Randomization can't stop BPF JIT spray

Elena Reshetova
Intel OTC, Finland

elena.reshetova@intel.com

1 Introduction

Nowadays, more and more Linux attackers fo-
cus their attention on the kernel rather than
on userspace applications, especially in mobile
and embedded devices. The primary reason for
this change is the extensive work done over the
years to limit the damage when a userspace ap-
plication is exploited. For example, the latest
releases of Android have well-designed SEAN-
droid policies that do not allow a compromised
application to get any significant controls over
the OS itself. On the contrary, finding a vulnera-
bility in the kernel almost always leads to com-
promise of the whole device.

Many kernel (and userspace) vulnerabilities
are the result of programming mistakes, such
as uninitialized variables, missing boundary
checks, use-after-free situations etc. While de-
veloping tools that help finding these mistakes
isimportant, itis impossible to fully avoid them.
Moreover, even when a vulnerability is discov-
ered and fixed in the upstream kernel, it takes
approximately 5 years for the fix to be propa-
gated to all the end user devices [6].

The Kernel Self Protection Project (KSPP)'
tries to eliminate whole classes of vulnerabil-
ities that might lead to creation of success-
ful exploits, by implementing various hardening
mechanisms inside the kernel itself. An impor-
tant part of the project is to create Proof Of Con-
cept (POC) attacks that demonstrate the need

1kernsec.org/wiki/index.php/
Kernel_Self_Protection_Project

Filippo Bonazzi
Aalto University, Finland

filippo.bonazzi@aalto.fi

N.Asokan
Aalto University and
University of Helsinki, Finland

asokan@acm.org

for certain additional protection mechanisms,
since this helps to get wider acceptance from
kernel subsystem maintainers.

The Linux kernel Berkeley Packet Filter (BPF)
Just-In-Time (JIT) compiler was an important
focus of the project, since it is widely used in
the kernel and has seen successful attacks in
the past. In 2012, a JIT spray attack against
Linux BPF/JIT was presented (Section 3). Con-
sequently, some countermeasures were imple-
mented in the Linux kernel version 3.10 (Sec-
tion 3.2). In this whitepaper, we show how
these countermeasures can be circumvented
on a modern Linux 4.4 kernel (Section 4). We
also describe the recent measures that have
been added to the Linux kernel to eliminate
these types of attacks altogether (Section 5).

2 Background

The need for fast network packet inspection
and monitoring was obvious in early versions
of UNIX with networking support. In order
to gain speed and avoid unnecessary copy-
ing of packet contents between kernel and
userspace, the notion of a kernel packet filter
agent was introduced [13, 12]. Different UNIX-
based OSes implemented their own versions
of these agents. The solution later adopted
by Linux was the BSD Packet Filter introduced
in 1993 [11], which is referred to as Berke-
ley Packet Filter (BPF). This agent allows a
userspace program to attach a filter program

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

onto a socket and limit certain data flows com-
ing through the socket in a fast and effective
way.

Linux BPF originally provided a set of instruc-
tions that could be used to program a filter: this
is nowadays referred to as classic BPF (CBPF).
Later a new, more flexible, and richer set was in-
troduced, which is referred to as extended BPF
(eBPF) [5, 14]. In order to simplify the terminol-
ogy throughout this paper, we refer to the lat-
ter set of instructions simply as BPF instruc-
tions. Linux BPF can be viewed as a minimal-
istic virtual machine construct [5] that has a
few registers, a stack and an implicit program
counter. Different operations are allowed in-
side a valid BPF program, such as fetching data
from the packet, arithmetic operations using
constants and input data, and comparison of
results against constants or packet data. The
Linux BPF subsystem has a special compo-
nent, called verifier, that is used to check
the correctness of a BPF program; all BPF
programs must approved by this component
before they can be executed. verifier is a
static code analyzer that walks and analyzes all
branches of a BPF program; it tries to detect
unreachable instructions, out of bound jumps,
loops etc. verifier also enforces the maxi-
mum length of a BPF program to 4096 BPF in-
structions [14].

