
Moritz Lipp

Cache Attacks on ARM
Master thesis

Graz, University Of Technology

NOTICE

If you want to cite this work based on last-level cache attacks on ARM,
please cite the following research paper instead:

• Lipp, Moritz ; Gruss, Daniel ; Spreitzer, Raphael ; Maurice, Clémentine
; Mangard, Stefan: ARMageddon: Cache Attacks on Mobile De-
vices. In: 25th USENIX Security Symposium (USENIX Security 16).
Austin, TX : USENIX Association, August 2016. – ISBN 978–1–931971–
32–4, 549–564

If you want to cite this work in respect to rowhammer on ARM-based
devices, please cite the following publication instead:

• Veen, Victor van d. ; Fratantonio, Yanick ; Lindorfer, Martina ;
Gruss, Daniel ; Maurice, Clémentine ; Vigna, Giovanni ; Bos, Her-
bert ; Razavi, Kaveh ; Giuffrida, Christiano: Drammer : Determinis-
tic Rowhammer Attacks on Commodity Mobile Platforms. In: ACM
Conference on Computer and Communications Security – CCS, 2016

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Key Challenges and Results 4
1.3 Contributions . 5
1.4 Test devices . 6
1.5 Outline . 7

2 Background 9
2.1 CPU caches . 9
2.2 Cache coherence . 18
2.3 Shared memory . 29
2.4 Cache Attacks . 31
2.5 DRAM . 39

3 Attack primitives 43
3.1 Timing Measurements . 43
3.2 Cache Eviction . 47
3.3 Defeating the Cache-Organization 53

4 Attack Case Studies 57
4.1 High Performance Covert-Channels 58
4.2 Spying on User input . 62
4.3 Attacks on Cryptographic Algorithms 69
4.4 Rowhammer on ARM . 75

5 Countermeasures 79

6 Conclusion 81

i

List of tables . 83
List of figures . 86
List of acronyms . 88
References . 99

Chapter 1

Introduction

In the last years, mobile devices like smartphones and tablets have become
the most important personal computing platform. The default tasks like
making phone calls and managing contacts in an address book have been
heavily extended such that these devices assist us nowadays with our ev-
eryday tasks. Besides responding to emails and taking photos as well as
videos, it is possible to approve bank transfers, create digital signatures
of official documents or to use it as a navigation device for the car. These
tasks require to gather, process and store more and more sensible personal
data on the device which exposure to the public would not only be a fatal
infringement of privacy but could also lead to disastrous consequences re-
garding, e.g., financial security, identity theft, and social acceptance. Thus,
hardware and software-based protection mechanisms need to be in place
to prevent unauthorised access and exfiltration of personal data to make
such devices more secure.

Side channel attacks exploit an unintentional information leakage regard-
ing the variation of power consumption, execution time or electromag-
netic radiation to compromise the security of the executing platform or
the underlying algorithm. In 1996 Kocher [43] showed that it is possi-
ble to find fixed Diffie-Hellman exponents, factor RSA keys and to break
other cryptographic systems by measuring the execution time of private
key operations. In 1999 Kocher et al. [44] introduced Simple Power Anal-
ysis (SPA) and Differential Power Analysis (DPA) where an attacker can
extract cryptographic keys by studying the power consumption of a de-

1

vice. Based on the publication of Van Eck [17] in 1985 that showed the
possibility of eavesdropping on video display units by measuring the elec-
tromagnetic interference, Callan et al. [13] demonstrated a key logger for
a personal computer using a smartphone with a radio antenna in 2014.
In 2016 Genkin et al. [19] present the first physical side-channel attack on
elliptic curve cryptography by extracting the secret decryption key from a
target located in another room.

A different side channel on modern computing architectures is introduced
by the memory hierarchy that stores subsets of the computer’s memory in
smaller but faster memory units, so-called caches. Cache side-channel
attacks exploit the different access times of memory addresses that are
either held in the cache or the main memory. In 2014 Bernstein [9] demon-
strated complete AES key recovery from known-plaintext timings of a
network server. While the Evict+Time and Prime+Probe techniques by Os-
vik et al. [63] also explicitly targeted cryptographic algorithms, Yarom and
Falkner [87] introduced the so-called Flush+Reload attack in 2014 that laid
the foundation for new attack scenarios. It allows an attacker to determine
which specific parts of a shared library or a binary executable have been
accessed by the victim with an unprecedented high accuracy. Based on
this work Gruss et al. [26] demonstrated the possibility to exploit cache-
based side channels via cache template attacks in an automated way and
showed that besides efficiently attacking cryptographic implementations,
it can be used to infer keystroke information and even log specific keys.

In 1997 Boneh et al. [12] presented a new type of attack that exploited com-
putational errors to extract cryptographic keys. In the same year Biham
and Shamir [10] described Differential Fault Analysis (DFA) attacks that
use various fault models as well as various cryptanalysis techniques to
recover secret values of tamper-resistant devices like smart cards. If physi-
cal access is given, the power supply voltage, the frequency of the clock or
the environment in terms of temperature or radiation can be changed, to
force the smart card to malfunction. However, it is also possible to induce
hardware faults by software, and thus from a remote location, if the device
could be brought outside of the specified working conditions.

In 2014 Kim et al. [41] demonstrated that accessing specific memory lo-
cations in a high repetition rate can cause random bit flips in Dynamic

Random-Access Memory (DRAM) chips. Since DRAM technology scales
down to smaller dimensions, it is much more difficult to prevent single
cells from electrically interacting with each other. They observe that ac-
tivating the same row in the memory corrupts data in nearby rows. In
2015 Seaborn [72] demonstrates that this side effect could be exploited for
privilege escalation and in the same year Gruss et al. [24] showed that
such bit flips can also be triggered by JavaScript code loaded on a website.
However, this attack has so far only be demonstrated on Intel and AMD
systems using DDR3 and modern DDR4 [23, 47] modules. So far it was
unknown if the rowhammer attack on ARM platforms is possible [47, 73].
Simultaneously to our research, Van der Veen et al. [83] investigated the
rowhammer bug on ARM-based devices as well. They have been suc-
cessful on triggering the bug on multiple mobile devices and built a root
exploit for Android.

The results of this work have been published as a part of a research paper,
“ARMageddon: Cache Attacks on Mobile Devices”, at the USENIX Secu-
rity 2016 conference [50] and will be presented at the Black Hat Europe
2016 conference [51].

1.1 Motivation

Although mobile devices have become the most important personal com-
puting platform and cache attacks represent a powerful way to exploit
the memory hierarchy of modern system architectures, only a few pub-
lications about cache attacks on smartphones exist. However, they fo-
cus only on attacks on AES-table implementations [11, 75–77, 84] and
do not discuss the more recent and efficient cross-core attack techniques
Prime+Probe [87], Flush+Reload [87], Evict+Reload [24], and Flush+Flush [25],
nor the Rowhammer attack [41]. Actually, Yarom and Falkner [87] doubted
whether those cross-core attacks could be mounted on ARM-based devices
at all.

Since smartphones are storing more and more sensitive data as well as
collecting personal information, it is especially important to apply further
investigations on the ARM platform with respect to cache attacks and the

rowhammer bug.

1.2 Key Challenges and Results

Existing cross-core cache attacks [25, 26, 28, 33, 52, 54, 55, 62, 87] rely on
the property that last-level caches are inclusive. While the x86 architec-
ture always fulfils this requirement, only the recent ARMv8 architecture
uses inclusive last-level caches. Thus, it was believed that these attacks
are not applicable on the ARM architecture [87]. However, to make sure
that multiple copies of data that reside in different caches are up-to-date,
so-called cache coherence protocols are used. These protocols can be ex-
ploited to mount cross-core cache attacks on mobile devices with non-
inclusive shared last-level caches. In addition, these protocols also can
be exploited on modern smartphones that have multiple CPUs and do not
share a cache, because these protocols allow CPUs to load cache lines from
remote caches faster than from the main memory. Simultaneously to our
work, Irazoqui et al. [34] exploited cache coherence protocols on AMD x86
CPUs.

Attack techniques like Flush+Reload and Flush+Flush utilize the unprivi-
leged x86 flush instruction clflush to evict a cache line. But with the
exception of ARMv8-A CPUs, ARM processors do not have an unpriv-
ileged flush instruction, and therefore cache eviction must be used. In
order to acquire measurements in a high-frequency that are required for
recent cache attacks, the eviction has to be fast enough. Although eviction
strategies have been proposed [76], they are too slow. In order to find
fast eviction strategies, we utilize Rowhammer attack techniques [24] to
evaluate several thousand different eviction strategies automatically.

In order to obtain cycle accurate timings, previous attacks [11, 75–77, 84]
relied on the performance counter register that is only accessible with root
privileges [48]. We evaluate possible alternative timing sources that are
accessible without any privileges or permissions and show that they all
can be used to mount cache attacks.

In addition, a pseudo-random replacement policy decides on ARM CPUs
which cache line will be evicted from a cache set. This policy introduces

additional noise [75] for robust time-driven cache attacks [77] and is the
reason why Prime+Probe could not be mounted on ARM so far [76]. How-
ever, we find access patterns to congruent addresses that allow us to suc-
cessfully launch Prime+Probe attacks despite the pseudo-random replace-
ment policy.

After solving these key challenges systematically, we use the resulting
building blocks to demonstrate the wide impact of cache attacks on ARM.
In contrast to previous cache attacks on smartphones [11, 75–77, 84] we do
not only attack cryptographic implementations but also utilize these at-
tacks to infer different sensitive information, e.g., to differentiate between
entered letters and special keys on the keyboard or the measure the length
of swipe and touch gestures. In addition, we show that cache attacks can
also be applied to monitor the activity of the cache caused by the ARM
TrustZone.

Furthermore, we show that ARM-based devices are also vulnerable to the
rowhammer bug [41] by inducing bit flips in various ways. In addition,
we have reverse engineered the DRAM addressing functions of several
smartphones with techniques by Pessl et al. [67] and, thus, increased the
likelihood and the number of bit flips.

With this work, we aim to show that despite reasonable doubt well-studied
attack techniques are also applicable on smartphones and to demonstrate
the immense threat of the presented attacks. Since those attacks can be
mounted on millions of stock Android devices without the requirement of
any privileges or permissions, it is crucial to deploy effective countermea-
sures.

1.3 Contributions

The main contributions of this master thesis can be summarized as follows.

• We show that highly efficient cache attacks like Prime+Probe, Flush+Reload,
Evict+Reload, and Flush+Flush can be mounted on ARM-based de-
vices.

• Thousands of different eviction strategies for various devices have

been evaluated in order to determine the best strategies that can be
used on devices where no unprivileged flush instruction is available.

• Three possible timing sources have been identified as an alternative
to the privileged performance registers. They are accessible without
any privileges or permissions and each of them can be used to mount
cache attacks on ARM successfully.

• The demonstrated attacks can be applied independently of the ac-
tual cache organization and, thus, also on non-inclusive last-level
caches. In particular, the attacks can be mounted against last-level
caches that are instruction-inclusive and data-non-inclusive as well
as against caches that are instruction-non-inclusive and data-inclusive.

• We are the first to show last-level cache attacks on ARM-based de-
vices that can be applied cross-core and also cross-CPU.

• Our developed cache-based covert channel is more than 250 times
faster than all existing covert channels on Android.

• We use these attacks to attack cryptographic implementations in
Java, to monitor the TrustZone’s cache activity and by spying on
user input.

• All techniques have been implemented in the form of a library called
libflush that allows to easily develop platform-independent cache
attacks for the x86 as well as the ARM platform and can be extended
for additional platforms quite easily. All of the described attacks
have been built on top of this library.

• ARM-based devices are also vulnerable to the rowhammer bug and
bit flips can be triggered in a reliable way.

1.4 Test devices

In this section, we want to describe the test devices as listed in Table 1.1,
that we have used to demonstrate the attacks presented in Chapter 4.

The OnePlus One uses a Snapdragon 801 SoC with a Krait 400 CPU that
is an ARMv7-A CPU with a 4-way 2 × 16 KB L1 cache and a non-inclusive

Table 1.1: Test devices used in this thesis.

Device System
on Chip CPU (cores) L1 caches L2 cache Inclusiveness

OnePlus
One

Qualcomm
Snapdragon
801

Krait 400
(2)
2.5 GHz

2× 16 KB,
4-way, 64
sets

2 048 KB,
8-way, 2 048
sets

non-inclusive

Alcatel
One
Touch
Pop 2

Qualcomm
Snapdragon
410

Cortex-
A53 (4)
1.2 GHz

4× 32 KB,
4-way,
128 sets

512 KB,
16-way, 512
sets

instruction-
inclusive,
data-non-
inclusive

Cortex-
A53 (4)

4× 32 KB, 256 KB, instruction-
inclusive,

Samsung Samsung
Exynos

1.5 GHz 4-way,
128 sets

16-way, 256
sets

data-non-
inclusive

Galaxy
S6

7 Octa
7420

Cortex-
A57 (4)

4× 32 KB, 2 048 KB, instruction-non-
inclusive,

2.1 GHz 2-way,
256 sets

16-way,
2 048 sets

data-inclusive

shared 8-way 2 048 KB L2 cache.

The Alcatel One Touch Pop 2 uses a Snapdragon 410 SoC with a Cortex-
A53 ARMv8-A CPU. However, the stock Android ROM is compiled for the
ARMv7-A instruction set, and thus ARMv8-A instructions are not used.
It has a 4-way 4×32 KB L1 cache and a 16-way 512 KB L2 cache that is
inclusive on instruction side and non-inclusive on the data side.

The Samsung Galaxy S6 uses a Samsung Exynos 7 Octa 7420 SoC that has
two ARMv8-A CPU clusters and the big.LITTLE [6] technology. The first
CPU is a Cortex-A53 with a 4-way 4×32 KB L1 cache and a 16-way 256 KB
instruction-inclusive and data-non-inclusive L2 cache. The second CPU is
a Cortex-A57 with a 2-way 4× 32 KB L1 cache and a 16-way 2 048 KB L2
cache that is non-inclusive on instruction side and inclusive on the data
side.

