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Motivation

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• We focus on the CPU cache

• Cache attacks can be used for covert communications and

attack crypto implementations

• Only been demonstrated on Intel x86 for now

• But why not on ARM?
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Outline

• Background information

• What are the challenges for cache attacks on ARM?

• How to solve those challenges

• Attack scenarios

• Tools
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Cache Attacks



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in

• CPU registers

• Different levels of the CPU cache

• Main memory

• Disk storage
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Cache Attacks

• Exploit timing differences of memory accesses:

• cache → fast (cache hit)

• main memory → slow (cache miss)

0 200 400 600 800 1,000 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

9



Cache Attacks

• Exploit timing differences of memory accesses:
• cache → fast (cache hit)

• main memory → slow (cache miss)

0 200 400 600 800 1,000 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

9



Cache Attacks

• Exploit timing differences of memory accesses:
• cache → fast (cache hit)

• main memory → slow (cache miss)

0 200 400 600 800 1,000 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

9



Cache Attacks

• Exploit timing differences of memory accesses:
• cache → fast (cache hit)

• main memory → slow (cache miss)

0 200 400 600 800 1,000 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

9



Set-Associative Caches
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Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
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Cache Attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Cache Attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data

11



Cache Attacks: Prime+Probe

Victim address space Cache Attacker address space
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Cache Attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
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Differences between Intel x86 and

ARM



Cache maintenance

• Basic operation for cache attacks: invalidate cache lines

• Cache maintenance instructions

• Intel x86: Unprivileged clflush instruction

• ARMv7-A: Only privileged cache maintenance instructions

• ARMv8-A: Privileged instructions can be unlocked for

userspace

Challenge #1

No flush instruction
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Cache eviction (what actually happens)

• Pseudo-random cache replacement policy
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→ Simple approach highly inefficient

Challenge #2

Pseudo-random replacement policy complicates eviction
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Timing measurements

• Need fine-grained timing measurements

• Intel x86: Unprivileged rdtsc instruction for cycle count

• ARM: Cycle counter only in privileged mode

→ Previous attacks required root access
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No unprivileged and accurate timing sources
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Cache Hierarchy on Intel CPUs

Core 0

L1 I-Cache L1 D-Cache

L2 Cache
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Core 3
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L2 Cache

L3 Cache

• Last-level cache: L3

• shared

• inclusive

→ Shared memory is shared in the cache across all cores
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Cache Hierarchy on ARM Cortex-A CPUs
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• Last-level cache: L2

• shared

• not inclusive

→ Shared memory that is not in L2 is not shared in the cache.

Challenge #4

Non-inclusive caches
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Cache Hierarchy on ARM big.LITTLE

CPU1 CPU2

Core 0
L1I L1D

Core 1
L1I L1D

Core 2
L1I L1D

Core 3
L1I L1D

L2 Cache

Core 0
L1I L1D

Core 1
L1I L1D

Core 2
L1I L1D

Core 3
L1I L1D

L2 Cache

CoreLink CCI-400

• Interconnects multiple CPUs to combine energy efficiency and

performance

• CPUs do not share a cache

Challenge #5

No shared cache
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Let’s solve those challenges



Challenges

Challenge #1 No flush instruction

Challenge #2 Pseudo-random replacement policy

Challenge #3 No unprivileged timing

Challenge #4 Non-inclusive caches

Challenge #5 No shared cache
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Solving #1: No flush instruction

• Replace the missing flush instruction with cache eviction

• Works on Intel x86

• Prime+Probe

• Flush+Reload → Evict+Reload

21



Solving #1: No flush instruction

• Replace the missing flush instruction with cache eviction

• Works on Intel x86

• Prime+Probe

• Flush+Reload → Evict+Reload

21



Solving #1: No flush instruction

• Replace the missing flush instruction with cache eviction

• Works on Intel x86

• Prime+Probe

• Flush+Reload → Evict+Reload

21



Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy
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Challenges
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Challenges

• No.

• Eviction can be slow and unreliable. . .