Process
2.

BPF Program

USERSPACE

BPF
Program 9,
in Native
Assembly

te
Verifier

- T
Compiler
]

Figure 1: Typical flow of a BPF program

BPF Program

5.

-

BPF

While originally designed for network packet

filtering, nowadays Linux BPF is used in many
other areas, including system call filtering in
seccomp [2], tracing [15] and Kernel Connection
Multiplexer (KCM) [8].

In order to improve packet filtering perfor-
mance even further, Linux utilizes a Just-In-
Time (JIT) compiler [7, 14] to translate BPF in-
structions into native machine assembly. JIT
support is provided for all major architectures,
including x86 and ARM. This JIT compileris not
enabled by default on standard Linux distribu-
tions, such as Ubuntu or Fedora, but it is typ-
ically enabled on network equipment such as
routers.

Figure 1 shows a simplified view of how a
BPF program is loaded and processed in the
Linux kernel. First, a userspace process creates
a BPF program, a socket, and attaches the pro-
gram to the socket (steps 1-3). Next, the pro-
gram is transferred to the kernel, where it is fed
tothe verifierto be checked (steps 4-5). If the
checks fail (step 6), the program is discarded
and the userspace process is notified of the er-
ror, otherwise, if JIT is enabled, the program
gets processed by the JIT compiler (step 7).
The result is the BPF program in native assem-
bly, ready for execution when the associated
socket receives data (steps 8-9). The program
is placed in the kernel module mapping mem-
ory space, using the vmalloc() kernel memory
allocation primitive.

3 JIT spray attack

JIT spraying is an attack where the behavior of
a Just-In-Time compiler is (ab)used to load an
attacker-provided payload into an executable
memory area of the operating system [3]. This
is usually achieved by passing the payload in-
structions encoded as constants to the JIT
compiler and then using a suitable OS bug to
redirect execution into the payload code. Nor-
mally the exact location of the payload is not
known or controlled by the attacker, and there-
fore many copies of the payload are “sprayed”
into OS memory to maximize the chance of
success. JIT spray attacks are dangerous be-

cause JIT compilers, due to their nature, are
normally exempt from various data execution
prevention techniques, such as NX bit support
(known as XD bit in x86 and XN bit in ARM).
Another feature that makes JIT spray attacks
especially successful on the x86 architecture is
its support for unaligned instruction execution,
which is the ability to jump into the middle of
a multi-byte machine instruction and start ex-
ecution from there. The x86 architecture sup-
ports this feature since its instructions can be
anything between 1 and 15 bytes in length, and
the processor should be able to execute them
all correctly in any order [1]. The first attack
that introduced the notion of JIT spraying and
used this technique to exploit the Adobe Flash
player on Windows was done by Dion Blazakis
in 2010 [4].

3.1 Original JIT spray attack on Linux

The first original JIT spray attack against the
Linux kernel using the BPF JIT compiler [10]
was presented by Keegan McAllister in 2012.
The POC exploit code? used a number of key
steps to obtain a root shell on a Linux device.

3.1.1 Creating the BPF payload

The POC creates a valid BPF program
containing the payload instructions:
commit_creds(prepare_kernel_cred(9)).
This is a very common way for exploits to ob-
tain root privileges on Linux: the combination
of these function calls sets the credentials of
the current process to root. The addresses of
the commit_creds and prepare_kernel_cred
kernel symbols are resolved at runtime using
the /proc/kallsyms kernel interface. The
payload instructions are embedded into the
filter program using the BPF load immediate
instruction (BPF_LD+BPF_IMM), which loads a 4
byte constant into a standard register (eax in
x86). When compiled, this instruction is trans-
formed into the x86 mov $x, %eax instruction,
which corresponds to the byte sequence