1.5 Outline

The remainder of this thesis is structured as follows. Chapter 2 provides
background information on CPU caches, DRAM, and the rowhammer

bug. In addition, as discuss cache coherency and present different cache
attacks.

In Chapter 3 the techniques that are the building blocks of our attacks are
shown: The model of eviction and the identification of optimal eviction
strategies is described in Section 3.2. Different timing sources that can be
used to successfully mount cache attacks on devices where no dedicated
performance counter can be accessed are identified and evaluated in Sec-
tion 3.1.

Chapter 4 explains how the cache organization is defeated and demon-
strates powerful attack scenarios that can be performed using our find-
ings. We present and evaluate fast cross-core and cross-CPU covert chan-
nels on Android in Section 4.1. Section 4.2 demonstrates cache template
attacks on user input events. Attacks on cryptographic implementations
used in practice as well the possibility to observe cache activity of cryp-
tographic computations within the TrustZone are shown in Section 4.3.
In Section 4.4 we discuss different methods to induce the rowhammer bug
on ARM-based devices successfully and present our results and observa-
tions.

We discuss countermeasures in Chapter 5 and conclude and summarize
this thesis in Chapter 6.

Chapter 2

Background

In this chapter, we want to discuss the background information necessary
to understand cache attacks. In Section 2.1 we will give a deeper insight
into CPU caches, define their properties and show the difference between
Intel and ARM CPU caches. Section 2.2 will explain cache coherence pro-
tocols that guarantee that data is coherent in all caches on the system. The
concept of shared memory will be described in Section 2.3, and at last
in Section 2.4 various cache attack techniques will be discussed. In Sec-
tion 2.5.2 we will see that that it is possible to reverse-engineer the un-
documented DRAM mapping functions that can be used to find addresses
that are more suited for performing the rowhammer attack.

2.1 CPU caches

The performance of the CPU today does not only depend on its clock
frequency, but it is also influenced by its latency of instructions and inter-
actions with other devices. Since computer memory should be served as
fast as possible to the CPU, a memory hierarchy as shown in Figure 2.1
is employed as a solution to overcome the latency of system memory ac-
cesses. Frequently used data is buffered in multiple layers of fast and
small memories, so-called caches.

Since high-speed memory is expensive, the memory hierarchy is orga-
nized into multiple levels where each level that is closer to the CPU is

9

CPU Registers L1 Cache L2 Cache Memory Disk storage

Figure 2.1: Memory hierarchy

smaller, faster and more expensive. Accesses to the cache memory are
significantly quicker than those to the main memory.

CPU

Data Cache

Instruction Cache

Memory

(a) Harvard architecture

CPU Cache Memory

(b) Von Neumann architecture

Figure 2.2: The Harvard architecture and the Von Neumann architecture.

For performance reasons the first level cache (L1) is typically connected
directly to the core logic which fetches instructions and handles load and
store instructions. While a von-Neumann architecture, illustrated in Fig-
ure 2.2b, uses a single cache for instruction and data (unified cache), the
Harvard architecture, illustrated in Figure 2.2a, has two separate buses
for instruction and data. Therefore, it consists of two caches, an instruc-
tion cache (I-Cache) and a data cache (D-Cache) which allows transfers to
be performed simultaneously on both buses and therefore increases the
overall performance and allows larger L1 caches.

A program tends to reuse the same addresses over time repeatedly (tem-
poral locality) and addresses that are near to each other (spatial locality)
are likely used as well. E.g., if a program uses a loop, the same code gets
executed over and over again.

Thus, the goal is to buffer code and data, that is often used, in faster mem-
ory making subsequent accesses quicker and therefore the program exe-
cution significantly faster. However, this is also a disadvantage that does
not exist in a core without caches: The execution time can vary widely, de-
pending on which pieces of codes are cached. This could lead to a problem
in real-time systems that expect strongly deterministic behaviour [60].

The cache only holds a subset of the contents of the main memory. Thus,
it must store both the address of the item in the main memory as well
as the associated data. When the core wants to read or write a particular
address, it will look into the cache. If a word is not found in the cache, the

word must be fetched from a lower level in the memory hierarchy which
could be another cache or the main memory and be loaded into the cache
before continuing. For efficiency reasons multiple words, further called
cache line or block, are moved at the same time, because they are likely
to be needed due to spatial locality such that access times for subsequent
loads and stores are reduced. Each cache block contains a tag to indicate
which memory address it corresponds to.

2.1.1 Direct-mapped cache

There are different ways to implement a cache where the simplest one is
a direct-mapped cache. In a direct-mapped cache, each entry in the main
memory can only go to one location in the cache which yields to the result
that many addresses will map to the same cache location.

0 19 20 25 26 31

Tag Index Offset

Valid Tag Data

0

1

2

3

4

5

6

7

. . .

128

=

∧ Hit Data

Figure 2.3: Direct-Mapped Cache

Figure 2.3 illustrates a 4KB direct-mapped cache with 128 locations and 64-
byte line size. The cache controller will use 6 bits (26 = 64) of the address
as the offset to select a word within the cache line and 7 bits to determine
the location index to which the address is mapped to. The remaining 19
bits (32 − 7 bits (index) - 6 bits (block offset)) will be stored as the tag
value. An additional bit is used to determine if the content of the entry is
valid.

0 18 19 25 26 31

Tag Index Offset

Figure 2.4: Direct-Mapped Cache Address

To look up a particular address in the cache the index bits of the address
are extracted, and the tag value that is associated with that line in the
cache is compared to the tag value of the address. If they are equal, and
the valid bit in said cache line is set, it is a cache hit. Using the offset
portion of the address, the relevant word of the cache line data can be
extracted and used. However, if the valid bit is not set or the tag in the
cache line differs from the one of the address, a cache miss happens, and
the cache line has to be replaced by data from the requested address.

2.1.2 Set-associative caches

If the replacement policy can choose any entry in the cache to hold the
data, the cache is called fully associative. Modern caches are organized in
sets of cache lines, which is also known as set-associative caches. If one
copy can go to any of N places in the cache, it is called N-way associa-
tive. Thus, each memory address maps to one of these cache sets and
memory addresses that map to the same cache set are called congruent.
Congruent addresses compete for cache lines within the same set where
the previously described replacement policy needs to decide which line
will be replaced.

For illustration purposes, we take a look at the L2 cache of the Alcatel One
Touch Pop 2, a phone used in experiments for this thesis. The L2 cache
has a capacity of 512KB and is a 16-way cache with a block size of 64 bytes.
Thus, the cache index requires

2Index =
Cache size

Line size× Set associativity
=

512KB
64× 16

= 512 = 29

or 9 bits to map each of the 512 sets.

0 16 17 25 26 31

Tag Index Offset

Valid Tag Data

0

1

2

3

4

5

6

7

. . .

512

Valid Tag Data

0

1

2

3

4

5

6

7

. . .

512

. . .

Valid Tag Data

0

1

2

3

4

5

6

7

. . .

512

=

∧ Hit Data

=

∧ Hit Data

=

∧ Hit Data

Figure 2.5: N-way associative cache

2.1.3 Translation Lookaside Buffer (TLB)

If a system uses virtual memory, the memory space is often split into fixed
sized segments called pages. Those are mapped from the virtual address
space to the physical address space via a page table. Protection flags are
included in each entry of said page table. With paged virtual memory
every memory access would take much longer since one memory access
is required to obtain the physical address and a second one is used to get
the data. To improve on this issue, the principle of locality is used. As de-
scribed previously, memory accesses have the property of locality. Thus,
also the address translations have locality. If the address translations are
kept in a particular cache, then a memory access will rarely require a sec-
ond access for the translation. This cache is called Translation Lookaside
Buffer (TLB) and holds the virtual and physical address. If the requested
address is present in the TLB, it is referred to as a TLB-Hit. If the requested
address is not present in the TLB, it is called a TLB-Miss, and a page table
structure is walked in the main memory to perform the translation.

2.1.4 Cache-replacement policy

When the cache is full and a cache miss occurs, buffered code and data
must be evicted from the cache to make room for new cache entries. The
heuristic that is used to decide which entry to evict is called replacement
policy. The replacement policy has to decide which existing cache entry
is least likely to be used in the near future. Least-Recently Used (LRU)

is a replacement policy that replaces the least recently used cache en-
try. ARM processors use a pseudo-LRU replacement policy for the L1
cache. Two different cache replacement policies, namely round-robin and
pseudo-random replacement policy, can be used for the last-level cache.
However, due to performance reasons only the pseudo-random replace-
ment policy is used in practice. We will refer to the following cache-
replacement policies throughout this work:

Least-recently-used replacement policy
The least recently used cache entry will be replaced.

Round-Robin replacement policy
A very simple replacement policy that will replace the first entry that
has been loaded into the cache. The next replacement will evict the
second entry that has been loaded etc.

Pseudo-random replacement policy
A random cache entry will be selected and evicted based on a pseudo-
random number generator.

2.1.5 Virtual and physical tags and indexes

CPU caches can be virtually indexed and physically indexed and, thus, de-
rive the index from the virtual or physical address respectively. Virtually
indexed caches are faster in general because they do not require virtual
to physical address translation before the cache lookup. Using the virtual
address can lead to the situation that the same physical address is cached
in different cache lines. Again, this reduces the performance. To uniquely
identify the actual address that is cached within a specific line, the tag is
used. This tag can also be based on the virtual or physical address. The
advantages and disadvantages of the various possibilities are as follows:

VIVT - virtually indexed, virtually tagged
The virtual address is used for both, the index and the tag, which
improves performance since no address translation is needed. How-
ever, the virtual tag is not unique and shared memory may be held
more than once in the cache.

PIPT - physically indexed, physically tagged

The physical address is used for both, the index and the tag. This
method is slower since the virtual address has to be looked up in the
TLB. However, shared memory is only held once in the cache.

PIVT - physically indexed, virtually tagged
The physical address is used for the index, and the virtual address
is used for the tag. This combination has no benefit since the ad-
dress needs to be translated, the virtual tag is not unique and shared
memory still can be held more than once in the cache.

VIPT - virtually indexed, physically tagged
The virtual address is used for the index, and the physical address
is used for the tag. The advantage of this combination compared to
PIPT is the lower latency since the index can be looked up in parallel
to the TLB translation. However, the tag can not be compared until
the physical address is available.

2.1.6 Inclusiveness

CPUs use multiple levels of caches where levels closer to the CPU are usu-
ally faster and smaller than the higher levels. As illustrated in Figure 2.6
the Alcatel One Touch Pop 2 employs a 4-way 32KB L1 cache with 128 sets
and a 16-way 512KB L2 cache with 512 sets. A modified Harvard archi-
tecture is used such that there are separate L1 caches for instructions and
data using the same address space. While each of the four cores has their
private L1 cache, the last level (L2) cache is shared amongst all cores.

Core 0

L1I L1D

Core 1

L1I L1D

Core 2

L1I L1D

Core 3

L1I L1D

L2 Cache

Figure 2.6: Cache hierarchy on the Alcatel One Touch Pop 2

If a word is read from the cache, the data in the cache will be identical
to the one in the main memory. However, when the core executes a store

instruction, a cache lookup to the address that is written to is performed.
If a cache hit occurs, there are two possible policies:

Write-back policy
With the write-back policy, writes are performed only on the cache
and not to the main memory which means that cache lines and the
main memory can contain different data. To mark the cache lines
with the newer data, an associated dirty bit is used that is set when
a write happens that updates the cache but not the main memory. If
the replacement policy evicts a cache line where the dirty bit is set,
it is written out to the main memory.

Write-through policy
With the write-through policy, writes are performed to both the cache
and the main memory which means that they are kept coherent.
Since there are more writes to the main memory, this policy is slower
than the write-back policy.

If the memory hierarchy consists of multiple levels of caches, some design
decisions have to be defined with respect to which cache levels hold copies
of the data.

Inclusive cache
A higher-level cache is called inclusive with regard to the lower-level
cache if all cache lines from the lower-level cache are also stored in
the higher-level cache.

Exclusive cache
Caches are called exclusive if a cache line can only be kept in one of
two cache levels.

Non-inclusive cache
If a cache is neither inclusive nor exclusive, it is called non-inclusive.

While modern Intel CPUs have inclusive last-level caches, and AMD CPUs
have exclusive last-level caches, most ARM CPUs have non-inclusive last
level caches. However, with the release of ARM Cortex-A53/Cortex-A57
CPUs an inclusive last-level cache is used. E.g., the ARM Cortex-A53 is
inclusive on the instruction side and exclusive on the data side.

2.1.7 Invalidating and cleaning the cache

It can be required to clean and invalidate the memory in the cache when
the content of external memory has been changed, and stale data should
be removed from the cache.

2.1.7.1 Intel

The Intel x86 architecture provides the clflush instruction that invalidates
the cache line containing the passed address from all levels of the cache
hierarchy (data and instruction). If a line at any level of the hierarchy
is dirty, it is written back to memory before invalidation [31]. With the
6th generation of Intel CPUs, the clflushopt instruction has been intro-
duced which has a higher throughput than the clflush instruction. Both
instructions are not privileged and thus available to the userspace [31].

2.1.7.2 ARM

ARM employs cache invalidate and cache clean operations that can be per-
formed by cache set, or way, or virtual address. Furthermore, they are only
available to the privileged modes and cannot be executed in userspace. In-
validate and clean are defined as follows [5]:

Invalidate
If a cache line is invalidated, it is cleared of its data by clearing the
valid bit of the cache line. However, if the data in the cache-line
has been modified, one should not only invalidate it, because the
modified data would be lost as it is not written back.

Clean
If a cache line is cleaned, the contents of the dirty cache line are writ-
ten out to main memory, and the dirty bit is cleared, which makes
the contents of the cache and the main memory coherent. This is
only applicable if the write-back policy is used.

