
ARMageddon

How Your Smartphone CPU Breaks Software-Level

Security And Privacy

Moritz Lipp and Clémentine Maurice

November 3, 2016—Black Hat Europe



Motivation

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• We focus on the CPU cache

• Cache attacks can be used for covert communications and

attack crypto implementations

• Only been demonstrated on Intel x86 for now

• But why not on ARM?

2



Motivation

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• We focus on the CPU cache

• Cache attacks can be used for covert communications and

attack crypto implementations

• Only been demonstrated on Intel x86 for now

• But why not on ARM?

2



Motivation

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• We focus on the CPU cache

• Cache attacks can be used for covert communications and

attack crypto implementations

• Only been demonstrated on Intel x86 for now

• But why not on ARM?

2



Motivation

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• We focus on the CPU cache

• Cache attacks can be used for covert communications and

attack crypto implementations

• Only been demonstrated on Intel x86 for now

• But why not on ARM?

2



Motivation

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• We focus on the CPU cache

• Cache attacks can be used for covert communications and

attack crypto implementations

• Only been demonstrated on Intel x86 for now

• But why not on ARM?

2



Motivation

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• We focus on the CPU cache

• Cache attacks can be used for covert communications and

attack crypto implementations

• Only been demonstrated on Intel x86 for now

• But why not on ARM?

2



Who We Are



Who We Are

• Moritz Lipp

• Master Student, Graz University Of Technology

• 7 @mlqxyz

• R mail@mlq.me

3

https://twitter.com/mlqxyz
mailto:mail@mlq.me


Who We Are

• Clémentine Maurice

• PhD in InfoSec; Postdoc, Graz University Of Technology

• 7 @BloodyTangerine

• R clementine.maurice@iaik.tugraz.at

4

https://twitter.com/BloodyTangerine
mailto:clementine.maurice@iaik.tugraz.at


The rest of the team

The rest of the research team

• Daniel Gruss

• Raphael Spreitzer

• Stefan Mangard

From Graz University of Technology

5



Demo

6



Outline

• Background information

• What are the challenges for cache attacks on ARM?

• How to solve those challenges

• Attack scenarios

• Tools

7



Outline

• Background information

• What are the challenges for cache attacks on ARM?

• How to solve those challenges

• Attack scenarios

• Tools

7



Outline

• Background information

• What are the challenges for cache attacks on ARM?

• How to solve those challenges

• Attack scenarios

• Tools

7



Outline

• Background information

• What are the challenges for cache attacks on ARM?

• How to solve those challenges

• Attack scenarios

• Tools

7



Outline

• Background information

• What are the challenges for cache attacks on ARM?

• How to solve those challenges

• Attack scenarios

• Tools

7



Cache Attacks



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in

• CPU registers

• Different levels of the CPU cache

• Main memory

• Disk storage

8



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in

• CPU registers

• Different levels of the CPU cache

• Main memory

• Disk storage

8



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in

• CPU registers

• Different levels of the CPU cache

• Main memory

• Disk storage

8



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in

• CPU registers

• Different levels of the CPU cache

• Main memory

• Disk storage

8



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in

• CPU registers

• Different levels of the CPU cache

• Main memory

• Disk storage

8



Cache Attacks

• Exploit timing differences of memory accesses:

• cache → fast (cache hit)

• main memory → slow (cache miss)

0 200 400 600 800 1,000 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

9



Cache Attacks

• Exploit timing differences of memory accesses:
• cache → fast (cache hit)

• main memory → slow (cache miss)

0 200 400 600 800 1,000 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

9



Cache Attacks

• Exploit timing differences of memory accesses:
• cache → fast (cache hit)

• main memory → slow (cache miss)

0 200 400 600 800 1,000 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

9



Cache Attacks

• Exploit timing differences of memory accesses:
• cache → fast (cache hit)

• main memory → slow (cache miss)

