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1 Introduction

Nowadays, more and more Linux attackers fo-cus their attention on the kernel rather thanon userspace applications, especially in mobileand embedded devices. The primary reason forthis change is the extensive work done over theyears to limit the damagewhen a userspace ap-plication is exploited. For example, the latestreleases of Android have well-designed SEAn-droid policies that do not allow a compromisedapplication to get any significant controls overthe OS itself. On the contrary, finding a vulnera-bility in the kernel almost always leads to com-promise of the whole device.Many kernel (and userspace) vulnerabilitiesare the result of programming mistakes, suchas uninitialized variables, missing boundarychecks, use-after-free situations etc. While de-veloping tools that help finding these mistakesis important, it is impossible to fully avoid them.Moreover, even when a vulnerability is discov-ered and fixed in the upstream kernel, it takesapproximately 5 years for the fix to be propa-gated to all the end user devices [6].The Kernel Self Protection Project (KSPP)1tries to eliminate whole classes of vulnerabil-ities that might lead to creation of success-ful exploits, by implementing various hardeningmechanisms inside the kernel itself. An impor-tant part of the project is to create ProofOf Con-cept (POC) attacks that demonstrate the need
1kernsec.org/wiki/index.php/
Kernel_Self_Protection_Project

for certain additional protection mechanisms,since this helps to get wider acceptance fromkernel subsystem maintainers.The Linux kernel Berkeley Packet Filter (BPF)Just-In-Time (JIT) compiler was an importantfocus of the project, since it is widely used inthe kernel and has seen successful attacks inthe past. In 2012, a JIT spray attack againstLinux BPF/JIT was presented (Section 3). Con-sequently, some countermeasures were imple-mented in the Linux kernel version 3.10 (Sec-tion 3.2). In this whitepaper, we show howthese countermeasures can be circumventedon a modern Linux 4.4 kernel (Section 4). Wealso describe the recent measures that havebeen added to the Linux kernel to eliminatethese types of attacks altogether (Section 5).

2 Background

The need for fast network packet inspectionand monitoring was obvious in early versionsof UNIX with networking support. In orderto gain speed and avoid unnecessary copy-ing of packet contents between kernel anduserspace, the notion of a kernel packet filteragent was introduced [13, 12]. Different UNIX-based OSes implemented their own versionsof these agents. The solution later adoptedby Linux was the BSD Packet Filter introducedin 1993 [11], which is referred to as Berke-ley Packet Filter (BPF). This agent allows auserspace program to attach a filter program
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onto a socket and limit certain data flows com-ing through the socket in a fast and effectiveway.Linux BPF originally provided a set of instruc-tions that could be used to program a filter: thisis nowadays referred to as classic BPF (cBPF).Later a new,more flexible, and richer set was in-troduced, which is referred to as extended BPF(eBPF) [5, 14]. In order to simplify the terminol-ogy throughout this paper, we refer to the lat-ter set of instructions simply as BPF instruc-
tions. Linux BPF can be viewed as a minimal-istic virtual machine construct [5] that has afew registers, a stack and an implicit programcounter. Different operations are allowed in-side a valid BPF program, such as fetching datafrom the packet, arithmetic operations usingconstants and input data, and comparison ofresults against constants or packet data. TheLinux BPF subsystem has a special compo-nent, called verifier, that is used to checkthe correctness of a BPF program; all BPFprograms must approved by this componentbefore they can be executed. verifier is astatic code analyzer that walks and analyzes allbranches of a BPF program; it tries to detectunreachable instructions, out of bound jumps,loops etc. verifier also enforces the maxi-mum length of a BPF program to 4096 BPF in-structions [14].