If the cache invalidates and cache clean operations are performed by the
cache set or way, they are executed on a specified level of the cache. In con-

trast, operations that use a virtual address are defined by two conceptual
points [49]:

Point of Coherency (PoC)
The point at which all blocks, e.g., cores or DMA engines, that can
access the memory is guaranteed to see the same copy of the address
is called Point of Coherency (PoC). Commonly, this will be the main
external system memory.

Point of Unification (PoU)
The point at which the instruction cache and the data cache of the
core are guaranteed to see the same copy of the address is called
Point of Unification (PoU). For example, a unified level 2 cache would
be the PoU in a system with a modified Harvard level 1 cache and
a Translation Lookaside Buffer (TLB). The main memory will be the
PoU if there is no external cache present.

In contrast to the ARMv7 architecture, the ARMv8 architecture defines
the SCTLR EL1 register that contains a bit described as UCI. If this bit is set,
userspace access is enabled for the following four instructions [49]:

Instruction Description

DC CVAU Data or Unified Cache line Clean by VA to PoU
DC CIVAC Data or Unified Cache line Clean and Invalidate by VA to PoC
DC CVAC Data or Unified Cache line Clean by VA to PoC
IC IVAU Instruction Cache line Invalidate by VA to PoU

Table 2.1: Instructions that can be accessed from userspace if the SCTLR EL1.UCI bit is
set.

The reset value of the SCTLR EL1.UCI is architecturally unknown. How-
ever, experiments show that on the Samsung Galaxy S6 it is set by default.
Thus, the possibility to flush the cache from userspace is given without
the need of a kernel module that sets this bit in privileged mode.

2.2 Cache coherence

Modern systems implement shared memory in hardware allowing each
core of the processor to read and write in a single shared address space.

This enables part of applications to run simultaneously on different cores
working on the same memory. To make sure that multiple cached copies of
data that reside in different cores are up-to-date, so-called cache coherence
protocols are defined [74].

Core 0

Cache
x:1

Core 1

Cache
x:1

Memoryx:1

1

2

3

x=34

x=?

Figure 2.7: Example cache coherence problem. x is a location in the main memory. In step
1 the first processor reads the value of x and in step 2 the second processor does the same.
In step 3 the second processor sets x to a new value, namely 3. If, as illustrated in step
4, the first processor re-accesses the value of x again, it would read a stale value out of its
cache.

Figure 2.7 illustrates the necessity of cache coherence and shows two pro-
cessors with caches connected by a bus to the main memory: x represents
an arbitrary location in the memory with the value 1 that is read and writ-
ten to by both processors. In the first step, the first processor reads the
value out of the main memory into its cache. In the second step, the sec-
ond processor does the same, before it updates its copy of x to the new
value 3 in step 3. In step 4 the first processor accesses its copy of x again,
which is now stale and neither it nor the main memory contains the up-
to-date value of x, namely 3.

Such coherence problems can even occur in single processor systems when
I/O operations are performed by Direct Memory Access (DMA) devices
that move data between the main memory and peripherals [15]. E.g., if
such a device would sit on the bus of Figure 2.7 and would access the
memory location x of the main memory at step 4, it would read a stale
value, because the most up-to-date value is still in the cache of the sec-
ond processor. Similarly, if such a device would write to location x, both
processors would read stale values from their caches.

There are three mechanisms that maintain coherency between the caches
[5]:

Disabling caching
The most simple mechanism is to disable the caching mechanism.
However, this brings also the highest performance loss, because ev-
ery data access from every core has to be fetched from main memory
impacting both power and performance.

Software-managed coherency
The historical solution to manage coherency between the caches and
the main memory is software-managed coherency. Software must
clean dirty data and invalidate old data to enable sharing with other
processes.

Hardware-managed coherency
The most efficient solution is hardware managed coherency. It will
guarantee that any data that is shared between cores will always be
up-to-date in every core. While on the one hand, it adds complexity,
on the other hand, it will greatly simplify the software and enable
coherency to software applications that do not implement it them-
selves.

Since reads and writes of shared data occur in a high frequency in multi-
processor systems, disabling the cache or invoking the operating system
on all references to shared memory is no option. Therefore, cache coher-
ence should be solved in hardware.

One approach are Directory-based cache coherence protocols in which the
sharing status of a particular cache line is kept in one location called direc-
tory [74] and, thus, everything that is shared is kept at one central place.
However, solutions based on bus snooping will be discussed in the follow-
ing section in more detail as they are employed on ARM-based devices.

2.2.1 Bus snooping

Cache coherency problems can be tackled in a simple and elegant way
using the very nature of the bus. A bus is a set of wires that connects
several devices. Each device can observe every action on the bus, e.g.,

every read and write to the bus. If a processor issues a request to its cache,
the cache controller examines the current state of the cache. Depending
on the state it takes a suitable action, e.g., a bus transaction to access
memory. As illustrated in Figure 2.8 the coherence property is preserved
as every cache controller snoops on the bus, thereby monitoring occurring
transactions and taking action if such transaction is pertained to it, e.g., a
write to a memory block of which it has its own copy in the cache [20]. The
coherence is managed at the granularity of a cache line and, thus, either
an entire cache line is valid or invalid.

Core 0

Cache

Core 1

Cache

Memory

Cache-memory transactionBus snoop

Figure 2.8: Bus snoop - Core 1 performs a memory transaction while Core 0 snoops on on
the bus to react if the performed transaction is relevant to it.

If a cache that snoops on the bus owns a copy of the cache line, it has
two options: The cache can either invalidate its copy or update it with the
new data directly. Protocols that invalidate other cache copies are called
invalidation-based protocols and protocols that update their cache copies are
called update-based protocols [15]. In both cases the processor will get the
most recent value either through a cache miss or because the updated
value will be in the cache already.

2.2.1.1 Bus snooping on ARM

On ARM Cortex-A systems a Snoop Control Unit (SCU) connects up to
four processors to the memory system through the Advanced eXtensible
Interface Bus (AXI) interface [5]. It maintains data cache coherency be-
tween the cores and arbitrates L2 requests from the CPU cores and the

Core 0

L1
Instruction

Cache

L1
Data

Cache

Core 1

L1
Instruction

Cache

L1
Data

Cache

Core 2

L1
Instruction

Cache

L1
Data

Cache

Core 3

L1
Instruction

Cache

L1
Data

Cache

Snoop Control Unit

L2 Cache External coherent masters

Main AXI ACP

Figure 2.9: Snoop Control Unit.

Accelerator Coherency Port (ACP). The ACP port can be used to connect
a DMA engine or a non-cached coherent master. Figure 2.9 illustrates the
SCU of an ARM Cortex-A system.

Modern smartphones like the Samsung Galaxy S6 use multiple CPUs and
employ ARMs big.LITTLE power management technology where high-
performance CPU cores are combined with the low-power CPUs [6]. Fig-
ure 2.10 shows a simplified illustration of one Cortex A-57 CPU cluster
and one Cortex-A53 CPU cluster that are connected via a ARM CoreLink
CCI-400 Cache Coherent Interconnect [8]. This interconnect enables full
cache coherence between two CPU clusters as well as I/O coherency for
devices such as the GPU.

Cortex A-57

Core 0 Core 1

Core 2 Core 3

L2 Cache

Cortex A-53

Core 0 Core 1

Core 2 Core 3

L2 Cache

Mali-T628 GPU

Shader Core Shader Core Shader Core

Shader Core Shader Core Shader Core

L2 Cache

CoreLink CCI-400

CoreLink DMC-400 Peripheral Interconnect

Figure 2.10: Simplified illustration of ARMs big.LITTLE technology that connects high-
performance CPU cores with the low-power CPU cores and uses an interconnect to estab-
lish system wide hardware coherency and virtual memory management.

2.2.2 Coherence protocols

In this subsection, we will discuss snoopy cache coherence protocols in
general before taking a more detailed look at the MESI protocol in Sec-
tion 2.2.2.2 and the MOESI protocol in Section 2.2.2.3 as they are used on
the ARM platform. The MOESI protocol is used in the ARM CoreLink
CCI-400 [8] to provide cache coherence between two multi-core clusters,
namely the ARM Cortex-A53 and the ARM Cortex-A57. While the Cortex
A53 uses the MOESI protocol itself to maintain data coherency between
multiple cores [7], the Cortex A-57 uses a hybrid form of the MESI and
the MOESI protocol [4].

In general, a snoopy cache coherency protocol consists out of bus trans-
actions and a cache policy. Bus transactions are needed for the communi-
cation of the devices on the bus and consist of three phases: In the first
phase, called the arbitration phase, devices that want to send data over
the bus assert their bus request. Then the bus arbiter selects one of the
requesting devices by asserting its grant signal. The selected device places
the command, e.g., read or write, on the command lines and the associ-
ated address on the address lines. All other devices on the bus will read
the address and the one responsible for it will respond.

The cache policy is defined as a finite state machine that can be viewed
as a cache line state transition diagram. For a single processor system with a
write-through cache, the cache policy consists only of two states, namely
valid and invalid [29]. The initial state of each cache line is invalid. If a
processor generates a cache miss, a bus transaction to load the line from
memory is generated, and the cache line is then marked as valid. Because
the cache is write-through, a bus transaction to update the memory is
generated if a write occurs. Additionally, if the cache line is marked as
valid in the cache, it is updated as well. Otherwise, writes do not change
the state of the cache line. However, if a write-back cache is in place an
additional state is required to indicate a dirty cache line [15].

If the system has multiple processors, each cache line has a state in each
cache of the system that also changes accordingly to the state transition
diagram. Hence, we describe a cache line’s state as a vector of n states
where n is the number of caches [15]. The state is managed by n finite

state machines implemented by each of the cache’s controller. The state
transition diagram is the same for all cache lines and all caches. However,
the current states of a cache line may differ from cache to cache.

2.2.2.1 Snoopy cache coherence protocols

In a snoopy cache coherence protocol, each cache controller has not only
to consider the memory requests issued by the processor itself, but also
all transactions from other caches that have been snooped from the bus.
For each input the controller received, it has to update the state of each
corresponding cache line according to its current state and the input. A
snoopy cache coherence protocol is defined by [15]:

• A set of states associated with cache lines in the cache.

• A state transition diagram that takes the current state as well as the
processor requests or snooped bus transactions as the input and gen-
erates a new state as the output.

• Actual actions associated with each state transition.

V

I

PrRd/- PrWr/BusWr

BusWr/-

PrWr/BusWr

PrRd / BusRd

Figure 2.11: A snoopy coherence protocol for a multiprocessor with write-through no-
write-allocate caches [29].

For example Figure 2.11 illustrates the transition state diagram for a write-
through cache [29]. Each cache line has only two possible states, Invalid (I)
and valid (V), and each transition is labelled with the input that has caused
the transition as well as the output that is generated by the transition. The

processor can issue two types of requests: A processor read (PrRd) and
a processor write (PrWr) to a memory block that can be in the cache or
not. When the processor tries to read a memory block that is not in the
cache, a Bus Read (BusRd) transaction is generated. If the transaction is
complete, the new state is the valid state. When the processor issues a
write to a location, a bus transaction is generated as well, but the state
does not change. However, the key difference of this protocol compared
to a single processor state diagram is that whenever a write transaction
(BusWr) is read from the bus, the cache controller marks its copy as invalid.
Therefore, if any cache controller generates a write for a cache line on the
bus, all other cache controllers will invalidate their copies making them
coherent.

2.2.2.2 MESI protocol

The Modified Exclusive Shared Invalid (MESI) protocol is the most com-
mon protocol that is used for write-back caches and has been introduced
by Papamarcos and Patel [65] in 1984. The protocol uses four different
states for each cache line which are described as following:

M (Modified)
The modified state marks the cache line as the most up-to-date ver-
sion and forbids that other copies exist within other caches. Thus,
the content of the cache line is no longer coherent with the main
memory.

E (Exclusive)
The exclusive state is set if the cache line is present in this cache and
when it is coherent with the main memory. No other copies are
allowed to exist in other caches. Thus, it is exclusive to this cache.

S (Shared)
The shared state is almost the same as the exclusive attribute. How-
ever, copies of the cache line can also exist in other caches.

I (Invalid)
The invalid state marks the cache line as invalid.

Figure 2.12 illustrates the MESI protocol: In addition to the previous exam-
ple the bus allows an additional Bus Read Exclusive (BusRdX) transaction
where a cache controller can ask for an exclusive copy that it wants to
modify. It is important to know that the data is supplied by the memory
system and this may not be only the main memory but could also be an-
other cache. However, after the data has been transmitted, all other caches
need to invalidate their corresponding cache line. This transaction is gen-
erated by a write of a processor to a cache line that is either not in the
cache at all or in the modified state.

If a memory block is read the first time by a processor and a valid copy of
this memory block exists in any other cache, the state of the corresponding
cache line will be the S (shared) state. Otherwise, if there no valid copy
exists, it will have the E (exclusive) state.

If a memory block is in the E (exclusive) state and it is written by the
processor, its state can directly change to the M (modified) state since it is
the only copy in the system. If a shared memory block is written, the state
changes to the M as well. However, a BusRdX transaction is created and,
thus, all copies of the cache line are invalidated in the other caches.

If a cache would obtain a copy of an E (exclusive) block of another cache,
the state of the exclusive block would change to the S (shared) state since
two unmodified copies of the same data exist in multiple caches. To make
this possible, the bus provides an additional signal, the shared signal, so
that controllers can determine on a BusRd if any other cache holds the data
already [15]. In the address phase of the transaction, all caches will check
if they have a copy of the requested data and if so, assert the signal S.
Accordingly BusRd(S) means that if a bus read transaction has occurred,
the signal S has been asserted and ¬S means that the signal has not been
asserted. If a block is in the M (modified) state and a BusRd has been
observed; the block needs to be flushed on the bus so that other controllers
are notified of the changes that have been made.