0 200 400 600 800 1,000 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

9



Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

10



Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

10



Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set

10



Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy

10



Cache Attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

11



Cache Attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

11



Cache Attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

11



Cache Attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

11



Cache Attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data

11



Cache Attacks: Prime+Probe

Victim address space Cache Attacker address space

12



Cache Attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

12



Cache Attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

12



Cache Attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

12



Cache Attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast access

12



Cache Attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

12



Differences between Intel x86 and

ARM



Cache maintenance

• Basic operation for cache attacks: invalidate cache lines

• Cache maintenance instructions

• Intel x86: Unprivileged clflush instruction

• ARMv7-A: Only privileged cache maintenance instructions

• ARMv8-A: Privileged instructions can be unlocked for

userspace

Challenge #1

No flush instruction

13



Cache maintenance

• Basic operation for cache attacks: invalidate cache lines

• Cache maintenance instructions

• Intel x86: Unprivileged clflush instruction

• ARMv7-A: Only privileged cache maintenance instructions

• ARMv8-A: Privileged instructions can be unlocked for

userspace

Challenge #1

No flush instruction

13



Cache maintenance

• Basic operation for cache attacks: invalidate cache lines

• Cache maintenance instructions

• Intel x86: Unprivileged clflush instruction

• ARMv7-A: Only privileged cache maintenance instructions

• ARMv8-A: Privileged instructions can be unlocked for

userspace

Challenge #1

No flush instruction

13



Cache maintenance

• Basic operation for cache attacks: invalidate cache lines

• Cache maintenance instructions

• Intel x86: Unprivileged clflush instruction

• ARMv7-A: Only privileged cache maintenance instructions

• ARMv8-A: Privileged instructions can be unlocked for

userspace

Challenge #1

No flush instruction

13



Cache maintenance

• Basic operation for cache attacks: invalidate cache lines

• Cache maintenance instructions

• Intel x86: Unprivileged clflush instruction

• ARMv7-A: Only privileged cache maintenance instructions

• ARMv8-A: Privileged instructions can be unlocked for

userspace

Challenge #1

No flush instruction

13



Cache maintenance

• Basic operation for cache attacks: invalidate cache lines

• Cache maintenance instructions

• Intel x86: Unprivileged clflush instruction

• ARMv7-A: Only privileged cache maintenance instructions

• ARMv8-A: Privileged instructions can be unlocked for

userspace

Challenge #1

No flush instruction

13



Cache eviction

• Fill the whole cache

→ too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4

load

9

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 49

load

10

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4910

load

11

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4910 11

load

12

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4910 11 12

load

13

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4910 11 1213

load

14

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4910 11 1213 14

load

15

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4910 11 1213 1415

load

16

→ Ideal case with LRU replacement policy

14



Cache eviction

• Fill the whole cache → too slow

• Fill a specific cache set

• Until the target address is evicted from the cache

cache set 2 5 8 1 7 6 3 4910 11 1213 141516

→ Ideal case with LRU replacement policy

14



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4

load

9

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 49

load

10

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4910

load

11

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4910 11

load

12

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4910 1112

load

13

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4910 1112 13

load

14

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4910 1112 1314

load

15

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4910 1112 1314 15

load

16

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Cache eviction (what actually happens)

• Pseudo-random cache replacement policy

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction

15



Timing measurements

• Need fine-grained timing measurements

• Intel x86: Unprivileged rdtsc instruction for cycle count

• ARM: Cycle counter only in privileged mode

→ Previous attacks required root access

Challenge #3

No unprivileged and accurate timing sources

16



Timing measurements

• Need fine-grained timing measurements

• Intel x86: Unprivileged rdtsc instruction for cycle count

• ARM: Cycle counter only in privileged mode

→ Previous attacks required root access

Challenge #3

No unprivileged and accurate timing sources

16



Timing measurements

• Need fine-grained timing measurements

• Intel x86: Unprivileged rdtsc instruction for cycle count

• ARM: Cycle counter only in privileged mode

→ Previous attacks required root access

Challenge #3

No unprivileged and accurate timing sources

16



Timing measurements

• Need fine-grained timing measurements

• Intel x86: Unprivileged rdtsc instruction for cycle count

• ARM: Cycle counter only in privileged mode

→ Previous attacks required root access

Challenge #3

No unprivileged and accurate timing sources

16



Timing measurements

• Need fine-grained timing measurements

• Intel x86: Unprivileged rdtsc instruction for cycle count

• ARM: Cycle counter only in privileged mode

→ Previous attacks required root access

Challenge #3

No unprivileged and accurate timing sources

16



Cache Hierarchy on Intel CPUs

Core 0

L1 I-Cache L1 D-Cache

L2 Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

Core 2

L1 I-Cache L1 D-Cache

L2 Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

L3 Cache

• Last-level cache: L3

• shared

• inclusive

→ Shared memory is shared in the cache across all cores

17



Cache Hierarchy on Intel CPUs

Core 0

L1 I-Cache L1 D-Cache

L2 Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

Core 2

L1 I-Cache L1 D-Cache

L2 Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

L3 Cache

• Last-level cache: L3

• shared

• inclusive

→ Shared memory is shared in the cache across all cores

17



Cache Hierarchy on Intel CPUs

Core 0

L1 I-Cache L1 D-Cache

L2 Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

Core 2

L1 I-Cache L1 D-Cache

L2 Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

L3 Cache

• Last-level cache: L3

• shared

• inclusive

→ Shared memory is shared in the cache across all cores

17



Cache Hierarchy on Intel CPUs

Core 0

L1 I-Cache L1 D-Cache

L2 Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

Core 2

L1 I-Cache L1 D-Cache

L2 Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

L3 Cache

• Last-level cache: L3

• shared

• inclusive

→ Shared memory is shared in the cache across all cores

17



Cache Hierarchy on ARM Cortex-A CPUs

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

Core 2

L1 I-Cache L1 D-Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

• Last-level cache: L2

• shared

• not inclusive

→ Shared memory that is not in L2 is not shared in the cache.

Challenge #4

Non-inclusive caches

18



Cache Hierarchy on ARM Cortex-A CPUs

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

Core 2

L1 I-Cache L1 D-Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

• Last-level cache: L2
• shared

• not inclusive

→ Shared memory that is not in L2 is not shared in the cache.

Challenge #4

Non-inclusive caches

18



Cache Hierarchy on ARM Cortex-A CPUs

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

Core 2

L1 I-Cache L1 D-Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

• Last-level cache: L2
• shared

• not inclusive

→ Shared memory that is not in L2 is not shared in the cache.

Challenge #4

Non-inclusive caches

18



Cache Hierarchy on ARM Cortex-A CPUs

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

Core 2

L1 I-Cache L1 D-Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

• Last-level cache: L2
• shared

• not inclusive

→ Shared memory that is not in L2 is not shared in the cache.

Challenge #4

Non-inclusive caches

18



Cache Hierarchy on ARM Cortex-A CPUs

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

Core 2

L1 I-Cache L1 D-Cache

Core 3

L1 I-Cache L1 D-Cache

L2 Cache

• Last-level cache: L2
• shared

• not inclusive

→ Shared memory that is not in L2 is not shared in the cache.

