RANDOMIZATION

CANT STOP
BPF JIT SPRAY

Elena Reshetova
Filippo Bonazzi
N.Asokan

whoami and credits

Intel Open Source

Elena Reshetova -----—-—-—-—--« Technology Group,
: Finland
|
!
|
Flllppo Bonazzl ---------- R Intel Collaborative

Research Institute for
Secure Computing

N- ASO kan ------------
----------- -: : :_ ettt T et ety <Aalto University>
l
|
:_ __________ inersity of HelsiD

2

Special credits to Daniel Borkmann for really great discussions on BPF and JIT!

What you are about to hear...

* Overview of BPF

* JIT compiler for BPF

* Original JIT spray attack by Keegan McAllister
 Community response

* Our attack: making it real

* Demo

* Implemented mitigations

This work has been done within the upstream Kernel Self Protection Project

The Berkeley Packet Filter (BPF) provides a raw interface

to data link layers, permitting raw link-layer packets to be
sent and received.

BPF supports filtering packets, allowing a userspace

process to supply a filter program that specifies which
packets it wants to receive. 1)

--Wikipedia

= A kernel component
allowing a userspace process
to supply a program and
get it executed in kernel context!

Overview of Berkeley Packet Filter

Where is it used?

Packet filtering, various tracepoints, seccomp...

Filter programs are written in machine language
for BPF virtual machine

Operations allowed:
fetch data from the packet

arithmetic operations with constants and packet data

compare the results against constants or against data

BPF verifier - sanity checks on supplied BPF program

length, correct header and end, BPF instruction codes, etc.

JIT compiler for BPFE

Packet filtering needs to be SUPER FAST in order
to be useful
Solution: Just-In-Time compiler for BPF

* Convert BPF instructions into native instructions

* Support for x86, ARM and others.

* Disabled by default on typical desktop machine

« Enabled on networking equipment such as routers ©

What do we have so far?

1. Creates BPF program 2. Creates socket

3. Atatches BPF program
to the socket

USERSPACE
KERNEL

9. The resulted program
will get executed in kernel

4. BPF program gets transfered to kernel
\ 4 8. JIT compiler
converts BPF program

7. If checks . to native assembly context when socket data
pass, and JIT is needs to be processed
enabled, then
pass BPF
program to JIT
compiler
>
5. BPF program
passed to BPF
verifier for sanity . ASSG m b ly
6. If checks fail, then
checks : _
discard program, notify 7

userspace of error

ORIGINAL JIT SPRAY ATTACK
by Keegan McAllister

8000 filters
2012

* Pass payload instructions as
constants in different BPF
instructions

* Populate address space with
many filters

* Use FD passing as a trick

390656 memory pages

« Randomly guess filter start page
and jump to it

Passing payload instructions as constants

Pseudocode Machine code Assembly (AT&T syntax)

D8 ZZ XX XX a8 mov-$OXa8XXYYZZ, Yoeax
D8RR OQOQPP-a8 1 ‘mov $0xa8PPQOQRR, %eax

X = Oxa8XXYYZZ
X = 0xa8PPOQORR — arasecana
X=.

Using unaligned instruction
execution, start executing
from second byte

Machine code Assembly (AT&T syntax)

ZZYY XX (payload instruction)
a8 b8 test $0xb8, %oal
RR QQ PP (payload instruction)
a8 b8 test $0xb8, %oal

Example taken from
http://mainisusuallyafunction.blogspot.de/2012/11/att B
acking-hardened-linux-systems-with.html

Community response

Grsecurity: blind constants in BPF 8000 filters
instructions

Upstream kernel: randomize BPF
start address and fill the space
with illegal instructions

No Attack Against
Upstream Fix Was
Presented

390656 memory pages

10

Our Attack: Approach # 1

* Repeat payload enough times for :
filter to grow beyond one page 8000 filters

* Guess random page but try
executing 10 consecutive offsets
at page start to find payload

* Downside: we still jump to the o

beginning of the page and execute
INT3 instructions in some cases 390656 memaory pages

11

Our Attack: Approach #2

 Adjust filter size to fill exactly 8000 filters
PAGE SIZE-128-4 Max size of A
This forces the INT3 section to INT3 hole \

be max 132 bytes

\ INT3, INTS3, ... INT3, INT3, ...

« Make filter program many NOPs +
payload at the end

 Guess random page, but jump past R
first 132 bytes to safely land on N
filter 390656 memory pages

12

=

2%
8. 0

13

Implemented Mitigations

BPF: add generic constant blinding for use in jits

Daniel Borkmann
Upstream Linux kernel commit 4f3446b and related

 No more payload instruction passing using constants

UNIX: properly account for FDs passed over UNIX sockets
Willy Tarreau

Upstream Linux kernel commit 712f4aa

 No more process limit bypass on number of UNIX sockets using FDs passing

KALSR feature for x86 64 in 4.8

14

GET INVOLVED!

Upstream Kernel-Self Protection Project (KSPP)

https://kernsec.org/wiki/index.php/Kernel Self Protection Project

http://www.openwall.com/lists/kernel-hardening/

Exploits, proof of concepts, patches, reviews,... all needed!!

15

http://ssg.aalto.fi/projects/kernel-hardening

RANDOMIZATION

CAN'T STOP
BPF JIT SPRAY

http://ssg.aalto.fi/projects/kernel-hardening