2github.com/kmcallister/alameda

b8 XX XX XX XX

where b8 is the instruction opcode and the fol-
lowing 4 bytes are the instruction argument $x.
While the attacker is able to set these 4 bytes
freely, in practice only the first 3 can be arbi-
trarily chosen; the last byte needs to be de-
fined so that, when combined with the follow-
ing b8 instruction opcode during unaligned exe-
cution, it produces a harmless instruction. For
this purpose, the last byte is chosen to be a8:
the a8 b8 byte sequence represents the harm-
less test $0xb8, %al x86 instruction. When
the BPF load immediate instruction is repeated
multiple times, this results in the byte sequence

b8 XX XX XX a8 b8 XX XX XX a8 b8 ...

Figure 2 shows how the payload is transformed
from BPF pseudocode to the x86 machine code
using the JIT compiler, and how the machine
code looks like when starting the unaligned ex-
ecution from the second byte of the payload.

Machine code Assembly (AT&T syntax)

P
T
Compiler

S e
I Using unalligned instruction execution,

N
‘
start executing from second byte

Pseudocode Machine code Assembly (AT&T syntax)

Figure 2: BPF payload JIT compilation and un-
aligned execution

3.1.2 Loading the payload in memory

In order to load many copies of the BPF filter
payload in kernel memory, the attacker's pro-
cess needs to create many local sockets, since
each socket can have only one BPF filter at-
tached to it. While Linux limits the number of
open file descriptors that a process can posses
atany given time, McAllister used a special trick
to circumvent this limit. The trick is to open
one local Unix socket and send the resulting file
descriptor over another local Unix socket, and

https://github.com/kmcallister/alameda

then close the original socket. Linux does not
free the memory for the closed socket, since
this might be still read by a process that re-
ceives it on the other end. Therefore, the socket
is not counted towards the process socket
limit, but it is kept in kernel memory regardless.
By using this clever trick McAllister managed to
create 8000 sockets, and correspondingly load
8000 BPF filters containing the payload in ker-
nel memory.

3.1.3 Redirection of execution

Last, the proof of concept code contains a tiny
kernel module (jump.ko) that jumps to the ad-
dress specified by a userspace process us-
ing the interface provided by the /proc vir-
tual filesystem. This extremely insecure mod-
ule simulates the job of actually finding a real
bug in the kernel to redirect the execution flow.
jump.ko needs to be loaded using root privi-
leges before the attack, which is obviously im-
possible for an attacker looking to obtain root
privileges. This kernel module is simply used to
provide an entry point to demonstrate that the
JIT spray attack works.

3.1.4 The attack

After the attacker's program populates the ker-
nel memory with 8000 filters containing the
payload, it starts a loop where it attempts to
jump to a random page within the kernel mod-
ule mapping memory space and execute the
payload at a predefined offset. The key to the
attack’s successis the fact that, in kernels older
than 3.10, the BPF JIT compiler allocated each
filter at the beginning of a memory page: since
the length of the BPF filter is fixed, the attacker
always knows the correct offset to jump to on
a page in order to hit the payload. Each guess-
ing attempt is done by a child process: this way,
in the likely case of landing on the wrong page
and executing some invalid instruction, only the
child process is terminated by the Linux kernel,
and the parent process can continue the attack.

It is important to note that when an attacker
jumps to a page that doesnt contain a filter,

the machine behavior is unpredictable. In most
cases, if the landing instruction is invalid or
harmless, the child process is simply killed and
the attack can continue; however, if the instruc-
tion tampers with some key machine register,
the whole OS can hang and the machine needs
a hard reboot to recover.

3.2 Community response

After the attack was publicly released, the Linux
kernel community scrambled to produce differ-
ent countermeasures.