Challenge #4

Non-inclusive caches

18



Cache Hierarchy on ARM big.LITTLE

CPU1 CPU2

Core 0
L1I L1D

Core 1
L1I L1D

Core 2
L1I L1D

Core 3
L1I L1D

L2 Cache

Core 0
L1I L1D

Core 1
L1I L1D

Core 2
L1I L1D

Core 3
L1I L1D

L2 Cache

CoreLink CCI-400

• Interconnects multiple CPUs to combine energy efficiency and

performance

• CPUs do not share a cache

Challenge #5

No shared cache

19



Cache Hierarchy on ARM big.LITTLE

CPU1 CPU2

Core 0
L1I L1D

Core 1
L1I L1D

Core 2
L1I L1D

Core 3
L1I L1D

L2 Cache

Core 0
L1I L1D

Core 1
L1I L1D

Core 2
L1I L1D

Core 3
L1I L1D

L2 Cache

CoreLink CCI-400

• Interconnects multiple CPUs to combine energy efficiency and

performance

• CPUs do not share a cache

Challenge #5

No shared cache

19



Cache Hierarchy on ARM big.LITTLE

CPU1 CPU2

Core 0
L1I L1D

Core 1
L1I L1D

Core 2
L1I L1D

Core 3
L1I L1D

L2 Cache

Core 0
L1I L1D

Core 1
L1I L1D

Core 2
L1I L1D

Core 3
L1I L1D

L2 Cache

CoreLink CCI-400

• Interconnects multiple CPUs to combine energy efficiency and

performance

• CPUs do not share a cache

Challenge #5

No shared cache

19



Let’s solve those challenges



Challenges

Challenge #1 No flush instruction

Challenge #2 Pseudo-random replacement policy

Challenge #3 No unprivileged timing

Challenge #4 Non-inclusive caches

Challenge #5 No shared cache

20



Solving #1: No flush instruction

• Replace the missing flush instruction with cache eviction

• Works on Intel x86

• Prime+Probe

• Flush+Reload → Evict+Reload

21



Solving #1: No flush instruction

• Replace the missing flush instruction with cache eviction

• Works on Intel x86

• Prime+Probe

• Flush+Reload → Evict+Reload

21



Solving #1: No flush instruction

• Replace the missing flush instruction with cache eviction

• Works on Intel x86

• Prime+Probe

• Flush+Reload → Evict+Reload

21



Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy

Challenge #3 No unprivileged timing

Challenge #4 Non-inclusive caches

Challenge #5 No shared cache

22



Challenges

23



Challenges

• No.

• Eviction can be slow and unreliable. . .

• Unless you know how to properly evict data

→ Central idea of our Rowhammer.js paper

24



Challenges

• No.

• Eviction can be slow and unreliable. . .

• Unless you know how to properly evict data

→ Central idea of our Rowhammer.js paper

24



Challenges

• No.

• Eviction can be slow and unreliable. . .

• Unless you know how to properly evict data

→ Central idea of our Rowhammer.js paper

24



Challenges

• No.

• Eviction can be slow and unreliable. . .

• Unless you know how to properly evict data

→ Central idea of our Rowhammer.js paper

24



Solving #2: Pseudo-random replacement policy

• Cache line to be discarded is chosen pseudo-randomly

• Accessing once n addresses in an n-way cache set

→ Cache eviction slow and unreliable

Solution:

• Accessing unique addresses several times, with different access

patterns

25



Solving #2: Pseudo-random replacement policy

• Cache line to be discarded is chosen pseudo-randomly

• Accessing once n addresses in an n-way cache set

→ Cache eviction slow and unreliable

Solution:

• Accessing unique addresses several times, with different access

patterns

25



Solving #2: Pseudo-random replacement policy

• Cache line to be discarded is chosen pseudo-randomly

• Accessing once n addresses in an n-way cache set

→ Cache eviction slow and unreliable

Solution:

• Accessing unique addresses several times, with different access

patterns

25



Solving #2: Pseudo-random replacement policy

• Cache line to be discarded is chosen pseudo-randomly

• Accessing once n addresses in an n-way cache set

→ Cache eviction slow and unreliable

Solution:

• Accessing unique addresses several times, with different access

patterns

25



Solving #2: Pseudo-random replacement policy

Table 1: Different eviction strategies for the Alcatel One Touch Pop 2

Addresses Accesses Cycles Eviction rate

48 48 6 517 3 70.78% 7

200 200 33 110 7 96.04% 7

800 800 142 876 7 99.10% 3

21 96 4 275 3 99.93% 3

22 102 5 101 3 99.99% 3

23 190 6 209 3 100.0% 3

26



Solving #2: Pseudo-random replacement policy

Table 1: Different eviction strategies for the Alcatel One Touch Pop 2

Addresses Accesses Cycles Eviction rate

48 48 6 517 3 70.78% 7

200 200 33 110 7 96.04% 7

800 800 142 876 7 99.10% 3

21 96 4 275 3 99.93% 3

22 102 5 101 3 99.99% 3

23 190 6 209 3 100.0% 3

26



Solving #2: Pseudo-random replacement policy

Table 1: Different eviction strategies for the Alcatel One Touch Pop 2

Addresses Accesses Cycles Eviction rate

48 48 6 517 3 70.78% 7

200 200 33 110 7 96.04% 7

800 800 142 876 7 99.10% 3

21 96 4 275 3 99.93% 3

22 102 5 101 3 99.99% 3

23 190 6 209 3 100.0% 3

26



Solving #2: Pseudo-random replacement policy

Table 1: Different eviction strategies for the Alcatel One Touch Pop 2

Addresses Accesses Cycles Eviction rate

48 48 6 517 3 70.78% 7

200 200 33 110 7 96.04% 7

800 800 142 876 7 99.10% 3

21 96 4 275 3 99.93% 3

22 102 5 101 3 99.99% 3

23 190 6 209 3 100.0% 3

26



Solving #2: Pseudo-random replacement policy

Table 1: Different eviction strategies for the Alcatel One Touch Pop 2

Addresses Accesses Cycles Eviction rate

48 48 6 517 3 70.78% 7

200 200 33 110 7 96.04% 7

800 800 142 876 7 99.10% 3

21 96 4 275 3 99.93% 3

22 102 5 101 3 99.99% 3

23 190 6 209 3 100.0% 3

26



Solving #2: Pseudo-random replacement policy

Table 1: Different eviction strategies for the Alcatel One Touch Pop 2

Addresses Accesses Cycles Eviction rate

48 48 6 517 3 70.78% 7

200 200 33 110 7 96.04% 7

800 800 142 876 7 99.10% 3

21 96 4 275 3 99.93% 3

22 102 5 101 3 99.99% 3

23 190 6 209 3 100.0% 3

26



Solving #2: Pseudo-random replacement policy

• We fully automated this process

• Compile target executable with generated eviction strategy

• Execute on target device

• Evaluate log files and build result database

• Find fast and efficient eviction strategies for any device

27



Solving #2: Pseudo-random replacement policy

• We fully automated this process

• Compile target executable with generated eviction strategy

• Execute on target device

• Evaluate log files and build result database

• Find fast and efficient eviction strategies for any device

27



Solving #2: Pseudo-random replacement policy

• We fully automated this process

• Compile target executable with generated eviction strategy

• Execute on target device

• Evaluate log files and build result database

• Find fast and efficient eviction strategies for any device

27



Solving #2: Pseudo-random replacement policy

• We fully automated this process

• Compile target executable with generated eviction strategy

• Execute on target device

• Evaluate log files and build result database

• Find fast and efficient eviction strategies for any device

27



Solving #2: Pseudo-random replacement policy

• We fully automated this process

• Compile target executable with generated eviction strategy

• Execute on target device

• Evaluate log files and build result database

• Find fast and efficient eviction strategies for any device

27



Solving #2: Pseudo-random replacement policy

Evict+Reload

0 50 100 150 200 250 300
0

2

4

·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Victim access No victim access

Prime+Probe

1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400

2

4

6

·103

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Victim access No victim access

28



Solving #2: Pseudo-random replacement policy

Evict+Reload

0 50 100 150 200 250 300
0

2

4

·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Victim access No victim access

Prime+Probe

1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400

2

4

6

·103

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Victim access No victim access

28



Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy Ë

Challenge #3 No unprivileged timing

Challenge #4 Non-inclusive caches

Challenge #5 No shared cache

29



Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses

30



Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses

30



Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses

30



Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses

30



Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses

30



Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses

30



Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses

30



Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses

30



Solving #3: No unprivileged timing

0 20 40 60 80 100 120 140 160 180 200
0

2

4

·104

Measured access time (scaled)

N
u

m
b

er
of

ac
ce

ss
es

Hit (PMCCNTR) Hit (clock gettime×.15)
Miss (PMCCNTR) Miss (clock gettime×.15)
Hit (syscall×.25) Hit (counter thread×.05)
Miss (syscall×.25) Miss (counter thread×.05)

31



Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy Ë

Challenge #3 No unprivileged timing Ë

Challenge #4 Non-inclusive caches

Challenge #5 No shared cache

32



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1

33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1
33



Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1
33



Solving #4: Non-inclusive caches

• How can we determine if the victim has loaded the address?

• Cache coherency protocol
• Fetches data from remote cores

• Remote cache hit is faster than DRAM access

→ Detect if another core has accessed the memory location

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3
·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-core)

Miss (same core) Miss (cross-core)

34



Solving #4: Non-inclusive caches

• How can we determine if the victim has loaded the address?
• Cache coherency protocol

• Fetches data from remote cores

• Remote cache hit is faster than DRAM access

→ Detect if another core has accessed the memory location

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3
·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-core)

Miss (same core) Miss (cross-core)

34



Solving #4: Non-inclusive caches

• How can we determine if the victim has loaded the address?
• Cache coherency protocol

• Fetches data from remote cores

• Remote cache hit is faster than DRAM access

→ Detect if another core has accessed the memory location

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3
·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-core)

Miss (same core) Miss (cross-core)

34



Solving #4: Non-inclusive caches

• How can we determine if the victim has loaded the address?
• Cache coherency protocol

• Fetches data from remote cores

• Remote cache hit is faster than DRAM access

→ Detect if another core has accessed the memory location

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3
·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-core)

Miss (same core) Miss (cross-core)

34



Solving #4: Non-inclusive caches

• How can we determine if the victim has loaded the address?
• Cache coherency protocol

• Fetches data from remote cores

• Remote cache hit is faster than DRAM access

→ Detect if another core has accessed the memory location

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3
·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-core)

Miss (same core) Miss (cross-core)

