext-proc.c, we can 
see only a read handler registered: 



4 

static const struct file_operations wireless_seq_fops = { 
        .owner   = THIS_MODULE, 
        .open    = seq_open_wireless, 
        .read    = seq_read, 
        .llseek  = seq_lseek, 
        .release = seq_release_net, 
}; 
 
From security point of view, the possibility of critical security flaw in this file is very low. This 
node is almost “harmless”. 

On the other side, ioctl is intended to provide all the “extension” features to user-space 
programs. It includes setting/getting parameters on the Wi-Fi device and issuing commands to 
it. Following range of ioctl commands are assigned to WEXT related opeartions: 

/* The first and the last (range) */ 
#define SIOCIWFIRST     0x8B00 
#define SIOCIWLAST      SIOCIWLASTPRIV          /* 0x8BFF */ 
 
These WEXT ioctls are not magic. Each driver needs to implement them. From sys_ioctl, it 
takes a long call stack to reach the actual handler function in driver. 

When a WEXT ioctl is called upon a socket, sys_ioctl will check the operation against its 
corresponding LSM hook function. In Android’s case it would be SELinux policies. If the 
access is allowed (or permissive), it will going to do_vfs_ioctl and vfs_ioctl. As usual, vfs_ioctl 
will refer to the operations table of the object, which is socket_file_ops in this case. Then the 
control flow will be guided to sock_ioctl. 

At the begin of sock_ioctl, there is a piece of code handling ioctl commands in the range of 
[SIOCIWFIRST, SIOCIWLAST]: 

static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 
{ 
        ... 
        struct net *net; 
        ... 
        net = sock_net(sk); 
        ... 
#ifdef CONFIG_WEXT_CORE 
        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 
                err = dev_ioctl(net, cmd, argp); 
        } else 
#endif 
 
Note that dev_ioctl is not dedicate for WEXT ioctl commands. It also handles a wide range of 
other commands for socket objects. It does, however, copy the user supplied arg buffer into an 
ifreq structure (ifr) on stack, with a fixed length. Then, at the bottom of the function, it will 
hand-over the ifr object to wext_handle_ioctl: 

int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 



5 

{ 
        struct ifreq ifr; 
        ... 
        if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 
                return -EFAULT; 
 
        ifr.ifr_name[IFNAMSIZ-1] = 0; 
        ... 
        switch (cmd) { 
        ... 
        /* 
         *      Unknown or private ioctl. 
         */ 
        default: 
                ... 
                /* Take care of Wireless Extensions */ 
                if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 
                        return wext_handle_ioctl(net, &ifr, cmd, arg); 
                return -ENOTTY; 
        } 
} 
 
From this point, the control flow enters the WEXT specific path. Function wext_handle_ioctl 
will then call wext_ioctl_dispatch, which the latter will perform an important check on 
permissions: 

static int wext_permission_check(unsigned int cmd) 
{ 
        if ((IW_IS_SET(cmd) || cmd == SIOCGIWENCODE || 
             cmd == SIOCGIWENCODEEXT) && 
            !capable(CAP_NET_ADMIN)) 
                return -EPERM; 
 
        return 0; 
} 
 
... 
 
static int wext_ioctl_dispatch(struct net *net, struct ifreq *ifr, 
                               unsigned int cmd, struct iw_request_info *info, 
                               wext_ioctl_func standard, 
                               wext_ioctl_func private) 
{ 
        int ret = wext_permission_check(cmd); 
 
        if (ret) 
                return ret; 
 
        dev_load(net, ifr->ifr_name); 
        rtnl_lock(); 
        ret = wireless_process_ioctl(net, ifr, cmd, info, standard, private); 
        rtnl_unlock(); 
 
        return ret; 
} 
 
And IW_IS_SET is a simple macro to detect if a number is even: 



6 

#define IW_IS_SET(cmd)  (!((cmd) & 0x1)) 
 
This means all WEXT ioctl commands which are even means a set (write) operation, and 
requires CAP_NET_ADMIN to be performed. On other words, if a set operation is wrongfully 
assigned with an odd ioctl command number, the requirement of CAP_NET_ADMIN will be 
missing and any unprivileged user can call it providing SELinux policy allows the syscall itself. 
This is actually a very real problem which we will discuss in the case studies. 