3.2.1 Upstream Linux kernel fix

The upstream Linux kernel merged a set of
patches that randomized the loading address
of a BPF program inside a page: instead of
starting at the beginning of a page, the filter
would be located at a random offset inside the
page. In addition, the space between the page
start and the filter - called hole - is filled with
architecture specific instructions that aim to
hang the machine if executed by an attacker.
For x86, the hole is filled with repeated INT3
(oxcc) instructions, which cause SIGTRAP in-
terrupts in the Linux kernel [1]. This approach
made the success probability of the attack
much lower, because now the attacker needs
to not only guess the correct page, but also the
correct offset inside the 4KB page where the fil-
ter starts.

Furthermore, when the attacker jumps to a
page that contains a copy of the filter, guess-
ing the wrong offset is likely to be heavily pun-
ished: executing the INT3 instruction will have
more severe consequences than just executing
an illegal instruction: in practice it most com-
monly results in kernel panic and full OS freeze.
The cause of itis not properly understood at the
moment and we continue investigation on the
kernel behavior in this case.

3.2.2 Grsecurity fix

Another kernel security project, known as Gr-
security®, released a different hardening mech-
anism to defend against the attack: using a
technique called “constant blinding”, they pre-
vented the attacker from loading the payload in-
structions as constants, therefore blocking the
code injection vector at the source. The idea
behind constant blinding is to avoid storing the
constants in memory as they are, and instead
storing them XORed with some generated ran-
dom number. When the constant needs to be
accessed by a legitimate operation, it can be
XORed again with the random number to obtain
the correct value.

The provided implementation of this feature
only supported the x86 architecture. It was
never merged into the upstream kernel due to
several reasons: the desire to have an architec-
ture independent approach, the performance
implications of the feature, various political rea-
sons, but most of all the belief that the random-
ization measures implemented in the upstream
kernel would be enough to stop BPF JIT spray
attacks. No real attack against the hardened
upstream kernel was publicly demonstrated to
date.

4 Our attack

As part of the Kernel Self Protection Project to-
gether with one of the kernel BPF/JIT maintain-
ers, Daniel Borkmann, we started to look into
further securing BPF/JIT and considered the
constant blinding approach proposed by Grse-
curity. Our objective was to prove that the ex-
isting measures implemented in the upstream
kernel are not enough to stop JIT spray at-
tacks. If one could show a real attack against
the upstream BPF/JIT, this would significantly
raise the chances of additional protections be-
ing merged in the upstream kernel. This was
the goal behind developing our version of the
attack.

3grsecurity.net

The main part of the work has been done at
the end of 2015/beginning of 2016, on Ubuntu
15.10 with the latest available stable kernel
at that time (4.4.0-rc5) compiled with default
Ubuntu configuration, running in a KVM-driven
virtual machine. The whole setup was done for
the x86_64 architecture.

We developed two different attack ap-
proaches, which we discuss below. One
common issue that we had to deal with was
the inability to obtain the location of ker-
nel symbols (specifically commit_creds and
prepare_kernel_cred, needed for the attack)
using the /proc/kallsyms kernel interface.
This is because the 4.4 kernel already imple-
ments kernel pointer protection, which hides
the values of kernel pointers to userspace
applications. This can be disabled by explicitly
setting the kptr_restrict option to 0; how-
ever, this operation requires root privileges.
One way to overcome this difficulty is to hard-
code the addresses of these symbols for a
specific kernel version, after obtaining them on
a machine with kptr_restrict disabled. This
is currently possible on Ubuntu and similar
distros with a 4.4 kernel, because they do
not utilize KASLR vyet, and therefore kernel
symbols are located at a deterministic address
for all copies of a specific compiled kernel (e.g.
4.4.0-42-generic #62-Ubuntu SMP). Then, at
runtime, our attack can just resolve the correct
symbol addresses by looking up the machine
kernel version in a table.