• Unless you know how to properly evict data

→ Central idea of our Rowhammer.js paper
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Solving #2: Pseudo-random replacement policy

• Cache line to be discarded is chosen pseudo-randomly

• Accessing once n addresses in an n-way cache set

→ Cache eviction slow and unreliable

Solution:

• Accessing unique addresses several times, with different access

patterns
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Solving #2: Pseudo-random replacement policy

Table 1: Different eviction strategies for the Alcatel One Touch Pop 2

Addresses Accesses Cycles Eviction rate

48 48 6 517 3 70.78% 7

200 200 33 110 7 96.04% 7

800 800 142 876 7 99.10% 3

21 96 4 275 3 99.93% 3

22 102 5 101 3 99.99% 3

23 190 6 209 3 100.0% 3
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• Execute on target device
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• Find fast and efficient eviction strategies for any device
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Solving #2: Pseudo-random replacement policy
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Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy Ë

Challenge #3 No unprivileged timing

Challenge #4 Non-inclusive caches

Challenge #5 No shared cache
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Solving #3: No unprivileged timing

1. Performance counter: Privileged

2. perf event open: Unprivileged syscall

• Unavailable on new devices: Privileged or kernel compiled with

CONFIG PERF=n

3. clock gettime: Unprivileged POSIX function

4. Thread counter: Unprivileged, multithreaded

• Unprivileged timing sources

• Nanosecond resolution for all sources

→ Allows distinguishing cache hits from cache misses
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Solving #3: No unprivileged timing
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Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy Ë

Challenge #3 No unprivileged timing Ë

Challenge #4 Non-inclusive caches

Challenge #5 No shared cache
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Solving #4: Non-inclusive caches

Core 0

L1 I-Cache L1 D-Cache

Core 1

L1 I-Cache L1 D-Cache

L2 Cache

• Instruction-inclusive, data-non-inclusive caches

• Fill-up L1 D-Cache and begin to populate shared L2 Cache

• Inclusion: Line evicted from L2 → also evicted from L1
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Solving #4: Non-inclusive caches

• How can we determine if the victim has loaded the address?

• Cache coherency protocol
• Fetches data from remote cores

• Remote cache hit is faster than DRAM access

→ Detect if another core has accessed the memory location
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Challenges

Challenge #1 No flush instruction Ë

Challenge #2 Pseudo-random replacement policy Ë

Challenge #3 No unprivileged timing Ë

Challenge #4 Non-inclusive caches Ë

Challenge #5 No shared cache
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Solving #5: No shared cache

• Multiple CPUs that do not share a cache

• Cache coherency protocol (again)
• Fetches data from remote CPU

• Remote cache hit is faster than DRAM access
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Attack scenarios



Case study #1

Covert communication

38



Case Study #1: Covert Channel

• Malicious privacy gallery app

• No permissions except accessing your images

• Malicious weather widget

• No permissions except accessing the Internet
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Case Study #1: Covert Channel

• Two apps want to communicate with each other, but are not
allowed or not able to do so

• No permissions

• No Intents, Binders, ASHMEM, . . .

• A covert channel

• Enables two unprivileged apps to communicate

• Does not use data transfer mechanisms provided by the OS

• Evades the sandboxing concept and permission system

→ Collusion attack
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Case Study #1: Covert Channel

• Build a covert channel using the cache

• Using addresses from a shared library/executable

• Bits transmitted with cache hits and misses

• Transmit 0: Do not access the address → cache miss

• Transmit 1: Access the address → cache hit
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Case Study #1: Covert Channel

• Build a protocol based on packets

• Use a sequence number (SQN)

• Protect payload and sequence number with a checksum

078232431

Sender SQN Payload CRC

02310

Receiver SQN CRC
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Case Study #1: Covert Channel

• Works using Flush+Reload, Evict+Reload and Flush+Flush

• Works cross-core and cross-CPU

• Faster than state of the art by several orders of magnitude

Work Type Bandwidth [bps] Error rate
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• Works using Flush+Reload, Evict+Reload and Flush+Flush
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• Faster than state of the art by several orders of magnitude

Work Type Bandwidth [bps] Error rate

Schlegel et al. Vibration settings 87 –

Schlegel et al. Volume settings 150 –

Schlegel et al. File locks 685 –

Marforio et al. UNIX socket discovery 2 600 –

Marforio et al. Type of Intents 4 300 –

Ours (OnePlus One) Evict+Reload, cross-core 12 537 5.00%

Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13 618 3.79%

Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48%

Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83%

Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1 140 650 1.10%
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Case study #2

Spying on the user
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Case Study #2: Spying on the User

• Issue: Locating event-dependent memory access

→ Cache Template Attacks

1. Shared library or executable is mapped

2. Trigger an event in parallel and Flush+Reload one address

→ Cache hit: Address used by the library/executable

3. Repeat step 2 for every address
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Case Study #2: Spying on the User

• Cache template matrix

= How many cache hits for each pair (event, address)?