If the permission check is passed, wext_ioctl_dispatch will eventually call 
wireless_process_ioctl, which lookup a handler table of the driver against the index (cmd – 
SIOCIWFIRST) and call the corresponding handler function. 

In conclusion, WEXT ioctl commands are widely available to unprivileged users if SELinux (or 
other LSM modules) allows the access. It employs an “odd” rule to identify privileged and 
unprivileged commands, which could be wrongfully implemented and cause unprivileged 
access. 

Use device specific vulnerabilities to root them all 
In the previous section, we discussed why WEXT ioctl commands are good candidate to attack 
the kernel. In the next sections we will present three vulnerabilities affecting Qualcomm, 
Broadcom and Mediatek Wi-Fi deviecs respectively, which covers majority of Android devices. 

 

  



7 

Case Studies 

Stack overflow vulnerability in Qualcomm WEXT 
CVE-2015-0570 is a stack overflow vulnerability reported by anonymous researcher last year. 
Before digging into the bug itself, we need to understand how this bug survives the Stack 
Smashing Protection (SSP) of gcc. 

SSP is recommended to be enabled when compiling kernel. In theory, any function has local 
array can be potential victim of stack overflow vulnerability. However, to reduce the overhead 
of stack canary check, several rules are made to restrict the number of functions which SSP will 
be applied. One rule is that, if all local arrays of a function are less than 8 bytes long, it won’t 
be applied. Gcc is capable of generate a warning when a function is not protected by SSP, 
which is off by default, since obviously it will spam the warning output. 

By enabling the warning manually (-Wstack-protector), we can read the following output: 

/msm/bullhead-src/drivers/staging/qcacld-2.0/CORE/HDD/src/wlan_hdd_wext.c: 
In function 'wlan_hdd_set_filter': 

/msm/bullhead-src/drivers/staging/qcacld-
2.0/CORE/HDD/src/wlan_hdd_wext.c:8315:5: warning: stack protector not 
protecting function: all local arrays are less than 8 bytes long [-Wstack-
protector] 

The function body declared two local members on stack: 

int wlan_hdd_set_filter(hdd_context_t *pHddCtx, tpPacketFilterCfg pRequest, 
                            tANI_U8 sessionId) 
{ 
    tSirRcvPktFilterCfgType    packetFilterSetReq = {0}; 
    tSirRcvFltPktClearParam    packetFilterClrReq = {0}; 
    ... 
} 
 
And the definitions of these two structures can be found in sirApi.h: 

#define    SIR_MAX_FILTER_TEST_DATA_LEN       8 
... 
typedef struct sSirRcvPktFilterFieldParams 
{ 
  eSirRcvPktFltProtocolType        protocolLayer; 
  eSirRcvPktFltCmpFlagType         cmpFlag; 
  /* Length of the data to compare */ 
  tANI_U16                         dataLength; 
  /* from start of the respective frame header */ 
  tANI_U8                          dataOffset; 
  /* Reserved field */ 



8 

  tANI_U8                          reserved; 
  /* Data to compare */ 
  tANI_U8                          compareData[SIR_MAX_FILTER_TEST_DATA_LEN]; 
  /* Mask to be applied on the received packet data before compare */ 
  tANI_U8                          dataMask[SIR_MAX_FILTER_TEST_DATA_LEN]; 
}tSirRcvPktFilterFieldParams, *tpSirRcvPktFilterFieldParams; 
 
typedef struct sSirRcvPktFilterCfg 
{ 
  tANI_U8                         filterId; 
  eSirReceivePacketFilterType     filterType; 
  tANI_U32                        numFieldParams; 
  tANI_U32                        coalesceTime; 
  tSirMacAddr                     selfMacAddr; 
  tSirMacAddr                     bssId; //Bssid of the connected AP 
  tSirRcvPktFilterFieldParams     paramsData[SIR_MAX_NUM_TESTS_PER_FILTER]; 
}tSirRcvPktFilterCfgType, *tpSirRcvPktFilterCfgType; 
 
It is noticed that there are two arrays declared inside tSirRcvPktFilterFieldParams, which are 
encapsulated in tSirRcvPktFilterCfgType. Both array has 8 bytes. It seems that the gcc’s 
decision was wrong. Further investigation shows that gcc was not able to handle nested 
structure array properly. This might be a bug in SSP implementation which worth further 
investigation. 