Figure 1: Typical flow of a BPF program
While originally designed for network packet

filtering, nowadays Linux BPF is used in manyother areas, including system call filtering inseccomp [2], tracing [15] and Kernel ConnectionMultiplexer (KCM) [8].In order to improve packet filtering perfor-mance even further, Linux utilizes a Just-In-Time (JIT) compiler [7, 14] to translate BPF in-structions into native machine assembly. JITsupport is provided for all major architectures,including x86 and ARM. This JIT compiler is notenabled by default on standard Linux distribu-tions, such as Ubuntu or Fedora, but it is typ-ically enabled on network equipment such asrouters.Figure 1 shows a simplified view of how aBPF program is loaded and processed in theLinux kernel. First, a userspace process createsa BPF program, a socket, and attaches the pro-gram to the socket (steps 1-3). Next, the pro-gram is transferred to the kernel, where it is fedto the verifier to be checked (steps 4-5). If thechecks fail (step 6), the program is discardedand the userspace process is notified of the er-ror; otherwise, if JIT is enabled, the programgets processed by the JIT compiler (step 7).The result is the BPF program in native assem-bly, ready for execution when the associatedsocket receives data (steps 8-9). The programis placed in the kernel module mapping mem-ory space, using the vmalloc() kernel memoryallocation primitive.

3 JIT spray attack

JIT spraying is an attack where the behavior ofa Just-In-Time compiler is (ab)used to load anattacker-provided payload into an executablememory area of the operating system [3]. Thisis usually achieved by passing the payload in-structions encoded as constants to the JITcompiler and then using a suitable OS bug toredirect execution into the payload code. Nor-mally the exact location of the payload is notknown or controlled by the attacker, and there-fore many copies of the payload are “sprayed”into OS memory to maximize the chance ofsuccess. JIT spray attacks are dangerous be-
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cause JIT compilers, due to their nature, arenormally exempt from various data executionprevention techniques, such as NX bit support(known as XD bit in x86 and XN bit in ARM).Another feature that makes JIT spray attacksespecially successful on the x86 architecture isits support for unaligned instruction execution,which is the ability to jump into the middle ofa multi-byte machine instruction and start ex-ecution from there. The x86 architecture sup-ports this feature since its instructions can beanything between 1 and 15 bytes in length, andthe processor should be able to execute themall correctly in any order [1]. The first attackthat introduced the notion of JIT spraying andused this technique to exploit the Adobe Flashplayer on Windows was done by Dion Blazakisin 2010 [4].
3.1 Original JIT spray attack on Linux

The first original JIT spray attack against theLinux kernel using the BPF JIT compiler [10]was presented by Keegan McAllister in 2012.The POC exploit code2 used a number of keysteps to obtain a root shell on a Linux device.
3.1.1 Creating the BPF payload

The POC creates a valid BPF programcontaining the payload instructions:
commit_creds(prepare_kernel_cred(0)).This is a very common way for exploits to ob-tain root privileges on Linux: the combinationof these function calls sets the credentials ofthe current process to root. The addresses ofthe commit_creds and prepare_kernel_credkernel symbols are resolved at runtime usingthe /proc/kallsyms kernel interface. Thepayload instructions are embedded into thefilter program using the BPF load immediateinstruction (BPF_LD+BPF_IMM), which loads a 4byte constant into a standard register (eax inx86). When compiled, this instruction is trans-formed into the x86 mov $x, %eax instruction,which corresponds to the byte sequence
2github.com/kmcallister/alameda

b8 XX XX XX XX

where b8 is the instruction opcode and the fol-lowing 4 bytes are the instruction argument $x.While the attacker is able to set these 4 bytesfreely, in practice only the first 3 can be arbi-trarily chosen; the last byte needs to be de-fined so that, when combined with the follow-ing b8 instruction opcode during unaligned exe-cution, it produces a harmless instruction. Forthis purpose, the last byte is chosen to be a8:the a8 b8 byte sequence represents the harm-less test $0xb8, %al x86 instruction. Whenthe BPF load immediate instruction is repeatedmultiple times, this results in the byte sequence
b8 XX XX XX a8 b8 XX XX XX a8 b8 ...

Figure 2 shows how the payload is transformedfromBPFpseudocode to the x86machine codeusing the JIT compiler, and how the machinecode looks like when starting the unaligned ex-ecution from the second byte of the payload.