4.1 Approach 1

While the size of a BPF filter program is lim-
ited to 4096 BPF instructions [14], this is more
than enough to to obtain a compiled BPF filter
larger than the 4KB of a kernel memory page.
When the filter size grows beyond one page but
under 2 pages, we can be sure that in 50% of
the cases when we jump to the beginning of a
page containing the filter program, we land on
the program instructions. The probability could
be even higher if we extended the filter to be
longer than 2 pages, by increasing the number
of BPF instructions to the maximum value of

https://grsecurity.net

8000 filters

/\
\
(in Payload, G\ITS,
. NOPs,
Filter 1 et Filter 2
-/

Y

390656 memory pages

Figure 3: Attack approach 1

4096: however, the practice has shown that a
filter larger than 2560 BPF instructions gets re-
jected by the setsockopt () function with “ “Out
of memory error’’.

In Approach 1, we changed the original attack
to generate much bigger BPF programs, con-
taining 2471 BPF instructions (program length
is 12439 bytes), which take between 3 and 4
4KB pages: we did this by repeating the pay-
load multiple times with additional NOP instruc-
tions used as padding to align the beginning
and end of the payload to 16 bytes (relative to
the BPF header). Figure 3 illustrates this attack
approach.

When we jump to a random page, we try to
execute the first 10 offsets before moving to
the next random page. The number of offsets
(10) corresponds to the max number of NOP
instructions added as padding between each
payload. The number of sockets, and therefore
loaded BPF filters, is the same (8000) as in the
original attack. If we happen to jump to a page
which does contain a copy of the filter, but not
at the beginning of the page, we hit the hole
padded with INT3 instructions, which leads to
a VM hang and causes our attack to fail.

4.2 Approach 2

Our next approach is based on how the alloca-
tion of a BPF filter program happens and how
the random offset of a BPF filter is computed.
This is done by the bpf_jit_binary_alloc()
function, which is shown in Listing 1.

The function first calculates the total mem-

ory size to be allocated for a program (line
223), where proglen is the actual BPF program
length in bytes, sizeof (xhdr) is 4 bytes and
PAGE_SIZE is 4096 bytes. Next, all this space
is pre-filled with illegal architecture-dependant
instructions (INT3 for x86) (line 229). The ac-
tual starting offset of the BPF filter is calcu-
lated last (line 234). What can be deduced from
the above steps is that if we can make proglen
to be PAGE_SIZE - 128 - sizeof(xhdr), we
will end up with only one page allocated for the
BPF filter, with @ max hole size of 128 located
right at the beginning of a page. While the ac-
tual size of the hole is random, the maximum
size (128) is static: jumping at offset 132 (128
+ sizeof (*hdr) will guarantee landing on the
payload. This way we can fully avoid the in-
serted INT3 instructions and their negative im-
pact. Figure 4 illustrates this attack approach.

In our experiments, we were able to bring the
filter size to 3964 bytes and successfully jump
over the first 132 bytes, called hole_offset.
Trying both hole_offset and hole_offset + 1
protects us from the unlucky case where our
selected jump destination contains the b8 byte
deriving from the BPF load immediate instruc-
tion: jumping to b8 would mean executing not
the payload, but the actual MOV %eax, XXXXXXXX
instruction. Jumping to two adjacent offsets
guarantees that at least one of them will not
contain b8.

8000 filters

—

ﬁm,

NOP, NOP,
* INOP, ...
Payload

Max size of
INT3 hole

\ (INT3, ..

NOP, NOP,
* |NOP, ...
Payload

m\lTS,

NOP, NOP,
* |NOP, ...
Payload

/

_

390656 memory pages

Figure 4: Attack approach 2

21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

Listing 1: bpf_jit_binary_alloc() function from kernel/bpf/core.c

struct bpf_binary_header =
bpf_jit_binary_alloc(unsigned
unsigned

int proglen,
int alignment,

u8 x*image_ptr,

bpf_jit_fill_hole_t bpf_fill_ill_insns)

struct bpf_binary_header *hdr;
unsigned int size, hole, start;

/* Most of BPF filters are really small,
128 extra bytes to
instructions.