34



Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy Ë

Challenge #3 No unprivileged timing Ë

Challenge #4 Non-inclusive caches Ë

Challenge #5 No shared cache

35



Solving #5: No shared cache

• Multiple CPUs that do not share a cache

• Cache coherency protocol (again)
• Fetches data from remote CPU

• Remote cache hit is faster than DRAM access

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-cpu)

Miss (same core) Miss (cross-cpu)

36



Solving #5: No shared cache

• Multiple CPUs that do not share a cache
• Cache coherency protocol (again)

• Fetches data from remote CPU

• Remote cache hit is faster than DRAM access

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-cpu)

Miss (same core) Miss (cross-cpu)

36



Solving #5: No shared cache

• Multiple CPUs that do not share a cache
• Cache coherency protocol (again)

• Fetches data from remote CPU

• Remote cache hit is faster than DRAM access

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-cpu)

Miss (same core) Miss (cross-cpu)

36



Solving #5: No shared cache

• Multiple CPUs that do not share a cache
• Cache coherency protocol (again)

• Fetches data from remote CPU

• Remote cache hit is faster than DRAM access

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

·104

Measured access time in cycles

N
u
m
b
er

o
f
ac
ce
ss
es

Hit (same core) Hit (cross-cpu)

Miss (same core) Miss (cross-cpu)

36



Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy Ë

Challenge #3 No unprivileged timing Ë

Challenge #4 Non-inclusive caches Ë

Challenge #5 No shared cache Ë

37



Attack scenarios



Case study #1

Covert communication

38



Case Study #1: Covert Channel

• Malicious privacy gallery app

• No permissions except accessing your images

• Malicious weather widget

• No permissions except accessing the Internet

39



Case Study #1: Covert Channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget

• No permissions except accessing the Internet

39



Case Study #1: Covert Channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget

• No permissions except accessing the Internet

39



Case Study #1: Covert Channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget
• No permissions except accessing the Internet

39



Case Study #1: Covert Channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget
• No permissions except accessing the Internet

covert

channel

39



Case Study #1: Covert Channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget
• No permissions except accessing the Internet

covert

channel

39



Case Study #1: Covert Channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget
• No permissions except accessing the Internet

covert

channel

39



Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack

40



Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack

40



Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack

40



Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack

40



Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack

40



Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack

40



Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack

40



Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack

40



Case Study #1: Covert Channel

• Build a covert channel using the cache

• Using addresses from a shared library/executable

• Bits transmitted with cache hits and misses

• Transmit 0: Do not access the address → cache miss

• Transmit 1: Access the address → cache hit

41



Case Study #1: Covert Channel

• Build a covert channel using the cache

• Using addresses from a shared library/executable

• Bits transmitted with cache hits and misses

• Transmit 0: Do not access the address → cache miss

• Transmit 1: Access the address → cache hit

41



Case Study #1: Covert Channel

• Build a covert channel using the cache

• Using addresses from a shared library/executable

• Bits transmitted with cache hits and misses

• Transmit 0: Do not access the address → cache miss

• Transmit 1: Access the address → cache hit

41



Case Study #1: Covert Channel

• Build a covert channel using the cache

• Using addresses from a shared library/executable

• Bits transmitted with cache hits and misses

• Transmit 0: Do not access the address → cache miss

• Transmit 1: Access the address → cache hit

41



Case Study #1: Covert Channel

• Build a covert channel using the cache

• Using addresses from a shared library/executable

• Bits transmitted with cache hits and misses

• Transmit 0: Do not access the address → cache miss

• Transmit 1: Access the address → cache hit

41



Case Study #1: Covert Channel

• Build a protocol based on packets

• Use a sequence number (SQN)

• Protect payload and sequence number with a checksum

078232431

Sender SQN Payload CRC

02310

Receiver SQN CRC

42



Case Study #1: Covert Channel

• Build a protocol based on packets

• Use a sequence number (SQN)

• Protect payload and sequence number with a checksum

078232431

Sender SQN Payload CRC

02310

Receiver SQN CRC

42



Case Study #1: Covert Channel

• Build a protocol based on packets

• Use a sequence number (SQN)