The relatively low efficiency of SSP has been and google posted a blog in June 2016: 
http://android-developers.blogspot.com/2016/07/protecting-android-with-more-linux.html. In 
this blog, Google recommended to use Strong Stack Smashing Protection (-fstack-proetector-
strong) instead of the regular one. This feature is available since gcc 4.9. 

Back to the vulnerability itself, it is quite obvious. The data copy loop in function 
wlan_hdd_set_filter does not check data length:  

int wlan_hdd_set_filter(hdd_context_t *pHddCtx, tpPacketFilterCfg pRequest, tANI_U8 
sessionId) 
{ 
    tSirRcvPktFilterCfgType    packetFilterSetReq = {0}; 
    ... 
     
    switch (pRequest->filterAction) 
    { 
        case HDD_RCV_FILTER_SET: 
            ... 
            for (i=0; i < pRequest->numParams; i++) 
            { 
                ... 
                packetFilterSetReq.paramsData[i].dataLength = 
pRequest->paramsData[i].dataLength; 
                ... 
                memcpy(&packetFilterSetReq.paramsData[i].compareData, 
                        pRequest->paramsData[i].compareData, 
pRequest->paramsData[i].dataLength); 
                memcpy(&packetFilterSetReq.paramsData[i].dataMask, 



9 

                        pRequest->paramsData[i].dataMask, 
pRequest->paramsData[i].dataLength); 
                ... 
            } 
        ... 
    } 
    return 0; 
} 
 
According to the call stack, pRequest is exactly the arg supplied by user when calling ioctl. By 
crafting a malicious pRequest, which is fully controllable by the user, we can overflow the 
stack of wlan_hdd_set_filter and gain control of LR.  

Another remaining issue is that, to defeat PXN, which is widely enabled on arm64 devices, we 
need to construct a JOP chain. For this case, we are controlling X29 and X19 registers, which is 
not ideal for JOP. Luckily, we were able to find the following pivot gadget: 

bin_page_mkwrite: 
 A1 1F 40 F9                 LDR             X1, [X29,#0x38] 
 E0 03 14 AA                 MOV             X0, X20 
 60 02 3F D6                 BLR             X19 
 
After controlling X0 and X1, we can easily build 2 JOP chains to leak kernel SP and overwrite 
addr_limit. Our choice of gadgets are: 

Leak SP: 

shm_sync: 
 05 08 40 F9                 LDR             X5, [X0,#0x10] 
 A0 14 40 F9                 LDR             X0, [X5,#0x28] 
 04 38 40 F9                 LDR             X4, [X0,#0x70/0x78] 
 A0 02 80 12                 MOV             W0, #0xFFFFFFEA 
 64 00 00 B4                 CBZ             X4, loc_FFFFFFC0003DFB10 
 E0 03 05 AA                 MOV             X0, X5 
 80 00 3F D6                 BLR             X4   
snd_pcm_common_ioctl1: 
 03 08 40 F9                 LDR             X3, [X0,#0x10] 
 E0 03 1C AA                 MOV             X0, X28 
 60 00 3F D6                 BLR             X3     
__spi_async: 
 20 08 00 F9                 STR             X0, [X1,#0x10] 
 22 34 00 B9                 STR             W2, [X1,#0x34] 
 A2 78 41 F9                 LDR             X2, [X5,#0x2F0/0x380] 
 40 00 3F D6                 BLR             X2 