M

E

S

I

PrRd/- PrWr/-

BusRdX/Flush

BusRd/Flush

PrRd/-

PrWr/-

BusRdX/Flush

BusRd/Flush

PrRd/-

PrWr/BusRdX

BusRdX/Flush

PrWr/BusRdX

PrRd/- BusRd(¬S)

PrRd/- BusRd(S)

Figure 2.12: Modified Exclusive Shared Invalid (MESI) protocol state diagram. The
transitions are labelled as action observed/action performed: PrRd (Read request from the
processor), PrWr (Write request from the processor), BusRd (Read request from the bus, S
denotes shared), BusRdX (Exclusive read request from the bus with intent to modify).

2.2.2.3 MOESI protocol

Many coherence protocols use the five state Modified Owned Exclusive
Shared Invalid (MOESI) model that has been introduced by Sweazey and
Smith in 1986 [78]. The states that refer to attributes that are assigned by
the Snoop Control Unit (SCU) to each line in the cache [5] are based on
the MESI protocol but have been extended by one additional state:

O (Owned)
The owned attribute is used if the cache line has been modified and
might exist in other caches as well. While only one core can hold the
owned state and, thus, the most recent and therefore correct copy of
the data. Other cores can only hold the data in the shared state. The
cache having the owned state has the exclusive rights to change the
data.

M

O

E

S

I

PrRd/- PrWr/-

BusRdX/Flush

BusRd/Flush
PrRd/- BusRd/Flush

PrWr/BusUpgr

BusUpgr/-

PrRd/-

PrWr/-

BusRdX/Flush

BusRd/Flush

PrRd/- BusRd/Flush

PrWr/BusUpgr

BusRdX/Flush BusUpgr/-

PrWr/BusRdX

PrRd/- BusRd(¬S)

PrRd/- BusRd(S)

Figure 2.13: Modified Owned Exclusive Shared Invalid (MOESI) protocol

The owned state allows a cache controller to provide a modified cache line
directly to another processor. Thus, the cache line has not be written back
to the main memory first. This property plays an important role in our
attacks since the communication latency between CPUs is lower than to
the main memory.

Figure 2.13 illustrates the MOESI protocol that extends the MESI proto-
col with the owned state: If a BusRdX occurs, the memory controller can
not distinguish if the requesting cache already has a copy of the memory
block and just needs to update its state or if it has no copy of the block

and needs to request it from the main memory. In the first case, the mem-
ory controller would unnecessarily fetch a block from the main memory
that is in fact not needed. To solve this issue, a new bus request called
bus upgrade (BusUpgr) is introduced. If a cache has already a valid copy
of the block, it will issue a BusUpgr instead of a BusRdX and the memory
controller will not act on this request [79]. If a cache block is in the O

(owned) state, the BusUpgr invalidates all other cached copies if the pro-
cessor issues a write. If the processor issues a read, no action must be
taken. However, if a read occurs on the bus, the cache controller must
notify the other caches of the changes.

2.3 Shared memory

Shared memory is a memory that can be accessed by multiple programs
to either provide communication between them or to avoid redundant
copies of the memory. While it provides an efficient way to pass data
between programs that might run on a single processor or across multiple
processors, we focus in this section on conserving memory space using
shared libraries.

A shared library or shared object is a file that is intended to be shared
by other shared objects or executable files. This gives the opportunity to
provide the same functionality to multiple programs, e.g., parsing of a
file or rendering a website, while there only exists a single copy of the
code. In addition, this provides the functionality to programs for loading
executable code into memory during run time and providing a plugin like
systems instead of being linked into a single executable. Shared libraries
reduce the memory footprint and enhance the speed by lowering cache
contention as shared code is kept only once in the main memory, the CPU
caches as well as in address translation units.

The operating system implements shared memory by mapping the same
physical memory into the virtual address space of each application that
uses it as illustrated in Figure 2.14. When self-modifying code or just-in-
time (JIT) compiled code is used, this advantage can not be used in gen-
eral. Usually, Android applications are written in Java and, thus, would

P1: Virtual memory Physical memory P2: Virtual memory

Figure 2.14: The operating systems maps the same physical memory the virtual address
space of both, process 1 (P1) and process 2 (P2).

incur just-in-time compilation. Typically, this code is not shared. However,
there have been several approaches to improve the performance. First with
optimized virtual machine binaries and more recently with native code
binaries. The Android Runtime Engine (ART) [2] compiles those native
binaries from Java byte code, allowing them to be shared.

Since it is irrelevant for this memory sharing mechanism how a certain
file has been opened or accessed, a binary can be mapped as a shared
read-only memory using system calls like mmap. Therefore, it is possible
for another application to map code or data of a shared library or any
accessible binary into its address space even if the application is statically
linked.

Content-based page deduplication is another form of shared memory where
the operating system scans the entire system memory for identical physi-
cal pages and merges them to a single physical page which is then marked
as copy-on-write. This mechanism can enhance the system performance
where system memory is limited such as servers with many virtual ma-
chines or smartphones.

On both, Linux and Android, processes can retrieve information on vir-
tual and physical address mappings using operating-system services like
/proc/<pid>/maps or /proc/<pid>/pagemap. While Linux has gradually

restricted unprivileged access to these resources, these patches have not
yet been applied to Android stock kernels. Thus, a process can retrieve
a list of all loaded shared-object files and the program binary of any pro-
cess and even perform virtual to physical address translation without any
privileges.

2.4 Cache Attacks

Cache side channel attacks exploit information leakage caused by micro-
architectural time differences when data is loaded from the cache rather
than the main memory. Since data that resists in the cache can be accessed
much faster than data that has to be loaded from the main memory, one
can whether decide if a specific portion of data resides in the cache and
thus, implying that it has been accessed recently. The resulting informa-
tion leakage has a potential risk, especially for cryptographic algorithms,
which leads to the compromise of secret keys.

In 1996 Kocher [43] described that by carefully measuring the amount of
time required to perform private key operations, one might be able to
break various cryptographic systems. He has been the first to mention
that the CPU cache can be a possible information leak in ciphers that do
not use data identically in every encryption. Four years later Kelsey et al.
[40] discussed the notion of side-channel cryptanalysis and concluded that
attacks based on cache hit ratio in ciphers using large S-boxes like Blow-
fish [71] and CAST [14] are possible.

Based on these theoretical observations more practical attacks against Data
Encryption Standard (DES) have been proposed by Page [64] and also by
Tsunoo et al. [82]. With the standardization of Advanced Encryption Stan-
dard (AES) [16], cache attacks against this block cipher have been investi-
gated as well. Bernstein [9] presented the well-known cache-timing attack
against AES that has further been analyzed by Neve [57] and Neve et al.
[59].

In this section, we will discuss and describe various attack types that
have been shown on the x86 architecture in their chronological order:
Evict+Time, Prime+Probe, Flush+Reload, Evict+Reload and Flush+Flush.

2.4.1 Evict+Time

In 2005 Percival [66] and Osvik et al. [63] proposed more fine-grained ex-
ploitations of memory accesses to the CPU cache. In particular, Osvik et al.
formalized two concepts, namely Evict+Time and Prime+Probe that we will
discuss in this and the following section. The basic idea is to determine
which specific cache sets have been accessed by a victim program.

Algorithm 1 Evict+Time

1: Measure execution time of victim program.
2: Evict a specific cache set.
3: Measure execution time of victim program again.

The basic approach, outlined in Algorithm 1, is to determine which cache
set is used during the victim’s computations. At first, the execution time
of the victim program is measured. In the second step, a specific cache
set is evicted before the program is measured a second time in the third
step. By means of the timing difference between the two measurements,
one can deduce how much the specific cache set is used while the victim’s
program is running.

Osvik et al. [63] and Tromer et al. [81] demonstrated with Evict+Time a
powerful type of attack against AES on OpenSSL implementations that
requires neither knowledge of the plaintext nor the ciphertext.

2.4.2 Prime+Probe

The second technique that Osvik et al. [63] described is called Prime+Probe.
Similar as Evict+Time described in Section 2.4.1 it allows an adversary to
determine which cache set is used during the victim’s computations.

Algorithm 2 Prime+Probe

1: Occupy specific cache sets.
2: Schedule victim program.
3: Determine which cache sets are still occupied.

Algorithm 2 outlines the idea behind this approach: In the first step, one
or multiple specific cache sets are occupied with memory owned by the

adversary. In the second step the victim’s program is scheduled, in the
third step, the adversary determines which and in what amount he is still
occupying the cache set. This can be done by measuring the execution
time for accessing the addresses the adversary used to fill the cache set in
the first step.

Victim address space Cache Attacker address space

(a) Prime: Occupy the cache set

Victim address space Cache Attacker address space

Load data

Load data

(b) Schedule the victim’s program that accesses
data in the same cache set.

Victim address space Cache Attacker address space

Fast access

Slow access

(c) Probe: Determine cache set occupation.

Figure 2.15: Illustration of the Prime+Probe attack by means of a 4-way (columns) cache
with 8 sets (rows). In step a, the adversary occupies the target cache set represented by
the green color. In step b, the victim’s program is scheduled which also loads memory in
the cache represented by the red color. In step c, the adversary determines how much he
still occupies the cache set by loading the previously used addresses into the cache again.

Figure 2.15 illustrates the attack in a more detailed manner: The grid rep-
resents a 8-way (columns) cache with 6 sets (rows), and the attacker per-
forms the attack on the fourth cache set. In step a, the attacker accesses
congruent addresses that all map to the target cache set, thus, it is filled
with memory that the attacker owns. This is represented by the green
color.

In step b, the victim’s program is scheduled and consequently filling the
cache sets with addresses that it used, pictured by the blue color. If the
program uses addresses that map to the same cache set as the attacker’s
addresses, it will, therefore, evict addresses that the attacker used to oc-
cupy the cache set.

If now, in step c, the attacker reaccesses the used addresses, he can deter-
mine how much he still occupies the cache set by measuring the access

times of those addresses. If an address in the cache set has been replaced
by the victim’s program, it has to be loaded from the main memory. Thus
the access time is much higher than if the address has still been in the
cache. Due to the pseudo-random replacement policy, it might happen
that the access to one congruent address evicts a previously accessed ad-
dress from the attacker and thus it is possible that during the probing
phase false positives occur. Figure 2.16 shows measurements of the execu-
tion time it took to reaccess the addresses of two separate runs. It is easily
distinguishable if the victim has accessed a congruent address.

1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400
0

2,000

4,000

6,000

Execution time in cycles

N
um

be
r

of
ca

se
s

Victim access
No victim access

Figure 2.16: Histogram of Prime+Probe timings depending on whether the victim ac-
cesses congruent memory on the ARM Cortex-A53.

In 2006 Osvik et al. [63] and Tromer et al. [81] demonstrated a key recovery
attack on OpenSSL AES and Linux’s dm-crypt with this attack technique.
In 2015 Liu et al. [52] used Prime+Probe to mount a cross-core, cross-VM
covert channel and to attack ElGamal decryption in GnuPG. In the same
year, Irazoqui et al. [33] attack the OpenSSL AES implementation in the
cloud environment.

2.4.3 Flush+Reload

In 2011 Gullasch et al. [27] proposed the basic idea of using clflush to run
an efficient access-driven cache attack on AES. They utilize the clflush

instruction to evict the monitored memory locations from the cache and
then check if those locations have been loaded back into the cache after
the victim’s program executed a small number of instructions. Yarom and

Falkner [87] extended this idea after they observed that the clflush in-
struction evicts the cache line from all cache levels including the shared
Last-Level-Cache (LLC). They present the Flush+Reload attack which al-
lows the spy and the victim process to run on different cores of the CPU.

Victim address space Cache Attacker address space

cached cached

(a) Prime, Occupy the cache set

Victim address space Cache Attacker address space

flushes

(b) Prime, Occupy the cache set

Victim address space Cache Attacker address space

Load data

(c) Prime, Occupy the cache set

Victim address space Cache Attacker address space

Reload data

(d) Prime, Occupy the cache set

Figure 2.17: Illustration of the Flush+Reload attack by means of an 4-way (columns)
cache with 8 sets (rows). In step a, the target address is cached for both, the adversary
and the attacker. In step b, the attacker flushes the address out of the cache and in c, the
victim’s program is scheduled which loads the address back in the cache. In step d, the
adversary determines how much it takes to access the target address to decide if the victim
has accessed the address in the meantime.

Algorithm 3 Flush+Reload

1: Map binary (e.g., shared object) into address space.
2: Flush a cache line (code or data) from the cache.
3: Schedule the victim’s program.
4: Check if the corresponding cache line from step 2 has been loaded by

the victim’s program.

Algorithm 3 and Figure 2.17 summarize the Flush+Reload attack principle.
In the first step, the attacker needs to map a binary, which could be a
shared object or an executable, into his address space using a system call
like mmap. In the second step, the attacker flushes, utilizing the clflush

instruction, a cache line from the cache including the shared LLC. In the
third step the victim’s program is scheduled and in the third step the
cache line that has been flushed in the second step is accessed by the
attacker. The attacker measures the execution time that it takes to access
the address and decides upon that if the access has been loaded from the

cache or the main memory. Figure 2.18 illustrates the timing difference
between a cache hit and a cache miss. If the attacker measures a cache hit,
the victim’s program has accessed the cache line in the mean time.

0 200 400
0

1

2

·104

Measured access time

N
um

be
r

of
ac

ce
ss

es

Hit
Miss

(a) Flush+Reload on Samsung Galaxy S6.

0 200 400
0

1

2

3

4

·104

Measured access time
N

um
be

r
of

ac
ce

ss
es

Hit
Miss

(b) Flush+Reload on Intel x86.

Figure 2.18: Flush+Reload: Histogram of access times of addresses that are in the cache
and addresses that have been evicted with a flush instruction.