Figure 2: BPF payload JIT compilation and un-aligned execution

3.1.2 Loading the payload in memory

In order to load many copies of the BPF filterpayload in kernel memory, the attacker’s pro-cess needs to create many local sockets, sinceeach socket can have only one BPF filter at-tached to it. While Linux limits the number ofopen file descriptors that a process can possesat any given time,McAllister used a special trickto circumvent this limit. The trick is to openone local Unix socket and send the resulting filedescriptor over another local Unix socket, and
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then close the original socket. Linux does notfree the memory for the closed socket, sincethis might be still read by a process that re-ceives it on the other end. Therefore, the socketis not counted towards the process socketlimit, but it is kept in kernel memory regardless.By using this clever trickMcAllistermanaged tocreate 8000 sockets, and correspondingly load8000 BPF filters containing the payload in ker-nel memory.
3.1.3 Redirection of execution

Last, the proof of concept code contains a tinykernel module (jump.ko) that jumps to the ad-dress specified by a userspace process us-ing the interface provided by the /proc vir-tual filesystem. This extremely insecure mod-ule simulates the job of actually finding a realbug in the kernel to redirect the execution flow.
jump.ko needs to be loaded using root privi-leges before the attack, which is obviously im-possible for an attacker looking to obtain rootprivileges. This kernel module is simply used toprovide an entry point to demonstrate that theJIT spray attack works.
3.1.4 The attack

After the attacker’s program populates the ker-nel memory with 8000 filters containing thepayload, it starts a loop where it attempts tojump to a random page within the kernel mod-ule mapping memory space and execute thepayload at a predefined offset. The key to theattack’s success is the fact that, in kernels olderthan 3.10, the BPF JIT compiler allocated eachfilter at the beginning of a memory page: sincethe length of the BPF filter is fixed, the attackeralways knows the correct offset to jump to ona page in order to hit the payload. Each guess-ing attempt is done by a child process: this way,in the likely case of landing on the wrong pageand executing some invalid instruction, only thechild process is terminated by the Linux kernel,and the parent process can continue the attack.It is important to note that when an attackerjumps to a page that doesn’t contain a filter,

the machine behavior is unpredictable. In mostcases, if the landing instruction is invalid orharmless, the child process is simply killed andthe attack can continue; however, if the instruc-tion tampers with some key machine register,the whole OS can hang and the machine needsa hard reboot to recover.

3.2 Community response

After the attackwas publicly released, the Linuxkernel community scrambled to produce differ-ent countermeasures.

3.2.1 Upstream Linux kernel fix

The upstream Linux kernel merged a set ofpatches that randomized the loading addressof a BPF program inside a page: instead ofstarting at the beginning of a page, the filterwould be located at a random offset inside thepage. In addition, the space between the pagestart and the filter - called hole - is filled witharchitecture specific instructions that aim tohang the machine if executed by an attacker.For x86, the hole is filled with repeated INT3(0xcc) instructions, which cause SIGTRAP in-terrupts in the Linux kernel [1]. This approachmade the success probability of the attackmuch lower, because now the attacker needsto not only guess the correct page, but also thecorrect offset inside the 4KB page where the fil-ter starts.
Furthermore, when the attacker jumps to apage that contains a copy of the filter, guess-ing the wrong offset is likely to be heavily pun-ished: executing the INT3 instruction will havemore severe consequences than just executingan illegal instruction: in practice it most com-monly results in kernel panic and full OS freeze.The cause of it is not properly understood at themoment and we continue investigation on thekernel behavior in this case.

4



3.2.2 Grsecurity fix

Another kernel security project, known as Gr-security3, released a different hardening mech-anism to defend against the attack: using atechnique called “constant blinding”, they pre-vented the attacker from loading the payload in-structions as constants, therefore blocking thecode injection vector at the source. The ideabehind constant blinding is to avoid storing theconstants in memory as they are, and insteadstoring them XORed with some generated ran-dom number. When the constant needs to beaccessed by a legitimate operation, it can beXORed againwith the randomnumber to obtainthe correct value.The provided implementation of this featureonly supported the x86 architecture. It wasnever merged into the upstream kernel due toseveral reasons: the desire to have an architec-ture independent approach, the performanceimplications of the feature, various political rea-sons, but most of all the belief that the random-izationmeasures implemented in the upstreamkernel would be enough to stop BPF JIT sprayattacks. No real attack against the hardenedupstream kernel was publicly demonstrated todate.