allow at least
illegal

* fill a page,
* random section of
*/
size =
hdr = module_alloc(size);
if (hdr == NULL)

return NULL;

/* Fill space with
bpf_fill_ill_insns(hdr, size);
size / PAGE_SIZE;
int,

hdr->pages =
hole = min_t(unsigned

round_up (proglen + sizeof (*hdr) + 128,

if some of them
insert a

but

PAGE_SIZE);

illegal/arch-dep instructions. x/

size - (proglen + sizeof (*xhdr)),

PAGE_SIZE - sizeof (*hdr));

start = (get_random_int ()

/* Leave a random number of
*image_ptr = &hdr->image[start];

return hdr;

% hole) & ~(alignment - 1);

instructions before BPF code. */

5 Mitigation measures

In the time since our attack was developed,
a number of mitigation measures have been
merged to the upstream kernel. The main mea-
sure that has been developed by Daniel Bork-
mann in parallel to the attack as part of the Ker-
nel Self Protection Project is the upstream sup-
port for blinding the constants in eBPF*. In con-
trast to the Grsecurity implementation, which
was specific to the x86 architecture, Daniel's
design provides almost fully architecture inde-
pendent implementation: this is obtained by
blinding constants already at the eBPF instruc-
tion level, and feeding the blinded constants to
the JIT compiler. This not only allows to have
a unified and solid design for BPF/JIT hard-

4git.kernel.org/cgit/linux/kernel/git/tor‘valds/
linux.git/commit/?id=4f3446b

ening among all architectures, but also further
improves security by having one well-reviewed
hardening implementation. This protection has
been merged to the upstream kernel in May
2016 and was released as part of version 4.7.

More hardening has been done to prevent
exploiting Unix domain sockets. Willy Tarreau
merged a patch® blocking the trick of circum-
venting the resource limit on the amount of
opened file descriptors. This protection has
been released in the kernel as part of version
4.5.

Kernel Address Space Layout Randomiza-
tion (KASLR) for x86_64, an important feature
that aims to prevent exploits from relying on
static locations of kernel symbols, has been re-
leased in the kernel as part of version 4.8. If

5git.kernel.org/cgit/linux/kernel/git/torvalds/
linux.git/commit/?id=712f4aa

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=4f3446b
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=4f3446b
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=712f4aa
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=712f4aa

enabled, this feature randomizes the physical
and virtual memory location of where the ker-
nel image is decompressed, and makes it sig-
nificantly harder for attackers to discover the
location of kernel symbols needed for attacks.
For example, it is not possible anymore to rely
on binary-specific locations of commit_creds()
or prepare_kernel_cred() symbols based on
kernel version. An attacker would have to in-
stead use various information leaks to obtain
these values [9].

While KASLR is important, it still does not
provide full protection from all exploits. For
example, the addresses where vmalloc() allo-
cates kernel memory are still not randomized,
which can provide additional information to im-
prove an attack.

6 Conclusions

In this whitepaper we presented two differ-
ent approaches to make a successful attack
against Linux BPF/JIT. The main point that
we demonstrated is that in order to fully fix a
vulnerability, one needs to address the actual
cause and not its symptoms. Another impor-
tant lesson is that relying on something to be
probabilistically hard is not a reliable security
measure, since an attacker may find another
attack path which changes the success ratio.
More information about the attack and its im-
provements can be obtained from our project
page®.

7 Acknowledgments

The authors would like to especially thank
Daniel Borkmann for his helpful discussions
about BPF and JIT and his readiness and enthu-
siasms to make the Linux kernel BPF/JIT more
secure.

bssg.aalto.fi/projects/kernel-hardening

References

[1] Intel® 64 and IA-32 Architectures Soft-
ware Developer's Manual. www.intel.com/
content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-

software-developer-manual-325462.pdf
2016.

[2] SECure COMPuting with filters.

www.kernel.org/doc/Documentation/prctl/
seccomp_filter.txt, 2016.