In contrast to Prime+Probe, Flush+Reload enables more fine-grained attacks
that have already been demonstrated against cryptographic algorithms.
Irazoqui et al. [35] demonstrate full-key recovery of AES implementations
in VMWare virtual machines. Yarom et al. [86] recover OpenSSL Elliptic
Curve Digital Signature Algorithm (ECDSA) nonces and thus the secret
key. In 2015 Gülmezoglu et al. [28] exploit a shared resource optimiza-
tion technique called memory deduplication to mount a powerful known-
ciphertext cross-VM attack on an OpenSSL implementation of AES. In the
same year, Irazoqui [36] use a Flush+Reload side channel to detect and dis-
tinguish different cryptographic libraries running on different virtual ma-
chines on the same computer. In addition, Irazoqui et al. [37] show a new
significantly more accurate covert channel to perform Lucky Thirteen [1]
on co-located virtual machines in the cloud.

In 2015 Gruss et al. [26] used the Flush+Reload technique to automatically
exploit cache-based side-channel information. Furthermore, they showed
that besides attacking cryptographic implementations, the attack could be
used to infer keystroke information as well. Thus, by exploiting the cache
side-channel, they were able to build a keylogger.

2.4.4 Evict+Reload

In 2015 Gruss et al. [26] introduced the Evict+Reload technique that uses
eviction in Flush+Reload instead of the flush instruction. While this attack
has no practical use on x86 CPUs since the clflush instruction is unpriv-
ileged, it can be used on ARM CPUs that do not provide a unprivileged
flush instruction.

To evict an address from the cache one has to fill the cache set with as
many congruent addresses such that the replacement policy decides to re-
place the target address. Depending on the replacement policy in place,
the number of addresses required and the access pattern, the way those
addresses are accessed can vary. If too few addresses are used or if they
are not accessed often enough, the eviction rate, the probability in which
an address will be evicted, can be too low. However, this matter is exhaus-
tively studied in Section 3.2.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

·104

Measured access time

N
um

be
r

of
ac

ce
ss

es

Hit
Miss

Figure 2.19: Evict+Reload: Histogram of access times of addresses that are in the cache
and addresses that have been evicted with an eviction strategy.

Figure 2.19 shows a histogram of memory accesses to addresses that have
been kept in the cache (Hit) and addresses that have been evicted by the
eviction strategy. The small peak of the Miss-measurements next in the
measured area where only cache hits occur points to an ineffective eviction
strategy. Thus, the used eviction strategy does not guarantee to evict the
target address all the time.

Gruss et al. [24] showed that with an effective and fast eviction strategy
it is possible to trigger bit flips in adjacent rows of DRAM modules by

repeatedly accessing a row of memory from JavaScript. Thus, the attack
shown by Seaborn [72] does not rely on the privileged x86 clflush in-
struction anymore.

2.4.5 Flush+Flush

Since the Flush+Reload and the Prime+Probe attack cause numerous cache
references and cache misses that can be monitored using hardware perfor-
mance counters and thus can subsequently be detected. Based on those
observations Gruss et al. [25] presented Flush+Flush that only depends
on the execution time of the flush instruction that varies depending on
whether the data is cached or not.

0 100 200 300 400 500 600 700 800
0

1

2

3
·104

Execution time in cycles

N
um

be
r

of
ca

se
s

Flush (address cached)
Flush (address not cached)

Figure 2.20: Histogram of the execution time of the flush operation on cached and not
cached addresses measured on the Samsung Galaxy S6.

The attack is basically the same as Flush+Reload. A binary or a shared ob-
ject file is mapped into the address space of the attacker. An address is
flushed from the cache, and the victim’s program is scheduled. However,
instead of the reloading step where the monitored address is accessed,
it is flushed again causing no cache misses compared to Flush+Reload or
Prime+Probe. Figure 2.20 shows that it is easily distinguishable if the ad-
dress has been cached or not.

Gruss et al. [25] used this attack technique to implement a powerful covert
channel that achieved a transmission rate almost seven times faster than
any previously published covert channels.

2.5 DRAM

DRAM chips are manufactured in different configurations, varying in their
capacity as well as in their bus width. An individual DRAM chip has only
a small capacity and therefore multiple chips are coupled together to form
a so-called DRAM rank. One DRAM module then consists out of one or
multiple ranks.

A single DRAM chip consists out of a two-dimensional array of DRAM
cells as illustrated in Figure 2.21a. Each single DRAM cell is made out of
a capacitor and an access transistor is shown in Figure 2.21b. The charged
state of the capacitor, either fully charged or fully discharged, represents
a binary data value. Each cell in the grid is connected to the neighbored
cell with a wire forming a horizontal wordline and a vertical bitline. If a
wordline of a row is raised to a high voltage, all access transistors in that
row are activated, thus, connecting all capacitors to their respective bitline.
By doing that the charge representing the data of the row is transferred to
the so-called row buffer.

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

row 9

row 10

Row buffer

(a) Rows of cells

bi
tl

in
e

wordline

(b) Single cell

Figure 2.21: Simplified view of a DRAM chip and a single DRAM cell

To access data in a memory bank the desired row needs to be opened at
first by raising the corresponding wordline. By that the row is connected
to all bitlines and the data is transferred into the row buffer. Then the data
in the row buffer is accessed and modified by reading or writing in the row
buffer. If data from a different row but in the same bank needs to be ac-

cessed, the current row needs to be closed by lowering the corresponding
wordline and the row buffer is cleared.

However, the charge stored in the capacitor of a DRAM cell is not persis-
tent because its charge can disperse. This means that after some time data
is lost. To avoid this, the cell’s charge must be refreshed by fully charging
or discharging it. DRAM specifications require that all cells in a rank are
refreshed within a certain amount of time, the so-called refresh rate.

Modern mobile phones are equipped with low power versions of DDR3 or
DDR4 memory, namely Low Power Double Data Rate (LPDDR) DRAM.
While older generations of the standard SDRAM required a supply volt-
age of 2.5V, it has been reduced on LPDDR to 1.8V or lower. In addition,
the power consumption has been reduced by temperature-compensated
refresh, where a lower refresh rate is required at low temperatures. How-
ever, with each generation, the transfer speed and internal fetch size have
been increased.

2.5.1 Rowhammer Bug

In 2014 Kim et al. [41] demonstrated that accessing specific memory loca-
tions in DRAM in a high repetition rate random bit flips can occur. Since
cells are getting smaller and smaller and are built closer together, distur-
bance errors that are caused by activating the row very often can change
the charge of the capacitor in a cell and therefore the data.

It has been shown that this behaviour can be exploited for privilege esca-
lation [72] by simple accessing two addresses that are in the same bank
but on different rows. In order to evict the address from the cache and to
access it again from main memory, the clflush instruction has been used
on x86 architecture. However, such bit flips can also be triggered using
eviction in JavaScript code that is loaded from a website [24] and therefore
removing the clflush instruction can not prevent attacks.

Table 2.2: DRAM mapping functions showing the bits responsible for the selected bank,
rank and channel.

Device Banks Ranks Channel

Samsung Galaxy S6 14, 15, 16 8 ⊕ 13 7 ⊕ 12
OnePlus One 13, 14, 15 10
LG Nexus 4 13, 14, 15 10
LG Nexus 5 13, 14, 15 10
Samsung Nexus 10 13, 14, 15 7

2.5.2 Reverse Engineering DRAM addressing

In order to hammer a certain memory location we need to find two ad-
dresses in the same bank but in different rows as the target address. Cer-
tain bits of the address are used to select the rank, channel and bank of the
memory location. However, these mapping functions are not documented.

In 2015 Pessl et al. [67] presented a way to fully automate the reverse en-
gineering of said functions by exploiting the fact that row conflicts lead
to higher memory access times. Their approach is to find addresses that
map to the same bank but a different row by repeatedly measuring the
access time of two random addresses. For some address pairs, the access
time is higher than for others meaning that they belong to different rows
but to the same bank. Subsequently, these addresses are then grouped
into sets having the same channel, DIMM, rank and bank. The identified
addresses are then used to reconstruct the addressing functions by gener-
ating all linear functions and applying them to all addresses of a randomly
selected set. Since the search space is small enough, a brute-force search
is sufficient.

Since no clflush function is available on the ARM platform and eviction
yielded unsatisfying results, we have developed a kernel module that has
been used to flush addresses using the privileged flush instruction from
userspace. Using this module, we have successfully reverse-engineered
the DRAM mapping functions for the Samsung Galaxy S6, the OnePlus
One, the LG Nexus 4, the LG Nexus 5 and the Samsung Nexus 10 as
shown in Table 2.2.

Chapter 3

Attack primitives

In this chapter, we discuss the challenge to obtain a high-resolution timing
source or a dedicated performance counter to distinguish between cache
hits and cache misses. Then we will take up on the challenge of find-
ing performant eviction strategies that can be used to evict individual
addresses from the cache when an unprivileged flush instruction is not
available.

3.1 Timing Measurements

In order to obtain high resolution timestamps for cache attacks on x86, the
unprivileged rdtsc instruction can be used. However, a similar instruction
is not provided by the ARMv7-A or ARMv8-A architecture. Rather, a
Performance Monitoring Unit (PMU) is used to monitor the activity of
the CPU. Section 3.1.1 shows how one of those performance counters
can be used to distinguish between cache hits and misses. However, the
performance counters of the PMU can not be accessed from userspace by
default and, thus, root privileges are required to make use of them.

For this reason, we search for alternative timing sources that do not require
any permissions or privileges. With each option we identified, we lower
the requirements of the running system. In Section 3.1.2 we make use of
an unprivileged system call, in Section 3.1.3 we use a POSIX function and

43

0 20 40 60 80 100 120 140 160 180 200 220 240
0

2

4

·104

Measured access time

N
um

be
r

of
ac

ce
ss

es

Hit
Miss

Figure 3.1: Histogram of cache hits and misses on the Alcatel One Touch Pop 2 using the
Performance Monitor Cycle Count Register (PMCCNTR).

in Section 3.1.4 we implement a dedicated thread timer. Additionally, we
show that all of those methods can be used to perform cache attacks.

3.1.1 Performance Interface

While x86 CPUs have the unprivileged rdtsc [31] function to obtain a
sub-nanosecond timestamp, a similar function does not exist on neither
the ARMv7-A nor the ARMv8-A architecture. However, a Performance
Monitoring Unit (PMU) allows gathering statistics on the operation of the
processor and memory system.

It offers one performance monitor register denoted as Performance Moni-
tor Cycle Count Register (PMCCNTR) [48, 49] which counts processor cycles.
Figure 3.1 illustrates the measured access time with the PMCCNTR register
of an address residing in the cache or the main memory. Cache hits and
cache misses are easily distinguishable.

While those measurements are fast and precise, the access to those per-
formance counters is restricted to the kernelspace by default. However,
the User Enable Register (PMUSERENR), that is writable only in privileged
modes, can be configured to allow userspace access to the PMCCNTR [48].
Therefore a kernel module and hence root privileges are required making
this timing source hardly accessible in serious attacks.

The ARMv8-A architecture provides similar registers, yet their correspond-

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

·104

Measured access time

N
um

be
r

of
ac

ce
ss

es

Hit
Miss

Figure 3.2: Histogram of cache hits and misses on the Alcatel One Touch Pop 2 using the
perf interface.

ing register names have EL0 as a suffix e.g., PMCCNTR EL0 and PMUSERENR EL0

[49].

3.1.2 Unprivileged system call

In Linux 2.6.31 [18] perf has been introduced to the Linux kernel. It
provides a powerful interface to instrument CPU performance counters
and tracepoints, independently of the used hardware. The system call
perf event open is used to access such information from userspace, e.g.,
the PERF COUNT HW CPU CYCLES returns an accurate cycle count just as the
privileged instructions described in Section 3.1.1. However, due to the fact
that this approach relies on a system call to acquire the cycle counter value,
a latency overhead can be observed. This can also be seen in Figure 3.2
where a hit is measured at around 100 cycles and a miss at around 780
cycles.

Listing 1 shows an implementation of accessing the perf interface in C.
A struct describing the performance counter we want to access is defined
and passed as an argument to the perf event open function. The current
value of the performance counter can then be obtained by reading from
the file descriptor. Using ioctl commands, it is possible to enable and
disable the counter as well as to reset it.

Listing 1 Accessing the cycle count from userspace
1 static struct perf_event_attr attr;

2 attr.type = PERF_TYPE_HARDWARE;

3 attr.config = PERF_COUNT_HW_CPU_CYCLES;

4 attr.size = sizeof(attr);

5 attr.exclude_kernel = 1;

6 attr.exclude_hv = 1;

7

8 int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0);

9 assert(fd >= 0);

10

11 long long result = 0;

12 if (read(_fddev, &result, sizeof(result)) < (ssize_t) sizeof(result)) {

13 return 0;

14 }

15

16 printf("Cycle count: %llu\n", result);

17

18 close(fd);

3.1.3 POSIX function

The perf interface described in Section 3.1.2 is enabled by default on most
devices. However, we have observed that this is not the case for our Sam-
sung Galaxy S6 and support for perf events would require a customized
kernel. Thus, we need a different timing source.

The POSIX function clock gettime() retrieves the time of a clock that is
passed as a parameter. Depending on the used clock, it allows obtain-
ing timing information with a resolution in the range of microseconds to
nanoseconds. In Figure 3.3 we see a histogram using the CLOCK MONOTONIC

clock as the source for the timer. We observe that although small timing
differences are not distinguishable anymore, cache hits and misses can still
be clearly distinguished.

3.1.4 Dedicated thread timer

In the worst case that neither access to the performance counters nor the
clock gettime() POSIX function is granted, an attacker can implement
a thread running on a different core that increments a variable in a loop.
Our experiments show that this approach works reliable on smartphones

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3
·104

Measured access time

N
um

be
r

of
ac

ce
ss

es

Hit
Miss

Figure 3.3: Histogram of cache hits and misses on the Alcatel One Touch Pop 2 using the
monotonic counter.

as well as on x86 CPUs in Figure 3.4. The resolution of this threaded
timing information is by far high enough to differentiate between cache
hits and cache misses.