Overwrite addr_limit: 

shm_sync: 
 05 08 40 F9                 LDR             X5, [X0,#0x10] 
 A0 14 40 F9                 LDR             X0, [X5,#0x28] 
 04 38 40 F9                 LDR             X4, [X0,#0x70/0x78] 
 A0 02 80 12                 MOV             W0, #0xFFFFFFEA 
 64 00 00 B4                 CBZ             X4, loc_FFFFFFC0003DFB10 
 E0 03 05 AA                 MOV             X0, X5 
 80 00 3F D6                 BLR             X4    
  
df_bcc_func: 



10 

 03 04 40 F9                 LDR             X3, [X0,#8] 
 00 18 40 F9                 LDR             X0, [X0,#0x30] 
 60 00 3F D6                 BLR             X3 
__spi_async: 
 20 08 00 F9                 STR             X0, [X1,#0x10] 
 22 34 00 B9                 STR             W2, [X1,#0x34] 
 A2 78 41 F9                 LDR             X2, [X5,#0x2F0/2F8/380] 
 40 00 3F D6                 BLR             X2 

 

 

Data section overflow vulnerability in MTK WEXT 
The discovery of CVE-2015-0570 put our attention focus on WEXT attack surface. Soon after 
that we found another vulnerability in MediaTek WEXT. That bug was obviously exploitable, 
so I finish developing the exploit in two days, and no hardcoded kernel symbol is needed in its 
exploit. At that time, we didn’t report it to Google yet. Taking into account the bug can be 
easily discovered by code auditing, I’m not surprised when I noticed that another researcher 
Mark Brand of Google project zero already reported it to Google in Dec. 2015.   

The CVE number of 2nd case is CVE-2016-0820. It affected all mediaek-based devices. 

The overflow 

When one of WEXT handler priv_get_struct process PRINV_CMD_SW_CTRL command, 
there is no boundary protection of the copy length when it call copy_from_user. The 
destination of memory copy is aucOidbuf which has 4096 bytes in data section. The length of 
copied buffer is prIwReqData->data.length which is provided by user and can be any value. 

 1437      case PRIV_CMD_SW_CTRL:  
 1438          pu4IntBuf = (PUINT_32)prIwReqData->data.pointer;  
 1439          prNdisReq = (P_NDIS_TRANSPORT_STRUCT) &aucOidBuf[0];  
 1440          //kalMemCopy(&prNdisReq->ndisOidContent[0], 

prIwReqData->data.pointer, 8);  
 1441          if (copy_from_user(&prNdisReq->ndisOidContent[0],  
 1442                             prIwReqData->data.pointer,  
 1443                             prIwReqData->data.length)) {  
 1444              status = -EFAULT;  
 1445              break;  
 1446          } 
 

 

	  



11 

How to exploit 

A classical idea to achieve kernel code execution is overwriting a global function pointer 
located behind aucOidbuf and then trigger some one to call it. In this case I’ll try to overwrite 
pfWlanRemove. To avoid a kernel crash, I’d better not corrupt other unrelated global variables 
between aucOidbuf and pfWlanRemove. So I need to know the offset of  pfWlanRemove, and 
the value of these unrelated variables. To meet these requirements, leaking the value behind 
aucOidbuf is necessary. 

 

Leaking values 

Fortunately, another command PRIV_CMD_GET_DEBUG_CODE completed the task 
perfectly. There is no boundary check when call copy_to_user. So we can get the value of 
variables behind gucBufDbgCode which is the variable just behind aucOidBuf. 

	

 1097      case PRIV_CMD_GET_DEBUG_CODE:  

 1098          {  

 1099              wlanQueryDebugCode(prGlueInfo->prAdapter);  

 1100                  kalMemSet(gucBufDbgCode, '.', sizeof(gucBufDbgCode));  

 1101                  if (copy_to_user(prIwReqData->data.pointer, gucBufDbgCode, 

prIwReqData->data.length)) {  

 1102                       return -EFAULT;  

 1103                  }  

 1104                  else  

 1105                       return status;  

 1106          }  
 

 

	  



12 

Kernel code execution 

Now it’s time to allocate some pages in user mode and copy shellcode to these pages. Then get 
the direct mapped address of these pages in kernel (a.k.a. ret2dir). Note that these pages are 
EXECUTABLE in kernel space of MTK devices. 