• Protect payload and sequence number with a checksum

078232431

Sender SQN Payload CRC

02310

Receiver SQN CRC

42



Case Study #1: Covert Channel

• Works using Flush+Reload, Evict+Reload and Flush+Flush

• Works cross-core and cross-CPU

• Faster than state of the art by several orders of magnitude

Work Type Bandwidth [bps] Error rate

43



Case Study #1: Covert Channel

• Works using Flush+Reload, Evict+Reload and Flush+Flush

• Works cross-core and cross-CPU

• Faster than state of the art by several orders of magnitude

Work Type Bandwidth [bps] Error rate

43



Case Study #1: Covert Channel

• Works using Flush+Reload, Evict+Reload and Flush+Flush

• Works cross-core and cross-CPU

• Faster than state of the art by several orders of magnitude

Work Type Bandwidth [bps] Error rate

43



Case Study #1: Covert Channel

• Works using Flush+Reload, Evict+Reload and Flush+Flush

• Works cross-core and cross-CPU

• Faster than state of the art by several orders of magnitude

Work Type Bandwidth [bps] Error rate

Schlegel et al. Vibration settings 87 –

Schlegel et al. Volume settings 150 –

Schlegel et al. File locks 685 –

Marforio et al. UNIX socket discovery 2 600 –

Marforio et al. Type of Intents 4 300 –

43



Case Study #1: Covert Channel

• Works using Flush+Reload, Evict+Reload and Flush+Flush

• Works cross-core and cross-CPU

• Faster than state of the art by several orders of magnitude

Work Type Bandwidth [bps] Error rate

Schlegel et al. Vibration settings 87 –

Schlegel et al. Volume settings 150 –

Schlegel et al. File locks 685 –

Marforio et al. UNIX socket discovery 2 600 –

Marforio et al. Type of Intents 4 300 –

Ours (OnePlus One) Evict+Reload, cross-core 12 537 5.00%

Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13 618 3.79%

Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48%

Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83%

Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1 140 650 1.10%

43



Case study #2

Spying on the user

44



Case Study #2: Spying on the User

• Issue: Locating event-dependent memory access

→ Cache Template Attacks

1. Shared library or executable is mapped

2. Trigger an event in parallel and Flush+Reload one address

→ Cache hit: Address used by the library/executable

3. Repeat step 2 for every address

45



Case Study #2: Spying on the User

• Issue: Locating event-dependent memory access

→ Cache Template Attacks

1. Shared library or executable is mapped

2. Trigger an event in parallel and Flush+Reload one address

→ Cache hit: Address used by the library/executable

3. Repeat step 2 for every address

45



Case Study #2: Spying on the User

• Issue: Locating event-dependent memory access

→ Cache Template Attacks

1. Shared library or executable is mapped

2. Trigger an event in parallel and Flush+Reload one address

→ Cache hit: Address used by the library/executable

3. Repeat step 2 for every address

45



Case Study #2: Spying on the User

• Issue: Locating event-dependent memory access

→ Cache Template Attacks

1. Shared library or executable is mapped

2. Trigger an event in parallel and Flush+Reload one address

→ Cache hit: Address used by the library/executable

3. Repeat step 2 for every address

45



Case Study #2: Spying on the User

• Issue: Locating event-dependent memory access

→ Cache Template Attacks

1. Shared library or executable is mapped

2. Trigger an event in parallel and Flush+Reload one address

→ Cache hit: Address used by the library/executable

3. Repeat step 2 for every address

45



Case Study #2: Spying on the User

• Issue: Locating event-dependent memory access

→ Cache Template Attacks

1. Shared library or executable is mapped

2. Trigger an event in parallel and Flush+Reload one address

→ Cache hit: Address used by the library/executable

3. Repeat step 2 for every address

45



Case Study #2: Spying on the User

• Cache template matrix

= How many cache hits for each pair (event, address)?

• On shared library and ART binaries, e.g., AOSP keyboard

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

46



Case Study #2: Spying on the User

• Cache template matrix

= How many cache hits for each pair (event, address)?

• On shared library and ART binaries, e.g., AOSP keyboard

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

Many cache hits

46



Case Study #2: Spying on the User

• Cache template matrix

= How many cache hits for each pair (event, address)?

• On shared library and ART binaries, e.g., AOSP keyboard

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

Many cache hits

No cache hits

46



Case Study #2: Spying on the User

Evict+Reload on two addresses on the Alcatel One Touch Pop 2 in

custpack@app@withoutlibs@LatinIME.apk@classes.dex

→ Differentiate keys from spaces

0 1 2 3 4 5 6 7

100

200

300

t h i s Space i s Space a Space m e s s a g e

Time in seconds

A
cc
es
s
ti
m
e

Key

Space

47



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case study #3

Attacking cryptographic algorithms

49



Case Study #3: Attacking Cryptographic Algorithms

• AES T-Tables: Fast software implementation

• Uses precomputed look-up tables

• One-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key

• Intermediate state x (r) = (x
(r)
0 , . . . ,x

(r)
15 ) at each round r

• First round, accessed table indices are

x
(0)
i = pi ⊕ki for all i = 0, . . . ,15

→ Recovering accessed table indices ⇒ recovering the key

50



Case Study #3: Attacking Cryptographic Algorithms

• AES T-Tables: Fast software implementation

• Uses precomputed look-up tables

• One-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key

• Intermediate state x (r) = (x
(r)
0 , . . . ,x

(r)
15 ) at each round r

• First round, accessed table indices are

x
(0)
i = pi ⊕ki for all i = 0, . . . ,15

→ Recovering accessed table indices ⇒ recovering the key

50



Case Study #3: Attacking Cryptographic Algorithms

• AES T-Tables: Fast software implementation

• Uses precomputed look-up tables

• One-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key

• Intermediate state x (r) = (x
(r)
0 , . . . ,x

(r)
15 ) at each round r

• First round, accessed table indices are

x
(0)
i = pi ⊕ki for all i = 0, . . . ,15

→ Recovering accessed table indices ⇒ recovering the key

50



Case Study #3: Attacking Cryptographic Algorithms

• AES T-Tables: Fast software implementation

• Uses precomputed look-up tables

• One-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key

• Intermediate state x (r) = (x
(r)
0 , . . . ,x

(r)
15 ) at each round r

• First round, accessed table indices are

x
(0)
i = pi ⊕ki for all i = 0, . . . ,15

→ Recovering accessed table indices ⇒ recovering the key

50



Case Study #3: Attacking Cryptographic Algorithms

• Bouncy Castle → default implementation uses T-Tables

→ Let’s monitor which T-Table entry is accessed!

• Java VM creates a copy of the T-tables when the app starts

• No shared memory → no Evict+Reload or Flush+Reload

→ Prime+Probe to the rescue!