0 1,000 2,000 3,000 4,000 5,000
0

2

4

·104

Measured access time

N
um

be
r

of
ac

ce
ss

es

Hit
Miss

(a) Alcatel One Touch Pop 2

0 200 400 600
0

1

2

3
·104

Measured access time

N
um

be
r

of
ac

ce
ss

es

Hit
Miss

(b) x86

Figure 3.4: Histogram of cache hits and misses on the Alcatel One Touch Pop 2 and on
x86 using the dedicated thread timer.

3.2 Cache Eviction

In order to evict an address from the cache to the main memory, one can
make use of a flush instruction like the unprivileged clflush instruction
on x86. While ARM does provide cache maintenance functions they are
not enabled in the unprivileged mode and can only be unlocked for user

access on recent CPUs. The second method to evict data is to access con-
gruent addresses, i.e., that map to the same cache set, so that the cache
replacement policy decides to evict the target address from the cache. The
strategy that describes how to access congruent addresses is called eviction
strategy.

Since only on one of our test devices the flush instruction is available (Sam-
sung Galaxy S6), we need to rely on eviction strategies for all other devices.
Thus, we need to defeat the cache replacement policy (see Section 2.1.4)
that directly influences the number and patterns of accesses needed for
the eviction strategy. If an Least-Recently Used (LRU)-replacement pol-
icy is used, accessing as many congruent locations as the number of ways
of the last-level cache evicts the targeted address with high probability.
For adaptive cache replacement policies, e.g., pseudo-random replacement
policy, different eviction strategies need to be crafted. While the L1 cache
in Cortex-A53 and Cortex-A57 CPUs has a small number of ways and a
LRU replacement policy is in use, we also need to evict the cache lines
from the L2 cache, which employs a pseudo-random policy, to perform a
full cache eviction.

In order to evict data from the cache several approaches have been pre-
sented in the past. While some of them can only be applied to Least-
Recently Used (LRU) replacement policies [52, 54, 62] and, thus, are not
suited for ARM CPUs, others introduce too much overhead [30]. How-
ever, Spreitzer and Plos [76] proposed an eviction strategy for ARMv7-
A devices that tries to overcome the pseudo-random replacement policy
by accessing more addresses than there are ways per cache set. In addi-
tion, Gruss et al. [24] demonstrated an automated way to find fast eviction
strategies on Intel x86.

In this chapter we will describe how to find eviction strategies in a fully
automated way based on the concept of Gruss et al. [24] which allows us
to replace of a flush instruction in any cache attack in order to enable such
attacks on devices where a flush instruction is not available.

In the first section of this chapter, we will describe the model that is used
to describe eviction strategies, before we will discuss eviction strategies
we found and their evaluation in the second section.

3.2.1 Model

In this section, we will describe the parameters that define an eviction
strategy based on the algorithm presented by Gruss et al. [24]. The success
of each cache eviction strategy is rated by testing whether the targeted
address is still in the cache or has successfully been evicted to the main
memory. This is tested in many experiments and finally results in an
average success rate.

In their paper Gruss et al. [24] made three observations that all have an
influence on the average success rate of an eviction strategy, thus, forming
adjustable parameters for the strategy model:

1. Besides cache maintenance functions, only cache hits and cache misses
to addresses in the same cache set have a non-negligible influence
on the cache. This was verified by taking an eviction algorithm and
randomly adding addresses that do not map to the same cache set.
One can observe that those random non-congruent addresses do not
influence the average success rate and that the effectiveness of the
strategy depends on the eviction set size.

2. In addition, they have noted that addresses are indistinguishable to
the cache. Therefore access patterns are presented as sequences of
address labels ai, e.g., a1a2a3, where each address label corresponds
to a different address and thus defines which address to access at a
given time frame. A pattern a1a2a3 is equivalent to any pattern aiajak

where i 6= j 6= k and if the pattern is run in a loop, the number of
accesses to different addresses per loop has an influence on the effective-
ness of the eviction strategy.

3. The cache replacement policy can prefer to evict recently added
cache lines over older ones. Thus, it may be necessary to repeat-
edly access the same address to keep it in the cache. As an example,
they state that changing the eviction sequence from a1a2 . . . a17 to
a1a1a2a2 . . . a17a17 reduces the execution time by more than 33% and
increases the eviction rate on Intel Haswell CPUs. However, they
have observed that after a certain number of accesses, additional
accesses do not increase the eviction rate; instead, it can get even

worse.

Algorithm 4 Eviction loop for pattern testing.

Require: Eviction set with N congruent addresses
1: for i = 0; i < N-D; i++ do
2: for j = 0; j < A; j++ do
3: for k = 0; k < D; k++ do
4: Access (i+k)th address of eviction set
5: end for
6: end for
7: end for

Based on these observations Gruss et al. [24] have defined three parameters
that are adjustable and depend on the cache and the cache replacement
policy that is in place to achieve a good eviction strategy:

• N: Number of different addresses in the eviction set.

• D: Number of different addresses accessed in each loop round.

• A: Number of accesses to each address in each loop round.

Algorithm 4 describes how those parameters are used to generate the de-
scribed access patterns.

3.2.2 Strategies

In order to find an eviction strategy that is optimal in the sense of having
a relatively high average success rate as well as having a decent low ex-
ecution time, one needs to have knowledge about the system in terms of
cache organization and cache replacement policies. While finding optimal
eviction strategies for caches with a simple cache replacement policy (e.g.,
round-robin) is rather easy, a pseudo-random replacement policy makes
this task rather hard to solve without any detailed knowledge about the
implementation on the device.

In order to find optimal eviction strategies for our test devices, we have
tested and evaluated thousands of different eviction strategies. We have
written a tool that automatically generates different eviction strategies,
executes and evaluates them. The tool is platform independent and allows

Number of
addresses

Number of accesses
per address

Number of different addresses
in each loop round Cycles Eviction rate

11 2 2 1 578 100.00%
12 1 3 2 094 100.00%
13 1 5 2 213 100.00%
16 1 1 3 026 100.00%
24 1 1 4 371 100.00%
13 1 2 2 372 99.58%
11 1 3 1 608 80.94%
11 4 1 1 948 58.93%
10 2 2 1 275 51.12%

Privileged flush instruction 549 100.00%

Table 3.1: Different eviction strategies on the Krait 400.

communication with the test device over adb resulting in a convenient way
of finding optimal eviction strategies for any device.

For the Krait 400, we have generated and evaluated 1 863 different strate-
gies that are summarized in Table 3.1. We have identified (N = 11, A = 2,
D = 2), illustrated in Figure 3.5a, as our optimal eviction strategy for de-
vices using this platform as it achieves an eviction rate of 100% and takes
1 578 CPU cycles. In contrast, the very similar (N = 11, A = 4, D = 1)
strategy takes slightly longer and only achieves an eviction rate of 58, 93%.
If we use a so-called LRU eviction where every address in the eviction set
is only accessed one, we need at least 16 addresses in our eviction set.
While fewer memory addresses are accessed, it requires more CPU cycles
(3 026 cycles). If we compare this result with the eviction strategy used by
Spreitzer et al. [76] taking 4 371 cycles, it clearly shows the benefit of an
optimized eviction strategy as our strategy is almost three times as fast.

In addition, we have also measured the privileged flush instruction that
gives the best result in terms of execution time. It only requires 549 cycles
and, thus, it is almost three times faster than our best eviction strategy.

Although the Alcatel One Touch Pop 2 uses an ARM Cortex-A53 CPU
that supports the ARM-v8 instruction set, the ROM running on the phone
has been build against the ARM-v7 instruction set. Therefore we can not
use the unprivileged flush instructions and must rely on eviction as well.
We have evaluated 2 295 different strategies and summarized them in Ta-

(a) Krait 400 (b) Cortex A53

Figure 3.5: Access pattern on the Krait 400 (OnePlus One) and the Cortex A53 (Alcatel
One Touch Pop 2)

Number of
addresses

Number of accesses
per address

Number of different addresses
in each loop round Cycles Eviction rate

23 2 5 6 209 100.00%
23 4 6 16 912 100.00%
22 1 6 5 101 99.99%
21 1 6 4 275 99.93%
20 4 6 13 265 99.44%
800 1 1 142 876 99.10%
200 1 1 33 110 96.04%
100 1 1 15 493 89.77%
48 1 1 6 517 70.78%

Privileged flush instruction 767 100.00%

Table 3.2: Different eviction strategies on the Cortex-A53.

ble 3.2. We observed that the fastest eviction strategy with an eviction rate
of 100%, (N = 23,A = 2,D = 5), has an average execution time of 4 275
cycles. However, the (N = 21,A = 1,D = 6) strategy has only an eviction
rate of 99.93% but is faster by almost 2 000 cycles. It is one of the best evic-
tion rates we have found for the Cortex-A53, but it is still 5 times slower
than the privileged flush instruction. We have illustrated its access pattern
in Figure 3.5b.

In addition, we observed that LRU eviction would require 800 different
addresses to achieve an eviction rate of only 99.10%. Since data needs to
be evicted from the L1 cache to be allocated to the last-level cache, it is a
better choice to access data that is already in the last-level cache instead
of accessing different additional addresses. Thus, LRU eviction as used in
previous work [76] is not suitable for attacks on the last-level cache on the
Cortex-A53.

3.3 Defeating the Cache-Organization

Yarom and Falkner [87] considered the Flush+Reload attack the ARM ar-
chitecture as not applicable to smartphones due to their differences in the
cache organization. In comparison to Intel CPUs, ARM CPUs are very het-
erogeneous when it comes to caches, whether or not a CPU has a second-
level cache can be decided by the manufacturer. Nevertheless, the last-level
cache on ARM CPUs is usually shared amongst all cores. However, it can
have different inclusiveness properties for instructions and data. Since,
only modern CPUs like the Cortex A53 and Cortex-A57 have an inclu-
sive last-level cache, attacks on the last-level cache have been considered
impracticable before.

The cache coherence protocols discussed in detail in Section 2.2, guar-
antees that shared memory is kept in a coherent state in all cores and
all CPUs. These protocols also enable us to distinguished between cache
hits and cache misses, because accesses to remote caches are faster than
accesses to the main memory [7, 8]. If a cache is non-coherent, a cross
core-attack is not possible anymore. However, the attacker could run its
spy processor simultaneously on all cores of all CPUs and, thus, launch a
parallel same-core attack.

In order to perform a cross-core attack, we need to evict the target address
from the other cache to the main memory. Depending on the cache ar-
chitecture we can fill the cache directly or indirectly: On the Alcatel One
Touch Pop 2, the last-level cache is instruction-inclusive, thus, we can evict
instructions from local caches of other cores by filling the last-level cache
as illustrated in Figure 3.6. In the first step, an instruction used by the first
core is allocated in its instruction cache as well as in the last-level cache.
In the second step, the second core fills its data cache and thereby evicts
cache lines into the last level cache. As the second core is filling up the
last-level cache using only data accesses in step 3, it will at some point
evict the instruction of the first core from the last-level cache. Since the
cache is instruction-inclusive the instruction will also be evicted from the
instruction cache of the first core.

In the case of a cache that is non-inclusive on both, data and instruction
side, we still can be successful in evicting data from another cache. Fig-

Core 0

L1 Instruction Cache L1 Data Cache

Core 1

L1 Instruction Cache L1 Data Cache

L2 Cache

1 2

3

Figure 3.6: Cross-core instruction cache eviction through data accesses on a instruction-
inclusive, data-non-inclusive cache

ure 3.7 illustrates this approach: The L2 cache is kept filled with data in
order to make the other core evict the address to the main memory and
not into the L2. As the first step illustrates more and more addresses that
are used for the eviction are stored in the L1 cache or the last-level cache.
On ARM the L1 caches typically have a very low associativity, thus, the
probability that an address is evicted from L1 due system activity is very
high. As the last-level cache is filled with the addresses used by the evic-
tion strategy, it is very likely that the instruction in the first core will be
evicted to the main memory (step 2).

For the Evict+Reload and the Flush+Reload attack, we need to test if the vic-
tim process running on a different core has accessed the target address. As
an example, we want to check if the instruction address as in Figure 3.7 has
been loaded into any cache. If the attack process is running on the second
core, one would think that if it accesses the target address, it would need
to be loaded from the main memory as the address is neither in the local
cache of this core nor in the last-level cache. However, the snoopy cache
coherence protocols [7, 8, 46] described in Section 2.2.1 allow addresses to
be fetched from remote cores because such accesses are faster than loading
the address from the main memory.

Figure 3.8 shows the cache hit and cache miss histogram across cores on
the OnePlus One. Loading an address from a remote core only takes

Core 0

L1 Instruction Cache L1 Data Cache

Core 1

L1 Instruction Cache L1 Data Cache

L2 Cache

1

2

DRAM

Figure 3.7: Cross-core instruction cache eviction through data accesses on an entirely
non-inclusive cache

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3
·104

Measured access time in cycles

N
um

be
r

of
ac

ce
ss

es

Hit (same core) Hit (cross-core)
Miss (same core) Miss (cross-core)

Figure 3.8: Histograms of cache hits and cache misses measured same-core and cross-core
on the OnePlus One

around 40 cycles longer than if the address has been in the local cache.
As loading an address from the main memory takes more than 500 cycles,
cache hits can be distinguished from cache misses easily.

Figure 3.9 illustrates a similar histogram but cross-CPU on the Samsung
Galaxy S6. While loading an address from a remote core of another CPU
takes around 200 cycles, a cache miss still takes at least 50 cycles longer.
Thus, we can also identify if a process on a remote-CPU has accessed an
address.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

·104

Measured access time in cycles

N
um

be
r

of
ac

ce
ss

es

Hit (same core)
Miss (same core)
Hit (cross-cpu)
Miss (cross-cpu)

Figure 3.9: Histogram of cache hits and cache misses measured cross-CPU on the Sam-
sung Galaxy S6.