Then overwrite pfWlanRemove with kernel address of shellcode. And finally call Java API 
wifi.setWifiEnabled(false) so that system process “mtk_wmtd” may call pfWlanRemove to 
execute shellcode in kernel space. 

Use-After-Free vulnerability in Broadcom WEXT 
Case study 3 is a Use-after-free due to race condition in Broadcom WEXT, both the bug and its 
exploitation is much complicated that previous two case. There are two separated issue 
involved in this case. The first one is CVE-2016-2475, which is a lack of privileged check 
while processing WEXT ioctl command for Android. The second one is the Use-after-free 
when call wl_android_wifi_off concurrently. These issues affected all premium-end Android 
phones like Samsung Galaxy series, Huawei Mate series, Google Nexus 6p, etc. 

An interesting fact is that the second issue is discovered by running test code while pressing 
Wi-Fi button on and off repeatedly and crazily. And then kernel crashed and the crash is 
reproducible. After analyzing the crash, I realized I found a UAF bug accidently.  

  



13 

 

CVE-2016-2475 

This issue exposes a surface for attacker. In dhd_ioctl_entry, wl_android_priv_cmd  can be 
called with insufficient privileges. The command SIOCDEVPRIVATE+1 will be processed at 
position 1, it’s too late to check the privilege of process at position 2. 

  1  static int dhd_ioctl_entry(struct net_device *net, struct ifreq *ifr, int cmd)  

  2  {  
  3     

  4      ...snip...  
  5     

  6      if (cmd == SIOCDEVPRIVATE+1) {   //position 1  

  7          ret = wl_android_priv_cmd(net, ifr, cmd);  
  8          dhd_check_hang(net, &dhd->pub, ret);  

  9          DHD_OS_WAKE_UNLOCK(&dhd->pub);  
 10          return ret;  

 11      }  

 12     
 13      if (cmd != SIOCDEVPRIVATE) {  

 14          DHD_PERIM_UNLOCK(&dhd->pub);  
 15          DHD_OS_WAKE_UNLOCK(&dhd->pub);  

 16          return -EOPNOTSUPP;  

 17      }  
 18     

 19      ...snip...  
 20     

 21      if (!capable(CAP_NET_ADMIN)) {     //position 2  

 22          bcmerror = BCME_EPERM;  
 23          goto done;  

 24      }  
 25     

 26      ...snip...  

 27     
 28      bcmerror = dhd_ioctl_process(&dhd->pub, ifidx, &ioc, local_buf);  
 

 

	   

A large number of commands for Android will be processed in wl_android_priv_cmd , the 
most attractive to me are CMD_START/CMD_STOP which can be used to enable/disable Wi-
Fi  directly. That UAF bug is introduced by the implementation of CMD_STOP. 



14 

  1  int wl_android_priv_cmd(struct net_device *net, struct ifreq *ifr, int cmd){  

  2      ...snip...  

  3      if (strnicmp(command, CMD_START, strlen(CMD_START)) == 0) {  

  4          bytes_written = wl_android_wifi_on(net);  

  5      }  

  9      if (!g_wifi_on) {  

 10          ret = 0;  

 11          goto exit;  

 12      }  

 13      if (strnicmp(command, CMD_STOP, strlen(CMD_STOP)) == 0) {  

 14          bytes_written = wl_android_wifi_off(net, FALSE);  

 15      }  

 25      ...snip...  

 26      return ret;  

 27  }  
 

 

	

 

  



15 

Android-ID-24739315 

Here’s come the second issue, it has not a CVE number and never appeared in Android Security 
Bulletin, but it’s absolutely exploitable. The patch is quite simple. When dhd_bus_devreset is 
called and the state of Wi-Fi bus has been down, do not call dhdpcie_bus_intr_disable any 
more. 

 

If two threads call wl_android_wifi_off simultaneously, the first thread will go yellow branch, 
may free the si_info and set bus state to DOWN, the second thread will go green branch later, 
reference freed struct si_info.  