4 Our attack

As part of the Kernel Self Protection Project to-gether with one of the kernel BPF/JITmaintain-ers, Daniel Borkmann, we started to look intofurther securing BPF/JIT and considered theconstant blinding approach proposed by Grse-curity. Our objective was to prove that the ex-isting measures implemented in the upstreamkernel are not enough to stop JIT spray at-tacks. If one could show a real attack againstthe upstream BPF/JIT, this would significantlyraise the chances of additional protections be-ing merged in the upstream kernel. This wasthe goal behind developing our version of theattack.
3grsecurity.net

The main part of the work has been done atthe end of 2015/beginning of 2016, on Ubuntu15.10 with the latest available stable kernelat that time (4.4.0-rc5) compiled with defaultUbuntu configuration, running in a KVM-drivenvirtual machine. The whole setup was done forthe x86_64 architecture.We developed two different attack ap-proaches, which we discuss below. Onecommon issue that we had to deal with wasthe inability to obtain the location of ker-nel symbols (specifically commit_creds and
prepare_kernel_cred, needed for the attack)using the /proc/kallsyms kernel interface.This is because the 4.4 kernel already imple-ments kernel pointer protection, which hidesthe values of kernel pointers to userspaceapplications. This can be disabled by explicitlysetting the kptr_restrict option to 0; how-ever, this operation requires root privileges.One way to overcome this difficulty is to hard-code the addresses of these symbols for aspecific kernel version, after obtaining them ona machine with kptr_restrict disabled. Thisis currently possible on Ubuntu and similardistros with a 4.4 kernel, because they donot utilize KASLR yet, and therefore kernelsymbols are located at a deterministic addressfor all copies of a specific compiled kernel (e.g.
4.4.0-42-generic #62-Ubuntu SMP). Then, atruntime, our attack can just resolve the correctsymbol addresses by looking up the machinekernel version in a table.
4.1 Approach 1

While the size of a BPF filter program is lim-ited to 4096 BPF instructions [14], this is morethan enough to to obtain a compiled BPF filterlarger than the 4KB of a kernel memory page.When the filter size grows beyond one page butunder 2 pages, we can be sure that in 50% ofthe cases when we jump to the beginning of apage containing the filter program, we land onthe program instructions. The probability couldbe even higher if we extended the filter to belonger than 2 pages, by increasing the numberof BPF instructions to the maximum value of
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Figure 3: Attack approach 1
4096: however, the practice has shown that afilter larger than 2560 BPF instructions gets re-jected by the setsockopt() function with ‘‘Out
of memory error’’.In Approach 1, we changed the original attackto generate much bigger BPF programs, con-taining 2471 BPF instructions (program lengthis 12439 bytes), which take between 3 and 44KB pages: we did this by repeating the pay-loadmultiple timeswith additional NOP instruc-tions used as padding to align the beginningand end of the payload to 16 bytes (relative tothe BPF header). Figure 3 illustrates this attackapproach.When we jump to a random page, we try toexecute the first 10 offsets before moving tothe next random page. The number of offsets(10) corresponds to the max number of NOPinstructions added as padding between eachpayload. The number of sockets, and thereforeloaded BPF filters, is the same (8000) as in theoriginal attack. If we happen to jump to a pagewhich does contain a copy of the filter, but notat the beginning of the page, we hit the holepadded with INT3 instructions, which leads toa VM hang and causes our attack to fail.
4.2 Approach 2

Our next approach is based on how the alloca-tion of a BPF filter program happens and howthe random offset of a BPF filter is computed.This is done by the bpf_jit_binary_alloc()function, which is shown in Listing 1.The function first calculates the total mem-

ory size to be allocated for a program (line223), where proglen is the actual BPF programlength in bytes, sizeof(*hdr) is 4 bytes and
PAGE_SIZE is 4096 bytes. Next, all this spaceis pre-filled with illegal architecture-dependantinstructions (INT3 for x86) (line 229). The ac-tual starting offset of the BPF filter is calcu-lated last (line 234). What can be deduced fromthe above steps is that if we can make proglento be PAGE_SIZE - 128 - sizeof(*hdr), wewill end up with only one page allocated for theBPF filter, with a max hole size of 128 locatedright at the beginning of a page. While the ac-tual size of the hole is random, the maximumsize (128) is static: jumping at offset 132 (128+ sizeof(*hdr) will guarantee landing on thepayload. This way we can fully avoid the in-serted INT3 instructions and their negative im-pact. Figure 4 illustrates this attack approach.