Chapter 4

Attack Case Studies

In this chapter we want to present our attack techniques and how we can
take advantage of our findings from Section 3.2 and Section 3.1. While
the attacks techniques discussed in Section 2.4 have been proposed and
investigated for Intel processors, the same attacks were considered not ap-
plicable to modern smartphones due to differences in the instruction set,
the cache organization [87], and in the multi-core and multi-CPU architec-
ture. Thus only same-core cache attacks have been demonstrated so far
[9, 75, 77, 84, 85]. These attacks also require the access to the privileged
cycle count register to acquire accurate timings and thus, root access.

Most of the presented attacks in this chapter can be established in a real
world scenario where a user installs one or multiple malicious applica-
tions on its device. In contrast to previously demonstrated attacks, the
presented attacks do not rely on any permissions and can be executed as
an unprivileged userspace application. Thus, they would not look sus-
picious during the installation processes. The attacks can be performed
on stock Android ROMs as they do not exploit any vulnerability in the
Android system.

In Section 3.3 we overcome the challenge of non-inclusive last-level caches
on ARM. A property that cross-core attacks relied on. We also show how
to overcome the difficulty that modern smartphones can have multiple
CPUs that do not share a cache. In Section 4.1 we demonstrate covert chan-
nels that outperform state-of-the-art covert channels on Android by several

57

orders of magnitude, and in Section 4.2 we present attacks to monitor tap
and swipe events as well as keystrokes. In addition, we show in Section 4.3
attacks to cryptographic primitives in Java and monitor cache activity in
the ARM TrustZone. Finally, we show in Section 4.4 how the rowhammer
bug can be triggered on mobile devices.

4.1 High Performance Covert-Channels

In this section, we describe a high-performance cross-core and cross-CPU
cache covert channel on modern smartphones that uses Flush+Reload, Evict+Reload
or Flush+Flush. A covert channel enables two unprivileged applications on
a system to communicate with each other without using any data trans-
fer mechanisms provided by the operating system. This communication
evades sandboxing and the permission system. Particularly on Android,
this is a problem, as this covert channel can be used to exfiltrate private
data from the device that the Android permission system would normally
restrict. An attacker could use one application that has access to the
personal contacts of the owner of the device to send data via the covert
channel to another application that has Internet access (cf. collusion at-
tacks [53]). In such a scenario an adversary can steal personal information.

4.1.1 Design

The basic idea of our covert channel is that both, the sender and the re-
ceiver, agree on a set of addresses of a shared library. These are used to
transmit information by either loading the address into the cache or evict-
ing them from the cache, e.g., if the address is in the cache it represents
a 1. Since our goal is to establish a covert channel on devices where no
flush instruction is available, every picked address must be mapped to a
different cache set. Otherwise, the problem might occur that addresses
that both agreed on might be evicted by accident and, thus, transmitting
wrong data.

We implement the covert channel using a simple protocol. To transmit an
arbitrary amount of data, it is split-up and transmitted in multiple pack-

078232431

Send Sequence
Number

Payload CRC

02310

Response Sequence
Number CRC

Figure 4.1: Format of send data frames (above) and response data frames (below).

ets that are illustrated in Figure 4.1. A single packet consists out of an
n-bit payload, an s-bit sequence number and a c-bit checksum that is com-
puted over the payload and the sequence number. The sequence number
is used to send consecutively numbered packets and the checksum is used
to check the integrity of the package. If a received packet is valid, the re-
ceiver sends back a response packet containing the s-bit sequence number
and an additional x-bit checksum calculated over the response sequence
number. By sending back the sequence number of the last successfully
received packet, the sender can resend packets.

For each bit in the send packet and the response packet, the sender and
receiver must agree on one address in the shared library. This is possible as
both processes use the same code to choose addresses of the shared library.
In order to transmit a bit value of 1, the sender loads the corresponding
address of the shared library into the cache by accessing it. If the receiver
measures the access time to this address, it will interpret the measured
cache hit as a 1. On the other hand, if the sender wants to transmit a 0, the
sender will not load the corresponding address into the cache and, thus,
the receiver will measure a cache miss. For the Flush+Flush version of the
covert channel, the receiving unit decides based on the execution time of
the flush instruction if the address has been loaded into the cache or not.

In addition to the bits that are required for both packets, two extra bits are
used. To start a transmission, the sender sets a sending bit as well as all the
bits for the sending packet and waits until the receiver has set a acknowledge
bit. The acknowledge bit indicates that the receiver has successfully received
the sending packet. The sender will then measure the response sequence
number and check if the response checksum is valid. If this is the case, it
will continue sending the next packet. If the response has been invalid, it
will continue sending the current packet.

However, depending on how noisy the system is and how the parameters
have been set, it might happen that the sender measures an acknowledge-
ment of the receiver even if the receiver has never received the packet suc-
cessfully. In that case, the sender would continue sending the next packet
while the receiver still tries to receive a previous one and the whole trans-
mission would get stuck. To overcome this issue, the sender will read the
response of the receiver multiple times to detect this situation and will
roll-back to the previous packet. Algorithm 5 and Algorithm 6 provide a
formal description of the sender and the receiver, respectively.

Algorithm 5 Sending data

Require: Mapped shared library m.
Require: Data to send d.

1: sn← Initial sequence number.
2: for f n ← 1 to Number of frames do
3: p← Current package (sn, dx, CS(f n, dx))
4: received← f alse;
5: do
6: Access sending bit address
7: Access or evict packet bit addresses
8: ack← Access Acknowledge bit address
9: if ack ≡ true then

10: Measure response data addresses
11: snm, csm ← Response sequence number, CRC
12: if CS(sn, dx) ≡ csm and sn ≡ snm then
13: received← true
14: end if
15: end if
16: while received ≡ f alse
17: end for

4.1.2 Results

We have implemented this covert channel using three different cache at-
tack techniques and evaluated them in different scenarios on our test de-
vices. We show that the covert channel can be realized using Evict+Reload,
Flush+Reload and Flush+Flush and it can be executed cross-core as well as
cross-CPU. We transmitted several megabytes of randomly generated data
and compared the received file to the original one to measure an error

Algorithm 6 Receiving data

Require: Mapped shared library m.
1: while true do
2: received← f alse
3: do
4: sn← Initial sequence number
5: sending← f alse
6: do
7: sending← Measure sending bit address
8: while sending ≡ f alse
9: Measure packet data addresses

10: snm, dm, csm ← Sequence number, data, CRC
11: if CS(snm, dm) ≡ csm then
12: if sn ≡ snm then
13: received← true
14: Report dm
15: sn← sn + 1
16: end if
17: Access acknowledge bit address
18: Access or evict response data bit addresses
19: else
20: Evict acknowledge bit address
21: end if
22: while received ≡ f alse
23: end while

Table 4.1: Comparison of covert channels on Android.

Work Type Bandwidth [bps] Error rate

Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1 140 650 1.10%
Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83%
Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48%
Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13 618 3.79%
Ours (OnePlus One) Evict+Reload, cross-core 12 537 5.00%
Marforio et al. [53] Type of Intents 4 300 –
Marforio et al. [53] UNIX socket discovery 2 600 –
Schlegel et al. [70] File locks 685 –
Schlegel et al. [70] Volume settings 150 –
Schlegel et al. [70] Vibration settings 87 –

rate.

Table 4.1 summarizes the results and compares them to existing covert
channels on Android. We achieve the highest transmission rate in a cross-
core scenario using Flush+Reload on the Samsung Galaxy S6 with 1 140 650
bps and an error rate of 1.10%. In comparison to existing covert chan-
nels [53, 70] this is 265 times faster. Using the Cortex-A53 and the Cortex
A-57 on the Samsung Galaxy S6 we can establish a Flush+Reload covert
channel between both CPU’s that achieves a transmission rate of 257 509 bps
at an error rate of 1.83%. Using Flush+Flush we achieve 178 292 bps at an
error rate of 0.48% across two cores.

On the OnePlus One and the Alcatel One Touch Pop 2 we have no unpriv-
ileged flush instruction and have to use eviction. On the OnePlus One we
achieve a transmission rate of 12 537 bps at an error rate of 5, 00% and on
the Alcatel One Touch Pop 2 we achieve a transmission rate of 13 618 bps
with an error rate of 3.79%. This cross-core transmission is still 3 times
faster than previously published covert channels.

4.2 Spying on User input

In this section, we will demonstrate access-driven cache side-channel at-
tacks on mobile Android devices. We demonstrate in Section 4.2.1 cache
template attacks as described by Gruss et al. [26] to accurately profile the
cache usage and automatically exploit it using the Flush+Reload attack.
In Section 4.2.2 we will present what libraries we have used to be capa-

0 50 100 150 200 250 300 350 400 450 500 550 600

1

2

3
·104

Measured execution time in cycles

N
um

be
r

of
ca

se
s

Flush (address cached)
Flush (address not cached)

Figure 4.2: Histograms of the execution time of the flush operation on cached and not
cached addresses measured on the Samsung Galaxy S6.

ble of spying on user input and in Section 4.2.3 we show how we attack
ahead-of-time compiled Android Runtime Engine (ART) [2] executables.

4.2.1 Template attacks

In 2015 Gruss et al. [26] presented cache template attacks to exploit cache-
based side-channel information based on the Flush+Reload attack automat-
ically. Cache template attacks consist of a profiling and an exploitation
phase:

Profiling phase
In the profiling phase, every address of the shared memory is tested
if a cache hit occurs on this address when a specific event has been
triggered. Every address is measured multiple times to reduce noise
and the result is stored in a so-called template matrix. Such a matrix
can be visualized by a heat map where the lightness of the color
represents the likelihood that this address is accessed if the event is
triggered.

Exploitation phase
In the exploitation phase, the computed matrix from the profiling
phase is used to detect the occurrence of events by measuring cache

hits on corresponding addresses.

In order to scan shared libraries or binaries for leaking addresses, an at-
tacker must be able to map them as read-only shared memory into its own
address space. As this memory is shared between processes, countermea-
sures of the operating systems like Address Space Layout Randomization
(ASLR) do not apply to this memory.

Another strength of cache template attacks is that both phases can be per-
formed on the attacked device online as long as the attacker is capable of
triggering the events that he wants to spy on remotely on the device. In
addition, target addresses can be searched offline on a different device be-
forehand and then be used in the exploitation phase on the target device.

4.2.2 Spying on Shared libraries

The Android operating system uses like Linux a large number of shared
libraries. Those libraries are shared across different applications to fulfill
certain purposes, e.g., camera or GPS access. We inspected the names of
the libraries on our test devices in order to determine what their individ-
ual purpose is. For instance, the libinput.so might be responsible for
handling user input.

As we wanted to find addresses that correspond to user input triggered
on the touch screen of smartphones, we automatically scanned all these
libraries as described in Section 4.2.1. Since manually executing user input
events like pressing a button on the device or swiping over the display in
order to detect corresponding addresses is impractical, we used different
methods to simulate this events:

• input command-line tool
We executed the input command line tool over the Android Debug
Bridge (adb) that allows simulating user input events.

• /dev/input/event*

An alternative approach is to sent event messages directly to the
/dev/input/event* interfaces. While this is more device specific, it
is much faster than the first approach, as it only requires a single
write() call.

When we tried to profile differences between different letter keys on the
keyboard, we began to use the latter approach as it is much faster and
reduces the overall time of scanning the libraries significantly.

0x
18

0
0x

50
0

0x
78

0
0x

84
0

0x
88

0
0x

10
00

0x
17

00
0x

18
40

0x
20

00
0x

31
40

0x
32

80
0x

65
80

0x
77

00
0x

80
80

0x
81

00
0x

81
40

0x
88

40
0x

88
80

0x
89

00
0x

89
40

0x
89

80
0x

11
00

0
0x

11
04

0
0x

11
08

0

Addresses

text
tap

swipe
longpress

key

E
ve

nt

Figure 4.3: Cache template matrix for libinput.so on the Alcatel One Touch Pop 2.

We trigger different events while probing addresses within the libinput.so
library at the same time. We simulate key events like the power button, long
press and swipe events as well as tap and text events. For each address we
flush the address into the main memory, trigger the event before we mea-
sure whether accessing the address results in a cache hit or cache miss.
We repeat this process several times for each address and visualize parts
of our results in Figure 4.3. We can clearly see that address 0x11040 can
be used to detect tap, swipe as well as long press events.

0 2 4 6 8 10 12 14 16 18

50

100

150

200

Tap Tap Tap Swipe Swipe Swipe Tap Tap Tap Swipe Swipe

Time in seconds

A
cc

es
s

ti
m

e

Figure 4.4: Distinguishing tap and swipe events by monitoring the access time of address
0x11040 of libinput.so on the Alcatel One Touch Pop 2.

Figure 4.4 shows a sequence of 3 tap and 3 swipe events followed by two
additional swipes. A swipe action causes cache hits as long as the screen

is touched and, thus, a single address can be used to distinguish taps and
swipes. The gaps in the measurements are periods of time where our
spy application was not scheduled on the CPU. Events that occur in said
periods might be missed.

0 1 2 3 4 5 6 7

200

400

600

800

1,000

Tap Tap Tap Swipe Swipe Swipe

Time in seconds

A
cc

es
s

ti
m

e

Figure 4.5: Distinguishing tap and swipe events by monitoring the access time of address
0xBFF4 of libinput.so on the OnePlus One.

0 1 2 3 4 5 6 7 8 9

200

400

Tap Tap Tap Swipe Swipe Swipe

Time in seconds

A
cc

es
s

ti
m

e

Figure 4.6: Distinguishing tap and swipe events by monitoring the access time of address
0xDC5C of libinput.so on the Samsung Galaxy S6.