 



16 

How to trigger 

The prerequisites of triggering the UAF bug is invoking wl_android_wifi_off simultaneously, 
however, attacker can not invoke wl_android_wifi_off via dhd_ioctl_entry concurrently 
because it’s locked by DHD_PERIM_LOCK. I have to find another way. 

  1  static int  

  2  dhd_ioctl_entry(struct net_device *net, struct ifreq *ifr, int cmd)  

  3  {  

  4      dhd_info_t *dhd = DHD_DEV_INFO(net);  

  5      dhd_ioctl_t ioc;  

  6      int bcmerror = 0;  

  7      int ifidx;  

  8      int ret;  

  9      void *local_buf = NULL;  

 10      u16 buflen = 0;  

 11     

 12      DHD_OS_WAKE_LOCK(&dhd->pub);  

 13      DHD_PERIM_LOCK(&dhd->pub);  

 14  ..snip..  

 15      if (cmd == SIOCDEVPRIVATE+1) {  

 16          ret = wl_android_priv_cmd(net, ifr, cmd);  

 17          dhd_check_hang(net, &dhd->pub, ret);  

 18          DHD_OS_WAKE_UNLOCK(&dhd->pub);  

 19          return ret;  

 20      }  

 21  ..snip..  

 22  done:  

 23      if (local_buf)  

 24          MFREE(dhd->pub.osh, local_buf, buflen+1);  

 25     

 26      DHD_PERIM_UNLOCK(&dhd->pub);  

 27      DHD_OS_WAKE_UNLOCK(&dhd->pub);  

 28  }  
 

 

	

 

Fortunately, wl_android_wifi_off also can be called via dhd_stop, the code flow is 
devnet_ioctl(sockfd,SIOCSIFFLAGS)  -> __dev_change_flags -> __dev_close -> dhd_stop -> 
wl_android_wifi_off . Even though calling  ioctl(sockfd,SIOCSIFFLAGS) requires 
CAP_NET_ADMIN privilege, any local application is able to ask system_server to call a Java 
method setWiFistate  via binder IPC. System_server will handle request in a binder thread, and 
finally call wl_android_wifi_off. 



17 

 

To trigger the UAF, the binder thread has to enter wl_android_wifi_off soon after attacker’s 
thread enter it. The window is small. If the re-filled object meet following requirements, it will 
reach a macro INTR_OFF, intrsoff_fn is a function pointer can be controlled by attacker. 

 

It’s a UAF due to race condition and the window is very small. In the following log you can 
know that the object was free at 872.481513s and reused at 872.592760s. Attacker only has 
0.02s to re-fill the object and execute code in kernel. This is a big challenge.  



18 

  1  <4>[  872.481513] si_detach free si ffffffc058ae1100;cores_info ffffffc0ac815000  
  2  <4>[  872.481526] dhdpcie_bus_release_dongle Exit  
  3  <4>[  872.481574] dhdpcie_stop_host_pcieclock Enter:  
  4  <6>[  872.496619] msm_pcie_disable: PCIe: Assert the reset of endpoint of RC1.  
  5  <4>[  872.501069] dhdpcie_stop_host_pcieclock Exit:  
  6  <4>[  872.501081] dhd_bus_devreset:  WLAN OFF Done  
  7  <4>[  872.501094] wifi_platform_set_power = 0  
  8  <6>[  872.501104] dhd_wlan_power Enter: power off  

  9  <4>[  872.501383] __dev_change_flags  dev: wlan0 flags 1042  
 10  <4>[  872.501598] dhd_deferred_work_handler: event to handle 24  
 11  <4>[  872.501615] dhd_set_mcast_list_handler: interface info not available/down  
 12  <4>[  872.501626] dhd_deferred_work_handler: event to handle 0  
 13  <4>[  872.501634] dhd_deferred_work_handler: No event to handle 0  
 14  <4>[  872.502660] dhd_stop: Enter ffffffc0b11d5000  
 15  <4>[  872.502672] wl_android_wifi_off in  
 16  <4>[  872.502684] dhd_prot_ioctl : bus is down. we have nothing to do  
 17  <4>[  872.502695] dhd_net_bus_devreset: wl down failed  
 18  <4>[  872.502704] dhd_bus_devreset: == Power OFF ==  
 19  <4>[  872.502715] dhdpcie_bus_intr_disable Enter  
 20  <4>[  872.502760] sb_corereg sii ffffffc058ae1100,cores_info ffffffc0ac815000  
 