In our experiments, we were able to bring thefilter size to 3964 bytes and successfully jumpover the first 132 bytes, called hole_offset.Trying both hole_offset and hole_offset + 1protects us from the unlucky case where ourselected jump destination contains the b8 bytederiving from the BPF load immediate instruc-tion: jumping to b8 would mean executing notthe payload, but the actual MOV %eax, XXXXXXXXinstruction. Jumping to two adjacent offsetsguarantees that at least one of them will notcontain b8.

Figure 4: Attack approach 2
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Listing 1: bpf_jit_binary_alloc() function from kernel/bpf/core.c

211 struct bpf_binary_header *212 bpf_jit_binary_alloc(unsigned int proglen , u8 **image_ptr ,213 unsigned int alignment ,214 bpf_jit_fill_hole_t bpf_fill_ill_insns)215 {216 struct bpf_binary_header *hdr;217 unsigned int size , hole , start;218219 /* Most of BPF filters are really small , but if some of them220 * fill a page , allow at least 128 extra bytes to insert a221 * random section of illegal instructions.222 */223 size = round_up(proglen + sizeof (*hdr) + 128, PAGE_SIZE );224 hdr = module_alloc(size);225 if (hdr == NULL)226 return NULL;227228 /* Fill space with illegal/arch -dep instructions. */229 bpf_fill_ill_insns(hdr , size);230231 hdr ->pages = size / PAGE_SIZE;232 hole = min_t(unsigned int , size - (proglen + sizeof (*hdr)),233 PAGE_SIZE - sizeof (*hdr));234 start = (get_random_int () % hole) & ~( alignment - 1);235236 /* Leave a random number of instructions before BPF code. */237 *image_ptr = &hdr ->image[start];238239 return hdr;240 }

5 Mitigation measures

In the time since our attack was developed,a number of mitigation measures have beenmerged to the upstream kernel. Themainmea-sure that has been developed by Daniel Bork-mann in parallel to the attack as part of the Ker-nel Self Protection Project is the upstream sup-port for blinding the constants in eBPF4. In con-trast to the Grsecurity implementation, whichwas specific to the x86 architecture, Daniel’sdesign provides almost fully architecture inde-pendent implementation: this is obtained byblinding constants already at the eBPF instruc-tion level, and feeding the blinded constants tothe JIT compiler. This not only allows to havea unified and solid design for BPF/JIT hard-
4git.kernel.org/cgit/linux/kernel/git/torvalds/
linux.git/commit/?id=4f3446b

ening among all architectures, but also furtherimproves security by having one well-reviewedhardening implementation. This protection hasbeen merged to the upstream kernel in May2016 and was released as part of version 4.7.More hardening has been done to preventexploiting Unix domain sockets. Willy Tarreaumerged a patch5 blocking the trick of circum-venting the resource limit on the amount ofopened file descriptors. This protection hasbeen released in the kernel as part of version4.5.Kernel Address Space Layout Randomiza-tion (KASLR) for x86_64, an important featurethat aims to prevent exploits from relying onstatic locations of kernel symbols, has been re-leased in the kernel as part of version 4.8. If
5git.kernel.org/cgit/linux/kernel/git/torvalds/
linux.git/commit/?id=712f4aa
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enabled, this feature randomizes the physicaland virtual memory location of where the ker-nel image is decompressed, and makes it sig-nificantly harder for attackers to discover thelocation of kernel symbols needed for attacks.For example, it is not possible anymore to relyon binary-specific locations of commit_creds()or prepare_kernel_cred() symbols based onkernel version. An attacker would have to in-stead use various information leaks to obtainthese values [9].
While KASLR is important, it still does notprovide full protection from all exploits. Forexample, the addresses where vmalloc() allo-cates kernel memory are still not randomized,which can provide additional information to im-prove an attack.

6 Conclusions

In this whitepaper we presented two differ-ent approaches to make a successful attackagainst Linux BPF/JIT. The main point thatwe demonstrated is that in order to fully fix avulnerability, one needs to address the actualcause and not its symptoms. Another impor-tant lesson is that relying on something to beprobabilistically hard is not a reliable securitymeasure, since an attacker may find anotherattack path which changes the success ratio.More information about the attack and its im-provements can be obtained from our projectpage6.
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