0x
00

0x
01

0x
02

0x
03

0x
04

0x
05

0x
06

0x
07

0x
08

0x
09

0x
0A

0x
0B

0x
0C

0x
0D

0x
0E

0x
0F

P laintext byte values

A
dd
re
ss

51



Case Study #3: Attacking Cryptographic Algorithms

• Bouncy Castle → default implementation uses T-Tables

→ Let’s monitor which T-Table entry is accessed!

• Java VM creates a copy of the T-tables when the app starts

• No shared memory → no Evict+Reload or Flush+Reload

→ Prime+Probe to the rescue!

0x
00

0x
01

0x
02

0x
03

0x
04

0x
05

0x
06

0x
07

0x
08

0x
09

0x
0A

0x
0B

0x
0C

0x
0D

0x
0E

0x
0F

P laintext byte values

A
dd
re
ss

51



Case Study #3: Attacking Cryptographic Algorithms

• Bouncy Castle → default implementation uses T-Tables

→ Let’s monitor which T-Table entry is accessed!

• Java VM creates a copy of the T-tables when the app starts

• No shared memory → no Evict+Reload or Flush+Reload

→ Prime+Probe to the rescue!

0x
00

0x
01

0x
02

0x
03

0x
04

0x
05

0x
06

0x
07

0x
08

0x
09

0x
0A

0x
0B

0x
0C

0x
0D

0x
0E

0x
0F

P laintext byte values

A
dd
re
ss

51



Case Study #3: Attacking Cryptographic Algorithms

• Bouncy Castle → default implementation uses T-Tables

→ Let’s monitor which T-Table entry is accessed!

• Java VM creates a copy of the T-tables when the app starts

• No shared memory → no Evict+Reload or Flush+Reload

→ Prime+Probe to the rescue!

0x
00

0x
01

0x
02

0x
03

0x
04

0x
05

0x
06

0x
07

0x
08

0x
09

0x
0A

0x
0B

0x
0C

0x
0D

0x
0E

0x
0F

P laintext byte values

A
dd
re
ss

51



Case Study #3: Attacking Cryptographic Algorithms

• Bouncy Castle → default implementation uses T-Tables

→ Let’s monitor which T-Table entry is accessed!

• Java VM creates a copy of the T-tables when the app starts

• No shared memory → no Evict+Reload or Flush+Reload

→ Prime+Probe to the rescue!
0x
00

0x
01

0x
02

0x
03

0x
04

0x
05

0x
06

0x
07

0x
08

0x
09

0x
0A

0x
0B

0x
0C

0x
0D

0x
0E

0x
0F

P laintext byte values

A
dd
re
ss

51



Case study #4

Monitoring ARM TrustZone

52



Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world

53



Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world

53



Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world

53



Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world

53



Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world

53



Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world

53



Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world

53



Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world

53



Case Study #4: Monitoring ARM TrustZone

• Timing difference for different RSA signature keys

• No knowledge of the TrustZone/trustlet implementation

• Valid keys and invalid keys are distinguishable

250 260 270 280 290 300 310 320 330 340 350
0

0.5

1

·106

Set number

M
ea
n
S
q
u
ar
ed

E
rr
or

(M
S
E
)

Valid key 1

Valid key 2

Valid key 3

Invalid key

54



Case Study #4: Monitoring ARM TrustZone

• Timing difference for different RSA signature keys

• No knowledge of the TrustZone/trustlet implementation

• Valid keys and invalid keys are distinguishable

250 260 270 280 290 300 310 320 330 340 350
0

0.5

1

·106

Set number

M
ea
n
S
q
u
ar
ed

E
rr
or

(M
S
E
)

Valid key 1

Valid key 2

Valid key 3

Invalid key

54



Case Study #4: Monitoring ARM TrustZone

• Timing difference for different RSA signature keys

• No knowledge of the TrustZone/trustlet implementation

• Valid keys and invalid keys are distinguishable

250 260 270 280 290 300 310 320 330 340 350
0

0.5

1

·106

Set number

M
ea
n
S
q
u
ar
ed

E
rr
or

(M
S
E
)