• On shared library and ART binaries, e.g., AOSP keyboard
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Case Study #2: Spying on the User

Evict+Reload on two addresses on the Alcatel One Touch Pop 2 in

custpack@app@withoutlibs@LatinIME.apk@classes.dex

→ Differentiate keys from spaces
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Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case Study #2: Spying on the User

• Endless possibilities

• Scan all the libraries

• Find all secret-dependent accesses and automate attacks

• No need for source code

• Spy and learn about user’s behavior

48



Case study #3

Attacking cryptographic algorithms

49



Case Study #3: Attacking Cryptographic Algorithms

• AES T-Tables: Fast software implementation

• Uses precomputed look-up tables

• One-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key

• Intermediate state x (r) = (x
(r)
0 , . . . ,x

(r)
15 ) at each round r

• First round, accessed table indices are

x
(0)
i = pi ⊕ki for all i = 0, . . . ,15

→ Recovering accessed table indices ⇒ recovering the key
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Case Study #3: Attacking Cryptographic Algorithms

• Bouncy Castle → default implementation uses T-Tables

→ Let’s monitor which T-Table entry is accessed!

• Java VM creates a copy of the T-tables when the app starts

• No shared memory → no Evict+Reload or Flush+Reload

→ Prime+Probe to the rescue!
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Case study #4

Monitoring ARM TrustZone
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Case Study #4: Monitoring ARM TrustZone

• Hardware-based security technology

• Secure Execution Environment

• Roots of Trust

• Applications (trustlets) running in a secure world

• Credential-store

• Secure element for payments

• Digital Rights Management (DRM)

• Information from the trusted world should not be leaked to

the non-secure world
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Case Study #4: Monitoring ARM TrustZone

• Timing difference for different RSA signature keys

• No knowledge of the TrustZone/trustlet implementation

• Valid keys and invalid keys are distinguishable
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Tools



libflush

• Library to build cross-platform cache attacks

• x86

• ARMv7

• ARMv8

• Implements various attack techniques

• Flush+Reload

• Evict+Reload

• Prime+Probe

• Flush+Flush

• Prefetch

• Open Source

55



libflush

• Library to build cross-platform cache attacks

• x86

• ARMv7

• ARMv8

• Implements various attack techniques

• Flush+Reload

• Evict+Reload

• Prime+Probe

• Flush+Flush

• Prefetch

• Open Source

55



libflush

• Library to build cross-platform cache attacks

• x86

• ARMv7

• ARMv8

• Implements various attack techniques

• Flush+Reload

• Evict+Reload

• Prime+Probe

• Flush+Flush

• Prefetch

• Open Source

55



libflush

• Library to build cross-platform cache attacks

• x86

• ARMv7

• ARMv8

• Implements various attack techniques

• Flush+Reload

• Evict+Reload

• Prime+Probe

• Flush+Flush

• Prefetch

• Open Source

55



libflush

• All described examples have been developed on top of

libflush

• Includes eviction strategies for several devices

• Comes with example code and documentation

• Even allows to implement cross-platform Rowhammer attacks

� github.com/iaik/armageddon/libflush
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Eviction Strategy Evaluator

• Utilizes libflush to evaluate eviction strategies

• Automatically executed on target platform

• Results are stored in a database file

� github.com/iaik/armageddon/eviction_strategy_

evaluator

57
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Cache Template Attacks

• Cross-platform cache template attack tool

• Scan libraries and executable for vulnerable addresses

• Additional tool to simulate input events

� github.com/iaik/armageddon/cache_template_attacks
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Countermeasures



Countermeasures

• Coarse-grained timers

→ But a thread timer is sufficient. . .

• No shared memory

→ What about Prime+Probe?

• Restrict system information, e.g., pagemap

→ Harder but still possible

• Use cryptographic instruction extensions

→ Still not the default everywhere. . .

→ Doesn’t protect from spying user behavior. . .

→ Protect crypto. For the rest. . . No satisfying solution
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Conclusion

• All powerful cache attacks are applicable to mobile devices

• Without any permissions or privileges

• Building fast covert channels

• Spying on user activity with a high accuracy

• Deriving cryptographic keys

• ARM TrustZone leaking through the cache

• Try our tools yourself!
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