[3] Piotr Bania. Jit spraying and mitigations.
arXiv preprint arXiv:1009.7038, 2010.

[4] Dion Blazakis. Interpreter Exploitation:
Pointer Inference and JIT Spraying.
www . semantiscope.com/research/BHDC2010/
BHDC-2010-Paper . pdf, 2010.

[5] Daniel Borkmann. On getting tc clas-
sifier fully programmable with cls_bpf.
www . netdevconf.org/1.1/proceedings/
papers/On-getting-tc-classifier-fully-
programmable-with-cls-bpf.pdf, 2016.

[6] Case Cook. Status of the Kernel Self Pro-
tection Project. outflux.net/slides/2016/
1ss/kspp.pdf, 2016.

[7] Jonathan Corbet. A JIT for packet filters.
lwn.net/Articles/437981/, 2012.

[8] Jonathan Corbet. The kernel connec-
tion multiplexer. 1wn.net/Articles/657999/
,2015.

[9] Yeongjin Jang, Sangho Lee, and Tae-
soo Ki. Breaking Kernel Address Space
Layout Randomization with Intel TSX.
www.blackhat.com/docs/us-16/materials/
us-16-Jang-Breaking-Kernel-Address-
Space-Layout-Randomization-KASLR-With-
Intel-TSX-wp.pdf, 2016.

[10] Keegan McAllister. Attacking hardened
Linux systems with kernel JIT spraying.
mainisusuallyafunction.blogspot.de/
2012/11/attacking-hardened-1linux-

systems-with.html, 2012.

https://ssg.aalto.fi/projects/kernel-hardening
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
https://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
https://www.netdevconf.org/1.1/proceedings/papers/On-getting-tc-classifier-fully-programmable-with-cls-bpf.pdf
https://www.netdevconf.org/1.1/proceedings/papers/On-getting-tc-classifier-fully-programmable-with-cls-bpf.pdf
https://www.netdevconf.org/1.1/proceedings/papers/On-getting-tc-classifier-fully-programmable-with-cls-bpf.pdf
https://outflux.net/slides/2016/lss/kspp.pdf
https://outflux.net/slides/2016/lss/kspp.pdf
https://lwn.net/Articles/437981/
https://lwn.net/Articles/657999/
https://lwn.net/Articles/657999/
https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf
https://mainisusuallyafunction.blogspot.de/2012/11/attacking-hardened-linux-systems-with.html
https://mainisusuallyafunction.blogspot.de/2012/11/attacking-hardened-linux-systems-with.html
https://mainisusuallyafunction.blogspot.de/2012/11/attacking-hardened-linux-systems-with.html

(1]

[12]

[13]

[14]

[19]

Steven McCanne and Van Jacobson. The
bsd packet filter: A new architecture for
user-level packet capture. In USENIX win-
ter, volume 46, 1993.

J Mogul. Efficient use of workstations for
passive monitoring of local area networks,
volume 20. ACM, 1990.

Jeffrey Mogul, Richard Rashid, and
Michael Accetta. The packer filter: an
efficient mechanism for user-level network
code, volume 21. ACM, 1987.

Jay Schulist, Daniel Borkmann, and
Alexei Starovoitov. Linux Socket Filter-
ing aka Berkeley Packet Filter (BPF).
www . kernel.org/doc/Documentation/
networking/filter.txt, 2016.

Alexei Starovoitov. Tracing: attach eBPF
programs to kprobes. 1lwn.net/Articles/
636976/, 2015.

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://lwn.net/Articles/636976/
https://lwn.net/Articles/636976/

	Introduction
	Background
	JIT spray attack
	Original JIT spray attack on Linux
	Creating the BPF payload
	Loading the payload in memory
	Redirection of execution
	The attack

	Community response
	Upstream Linux kernel fix
	Grsecurity fix

	Our attack
	Approach 1
	Approach 2

	Mitigation measures
	Conclusions
	Acknowledgments