Valid key 1

Valid key 2

Valid key 3

Invalid key

54



Tools



libflush

• Library to build cross-platform cache attacks

• x86

• ARMv7

• ARMv8

• Implements various attack techniques

• Flush+Reload

• Evict+Reload

• Prime+Probe

• Flush+Flush

• Prefetch

• Open Source

55



libflush

• Library to build cross-platform cache attacks

• x86

• ARMv7

• ARMv8

• Implements various attack techniques

• Flush+Reload

• Evict+Reload

• Prime+Probe

• Flush+Flush

• Prefetch

• Open Source

55



libflush

• Library to build cross-platform cache attacks

• x86

• ARMv7

• ARMv8

• Implements various attack techniques

• Flush+Reload

• Evict+Reload

• Prime+Probe

• Flush+Flush

• Prefetch

• Open Source

55



libflush

• Library to build cross-platform cache attacks

• x86

• ARMv7

• ARMv8

• Implements various attack techniques

• Flush+Reload

• Evict+Reload

• Prime+Probe

• Flush+Flush

• Prefetch

• Open Source

55



libflush

• All described examples have been developed on top of

libflush

• Includes eviction strategies for several devices

• Comes with example code and documentation

• Even allows to implement cross-platform Rowhammer attacks

� github.com/iaik/armageddon/libflush

56

github.com/iaik/armageddon/libflush


libflush

• All described examples have been developed on top of

libflush

• Includes eviction strategies for several devices

• Comes with example code and documentation

• Even allows to implement cross-platform Rowhammer attacks

� github.com/iaik/armageddon/libflush

56

github.com/iaik/armageddon/libflush


libflush

• All described examples have been developed on top of

libflush

• Includes eviction strategies for several devices

• Comes with example code and documentation

• Even allows to implement cross-platform Rowhammer attacks

� github.com/iaik/armageddon/libflush

56

github.com/iaik/armageddon/libflush


libflush

• All described examples have been developed on top of

libflush

• Includes eviction strategies for several devices

• Comes with example code and documentation

• Even allows to implement cross-platform Rowhammer attacks

� github.com/iaik/armageddon/libflush

56

github.com/iaik/armageddon/libflush


libflush

• All described examples have been developed on top of

libflush

• Includes eviction strategies for several devices

• Comes with example code and documentation

• Even allows to implement cross-platform Rowhammer attacks

� github.com/iaik/armageddon/libflush

56

github.com/iaik/armageddon/libflush


Eviction Strategy Evaluator

• Utilizes libflush to evaluate eviction strategies

• Automatically executed on target platform

• Results are stored in a database file

� github.com/iaik/armageddon/eviction_strategy_

evaluator

57

github.com/iaik/armageddon/eviction_strategy_evaluator
github.com/iaik/armageddon/eviction_strategy_evaluator


Eviction Strategy Evaluator

• Utilizes libflush to evaluate eviction strategies

• Automatically executed on target platform

• Results are stored in a database file

� github.com/iaik/armageddon/eviction_strategy_

evaluator

57

github.com/iaik/armageddon/eviction_strategy_evaluator
github.com/iaik/armageddon/eviction_strategy_evaluator


Eviction Strategy Evaluator

• Utilizes libflush to evaluate eviction strategies

• Automatically executed on target platform

• Results are stored in a database file

� github.com/iaik/armageddon/eviction_strategy_

evaluator

57

github.com/iaik/armageddon/eviction_strategy_evaluator
github.com/iaik/armageddon/eviction_strategy_evaluator


Eviction Strategy Evaluator

• Utilizes libflush to evaluate eviction strategies

• Automatically executed on target platform

• Results are stored in a database file

� github.com/iaik/armageddon/eviction_strategy_

evaluator

57

github.com/iaik/armageddon/eviction_strategy_evaluator
github.com/iaik/armageddon/eviction_strategy_evaluator


Cache Template Attacks

• Cross-platform cache template attack tool

• Scan libraries and executable for vulnerable addresses

• Additional tool to simulate input events

� github.com/iaik/armageddon/cache_template_attacks

58

github.com/iaik/armageddon/cache_template_attacks


Cache Template Attacks

• Cross-platform cache template attack tool

• Scan libraries and executable for vulnerable addresses

• Additional tool to simulate input events

� github.com/iaik/armageddon/cache_template_attacks

58

github.com/iaik/armageddon/cache_template_attacks


Cache Template Attacks

• Cross-platform cache template attack tool

• Scan libraries and executable for vulnerable addresses

• Additional tool to simulate input events

� github.com/iaik/armageddon/cache_template_attacks

58

github.com/iaik/armageddon/cache_template_attacks


Cache Template Attacks

• Cross-platform cache template attack tool

• Scan libraries and executable for vulnerable addresses

• Additional tool to simulate input events

� github.com/iaik/armageddon/cache_template_attacks

58

github.com/iaik/armageddon/cache_template_attacks


Countermeasures



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto.

For the rest. . . No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . .

No satisfying solution

59



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution

59



Conclusion



Conclusion

• All powerful cache attacks are applicable to mobile devices

• Without any permissions or privileges

• Building fast covert channels

• Spying on user activity with a high accuracy

• Deriving cryptographic keys

• ARM TrustZone leaking through the cache

• Try our tools yourself!

60



Conclusion

• All powerful cache attacks are applicable to mobile devices

• Without any permissions or privileges

• Building fast covert channels

• Spying on user activity with a high accuracy

• Deriving cryptographic keys

• ARM TrustZone leaking through the cache

• Try our tools yourself!

60



Conclusion

• All powerful cache attacks are applicable to mobile devices

• Without any permissions or privileges

• Building fast covert channels

• Spying on user activity with a high accuracy

• Deriving cryptographic keys

• ARM TrustZone leaking through the cache

• Try our tools yourself!

60



Conclusion

• All powerful cache attacks are applicable to mobile devices

• Without any permissions or privileges

• Building fast covert channels

• Spying on user activity with a high accuracy

• Deriving cryptographic keys

• ARM TrustZone leaking through the cache

• Try our tools yourself!

60



Conclusion

• All powerful cache attacks are applicable to mobile devices

• Without any permissions or privileges

• Building fast covert channels

• Spying on user activity with a high accuracy

• Deriving cryptographic keys

• ARM TrustZone leaking through the cache

• Try our tools yourself!

60



Conclusion

• All powerful cache attacks are applicable to mobile devices

• Without any permissions or privileges

• Building fast covert channels

• Spying on user activity with a high accuracy

• Deriving cryptographic keys

• ARM TrustZone leaking through the cache

• Try our tools yourself!

60



ARMageddon

How Your Smartphone CPU Breaks Software-Level

Security And Privacy

Moritz Lipp and Clémentine Maurice

November 3, 2016—Black Hat Europe


	Who We Are
	Cache Attacks
	Differences between Intel x86 and ARM
	Let's solve those challenges
	Attack scenarios
	Tools
	Countermeasures
	Conclusion