 

	

 

Racing and object re-filling 

If racing failed, nothing will happen except an error returned. If racing succeeded but re-filling 
failed, kernel may crash. So we have to find a way to spray kernel heap efficiently and quickly. 
And also, in this case we’d better fully control the content and length of the re-filled objects. I 
used to use sendmmsg to spray kernel heap, and this time it’s still working. 

Heap spraying by sendmmsg 

Firstly, create two processes as server and client, and send bytes over a TCP connection using 
sendmmsg. Let msghdr->msg_control point to the content you want to spray in kernel. As 
server never respond the sendmsg request from client, the kernel buffer of msg_control will 
permanently stay in kmalloc heap. 

 



19 

 1  struct msghdr { 
 2      void    *    msg_name;    /* Socket name            */ 
 3      int        msg_namelen;    /* Length of name        */ 
 4      struct iovec *    msg_iov;    /* Data blocks            */ 
 5      __kernel_size_t    msg_iovlen;    /* Number of blocks        */ 
 6      void     *    msg_control; /* Per protocol magic (eg BSD file descriptor 

passing) */ 
 7      __kernel_size_t    msg_controllen;    /* Length of cmsg list */ 
 8      unsigned int    msg_flags; 
 9  }; 
	

 It has a 90% success rate to re-fill the freed 
object in 0.02s. The data and length of sprayed 
object can be fully controlled. Fortunately, the 
freed si_info is allocated in kmalloc-256. This 
approach will be not working if the object is 
located in kmalloc-512, since sendmmsg will 
allocate other 512-sized objects as an 
interference with spraying. 

Happy rooting 

Now we have achieved kernel code execution, 
gaining root could be quite easy, just build JOP 
gadgets to manipulate credential of attacker’s 
process, disable SELinux and bypass some 
vendor specific mitigation (e.g. Samsung 
KNOX’s Real-time Kernel Protection). 

  



20 

 

Google’s latest mitigation 
The discovery of CVE-2015-0570 put researchers’ attention on WEXT, while CVE-2016-0820 
drove Google to reduce socket ioctl permissions further. Google’s patch for SELinux policy has 
a same bug id with CVE-2016-0820 

 

Now only a limited set of socket ioctls defined in upriv_sock_ioctls can be accessed by 
unprivileged apps. 

 

I’m not surprised that private WEXT ioctls are removed from upriv_sock_ioctls. 

 



21 

  

So if you want to call private WEXT ioctl on an updated Nexus device, I’m afraid you may get 
following error message from kernel: 

avc: denied { ioctl } for pid=8567 comm="poc" path="socket:[156925]" dev="sockfs" 
ino=156925 ioctlcmd=89f1 scontext=u:r:shell:s0 tcontext=u:r:shell:s0 tclass=tcp_socket 
permissive=0  

Conclusion 
After we used three exploits mentioned above to root a large number of devices with 
Qualcomm, Mediatek, and Broadcom Wi-Fi chipsets, I believe WEXT private ioctl was once 
an awesome attack surface on Android kernel. Code in Linux kernel is safe but vendor code is 
still buggy. And Google really did a good job on surface reduction in 2016. “Protecting 
Android with more Linux kernel defenses” shows that what Google’s Android security team 
have done this year. 

In summary, rooting Android is becoming more and more challenging. To root Android devices 
again in future, mining other attack surfaces little known like WEXT private ioctl could be 
helpful. Discovering universal vulnerability in generic syscall like CVE-2015-1805 is another 
option. Compromising a privileged process first and attacking devices which are only 
accessible to privileged process is also reasonable. But compromising a privileged process in 
user space is just another hard work. 

 

 