Cache template attacks provide a convenient way to automatically search
for addresses that can be used to infer events. However, if an attacker has
access to the shared libraries, he can also use reverse-engineering tech-
niques to find addresses he wants to spy on. To reproduce the plot for the
OnePlus One and the Samsung Galaxy S6, we manually identified a corre-
sponding address in the libinput.so library. The resulting measurements

Library Responsible for

gps.msm8974.so GPS
bluetooth.default.so Bluetooth
camera.vendor.bacon.so Camera
libnfc-nci.so NFC
vibrator.default.so Vibrator
libavcodec.so Audio/Video
libstagefright.so Audio/Video
libwebviewchromium.so Websites
libpdfium.so PDF library

Table 4.2: Libraries responsible for different hardware and software

are visualized in Figure 4.5 and Figure 4.6.

We have found various libraries listed in Table 4.2 that handle different
hardware modules as well as software events on the device. For instance,
the attack can be used to reveal when the user uses the GPS sensor, when
the Bluetooth is active or when the camera is used.

4.2.3 Spying on ART

The more recent Android Runtime Engine (ART) creates optimized virtual
machine binaries ahead of time. These binaries can be exploited by our
attack as well.

We scanned the default Android Open Source Project (AOSP) keyboard
on the Alcatel One Touch Pop 2 in order to find addresses that allow us
to distinguish which letter a user has entered on the soft-keyboard. In
order to simulate a key press, a touch event is triggered to the coordinates
of the letter on the screen. Figure 4.7 shows the resulted cache template
matrix. We observe that all addresses that we have identified for single
letters of the alphabet show a quite similar result, and, thus we cannot
differ between them.

However, we identified addresses that allow us to distinguish between a
press to a letter and to one to the space bar or to the enter key. This
information is especially useful as it allows to determine the length of
every word entered. In addition, a combination of addresses can be used

0x
41

50
0

0x
45

14
0

0x
56

94
0

0x
57

28
0

0x
58

48
0

0x
60

28
0

0x
60

34
0

0x
60

58
0

0x
66

34
0

0x
66

38
0

0x
72

30
0

0x
72

34
0

0x
72

38
0

0x
78

44
0

0x
98

60
0

Addresses

backspace
space
enter

z
y
x
w
v
u
t
s
r
q
p
o
n

m
l

k
j
i

h
g
f
e
d
c
b
a

In
pu

t

Figure 4.7: Cache template matrix for the AOSP keyboard

to detect whether the backspace button has been pressed and, thus, if a
previous letter has been removed.

Figure 4.8 shows the timing measurements for an entered sentence. The
blue line represents the access time on an address that is triggered when
any key is pressed, while the measurements displayed as red dots of a
different address can be used to distinguish between a key and the space
bar. Thus, the length of each word in the entered sentence can be deduced.
Zhang et al. [89] have shown that inter-keystroke timings can be exploited
to infer the entered characters.

0 1 2 3 4 5 6 7

100

200

300

t h i s Space i s Space a Space m e s s a g e

Time in seconds

A
cc

es
s

ti
m

e

Key
Space

Figure 4.8: Evict+Reload on 2 addresses in custpack@app@withoutlibs@LatinIME.apk@

classes.dex on the Alcatel One Touch Pop 2 while entering the sentence “this is a mes-
sage”.

4.3 Attacks on Cryptographic Algorithms

In this section, we first attack cryptographic algorithms implemented in
Java that are still in use on today’s Android devices despite the well-known
fact that they can be exploited by cache attacks. Furthermore, we will show
that it is possible to monitor the cache activity of the ARM TrustZone from
within the normal world.

4.3.1 AES T-Tables

Advanced Encryption Standard (AES) is a specification for the encryption
and decryption of data [16] and is used amongst other applications for
full-disk encryption on Android [22]. An efficient version of AES is an
optimized T-Table implementation.

The three different steps of the AES round transformation (SubBytes, ShiftRows,
and MixColumns) can be combined into a single step of look-ups to four
so-called T-tables T0, . . . , T3 on 32-bit or 64-bit CPUs [16]. Since there is no
MixColumns operation used in the last round, an additional T-table T4 is
required. However, to save space, it is possible to extract T4 from the other
tables by masking [16]. Each of the tables T0, . . . , T3 contain 256 4-byte
words and, thus, require 4KByte of memory.

Given a 16-byte plaintext p = (p0, . . . , p15) and a 16-byte secret key k =

(k0, . . . , k15) that is expanded in ten round keys in the key schedule phase.
A round key kr for round r is a quadruplet of words of 4 bytes each:
kr = (kr

0, kr
1, kr

2, kr
3). To encrypt the plain text p it is combined with a bitwise

xor to the secret key k to result in the initial state x0:

(x0, . . . , x15) = (p0 ⊕ k0, . . . , p15 ⊕ k15)

Then the 9 rounds consisting out of the SubBytes, ShiftRows and Mix-
Columns are applied using the pre-computed T-tables T0, . . . , T3. Thus,
the intermediate state x is updated for r = 0, . . . , 8 [81]:

(xr+1
0 , xr+1

1 , xr+1
2 , xr+1

3)← T0[xr
0] ⊕ T1[xr

5] ⊕ T2[xr
10]⊕ T3[xr

15]⊕ kr+1
0

(xr+1
4 , xr+1

5 , xr+1
6 , xr+1

7)← T0[xr
4] ⊕ T1[xr

9] ⊕ T2[xr
14]⊕ T3[xr

3] ⊕ kr+1
1

(xr+1
8 , xr+1

9 , xr+1
10 , xr+1

11)← T0[xr
8] ⊕ T1[xr

13]⊕ T2[xr
2] ⊕ T3[xr

7] ⊕ kr+1
2

(xr+1
12 , xr+1

13 , xr+1
14 , xr+1

15)← T0[xr
12]⊕ T1[xr

1] ⊕ T2[xr
6] ⊕ T3[xr

11]⊕ kr+1
3

In the last round the MixColumns operation is omitted and the T4 round
table is used.

The first-round attack by Osvik et al. [63] exploit the fact that the initial
state is defined by xi = pi⊕ ki for i = 0, . . . , 15 and, thus, does only depend
on the plaintext p and the key k. If an attacker knows the plaintext byte pi

and can monitor which entries of the T-table are accessed, he can directly
deduce the key byte ki. In addition to this attack, attacks that consider
the first two rounds and attacks the consider the last round have been
presented [58, 81].

Many cache attacks against implementations using T-tables have been
demonstrated in the past [9, 28, 56, 58, 63, 76] and appropriate counter-
measures and alternative implementations have been presented. For in-
stance, bit-sliced implementations allow the algorithm to be executed in
parallel as logical bit operations [39, 45, 68]. Intel and ARM even intro-
duced dedicated instructions [32, 49] for AES.

Nonetheless, Bouncy Castle [3], a cryptographic library that is widely used
in Android applications, deploys three different implementations of AES
where the default option is a T-table implementation. The default crypto

provider on Android, OpenSSL [61], as well as Google’s BoringSSL [21]
use bit-sliced implementations if ARM NEON instructions or dedicated
AES instruction (ARMv8-A) are available. Otherwise they use a T-Table
implementation as well. Although recent versions of OpenSSL all include
bit-sliced implementations, the T-table implementation is still officially
supported and still used on Android devices like the Alcatel One Touch
Pop 2.

4.3.1.1 Attack on Bouncy Castle

For our first experiment, we assume that shared memory is available and
demonstrate that both, a Flush+Reload attack as well as an Evict+Reload
attack would be feasible. We trigger the encryption 256 times for all dif-
ferent values for a random plaintext where only the plaintext byte p0 is
fixed for every 256 values. Figure 4.9a shows a template matrix of the first
T-table during the triggered encryptions revealing the upper 4 key bits of
k0 [63, 76]. Thus, the key space is reduced to 64 bits. However, the attack
can be extended to a full key-recovery attack by targeting more than the
first round [28, 35, 69, 81].

0x
00

0x
10

0x
20

0x
30

0x
40

0x
50

0x
60

0x
70

0x
80

0x
90

0x
A

0
0x

B
0

0x
C

0
0x

D
0

0x
E

0
0x

F
0

Plaintext byte values

A
dd

re
ss

(a) Evict+Reload

0x
00

0x
10

0x
20

0x
30

0x
40

0x
50

0x
60

0x
70

0x
80

0x
90

0x
A

0
0x

B
0

0x
C

0
0x

D
0

0x
E

0
0x

F
0

Plaintext byte values

A
dd

re
ss

(b) Flush+Reload

Figure 4.9: Attack on Bouncy Castle’s AES implementation using Evict+Reload on the
Alcatel One Touch Pop 2 and Flush+Reload on the Samsung Galaxy S6.

Spreitzer et al. [76] showed that if the T-tables are placed on a different
boundary such that we can obtain arbitrary disalignments of the T-tables,
the key space can be reduced by 20 bits on average and further be brute

forced. Depending on the disalignment also a full-key recovery is possi-
ble [76, 80]

4.3.1.2 Real-world cross-core attack on Bouncy Castle

In our first experiment we assumed that memory region containing the
T-tables can be shared between the attacker and the victim. However, dur-
ing the Java class initialization a copy of the T-tables is created. Thus, no
shared memory containing the T-tables exists. In such scenarios, it is possi-
ble to apply the Prime+Probe attack. Even though Prime+Probe is inherently
noisier, it can be used for a real-world cross-core attack on Bouncy Castle.

0x
00

0x
10

0x
20

0x
30

0x
40

0x
50

0x
60

0x
70

0x
80

0x
90

0x
A

0
0x

B
0

0x
C

0
0x

D
0

0x
E

0
0x

F
0

Plaintext byte values

0x3C0
0x380
0x340
0x300
0x2C0
0x280
0x240

O
ff

se
t

Figure 4.10: Excerpt of the attack on Bouncy Castle’s AES using Prime+Probe. The
plaintext is fixed to 0x00. Offset 0x2C0 is best to perform the attack.

In order to run Prime+Probe, the attacker must identify the cache sets into
which a T-table maps. Those cache sets can be detected by measuring
the activity of each cache set when random encryptions have been trig-
gered. After we have detected the corresponding cache sets, we success-
fully launched a Prime+Probe attack against the AES implementation of
BouncyCastle. As Prime+Probe is noisier, we triggered the encryption 100
000 times. While it is only necessary to monitor a single address, we show
our measurements in Figure 4.10 for each combination of plaintext byte
and offset.

4.3.2 TrustZone Cache Activity

The ARM TrustZone [49] technology is a hardware based security tech-
nology built into ARM SoCs to provide a secure execution environment
and roots of trust. The basic idea is to separate the system in a secure

and a non-secure world that are hardware isolated from each other to pre-
vent information from leaking from the trusted world to the other and to
generally reduce the attack surface. The switch between these worlds is
accomplished by a so-called secure monitor.

On Android the TrustZone technology is used among other things for a
hardware-backed credential store, a secure element for payments, Digi-
tal Rights Management (DRM), verified boot as well as kernel integrity
measurements. Such services are implemented by so-called trustlets, ap-
plications that run in the secure world.

Since the secure monitor can only be called from the supervisor context
the kernel must provide an interface for the userspace to communicate
with the TrustZone. On the Alcatel One Touch Pop 2 a device driver
called QSEECOM (Qualcomm Secure Execution Environment Communi-
cation) and a library libQSEEComAPI.so is used to communicate with the
TrustZone. The key master trustlet on the Alcatel One Touch Pop 2 pro-
vides an interface to generate hardware backed RSA keys. In addition, it
can be used for the signature creation and verification of data inside the
TrustZone.

We used this service to mount a Prime+Probe attack on the signature cre-
ation process within the TrustZone. At first, we prime the cache set before
we trigger a signature creation on random data with a fixed key. Then,
we probe the same cache set to evaluate how many ways have been re-
placed by the TrustZone and store the measurement. We show the mean
squared error over multiple measurements for every tested key in Fig-
ure 4.11. There is a difference in the set activity if a valid or an invalid
key has been used. We have visualized the cache activity of sets 250-350 in
Figure 4.12 to highlight cache sets than can be used to distinguish between
valid and invalid keys.

This shows that the secure world of the TrustZone leaks information to the
non-secure world that could be exploited by an attacker.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2
·106

Set number

M
SE

Valid key 1
Valid key 2
Valid key 3
Invalid key

Figure 4.11: Mean squared error for Prime+Probe cache profiles of 3 valid keys and one
corrupted key to the average of valid keys. The keys were processed in the Alcatel One
Touch Pop 2 TrustZone and the cache timings measured cross-core.

250 260 270 280 290 300 310 320 330 340 350
0

0.5

1

·106

Set number

M
SE

Valid key 1
Valid key 2
Valid key 3
Invalid key

Figure 4.12: Mean squared error for Prime+Probe cache profiles on a subset of cache sets
to illustrate the difference between valid keys in contrast to an invalid key.

4.4 Rowhammer on ARM

In this section, we want to present the results of our experiments and show
that even if we were not able to induce any bit flips using eviction, mobile
devices are still prone to bit flips.

4.4.1 Hammering from Userspace

Since a flush instruction is only available to us on the Samsung Galaxy S6,
we need to use eviction on all other test devices. In Section 3.2 we have
shown how fast and efficient eviction strategies can be found and thus
used in our experiments.

In order to induce bit flips, we have written a tool that allocates memory
and utilises the reverse-engineered DRAM mapping function to detect ad-
dresses in three rows next to each other in the same bank. Next, the data
of the row in the middle is set to a defined value and the attack is started
by repeatedly accessing the row on the sides. After that, the content of the
row in the middle is checked if any bits differ from the pre-defined and
previously set value. This is repeatedly done for all found triples of rows
in order to detect vulnerable rows.

On the Samsung Galaxy S6, we were able to use the DC CIVAC instruction
and thus flush an address to the main memory from userspace without
the need of applying eviction. However, we were not able to produce any
bit flips on our device which could be due mitigation techniques imple-
mented in the used LPDDR4 DRAM. The LPDDR4 memory standard [38]
defines optional hardware support for the Target Row Refresh (TRR) that
identifies possible victim rows by counting the number of row activations.
The value is then compared to a pre-defined chip specific Maximum Acti-
vation Count (MAC) and the row is refreshed if necessary.

Using eviction to produce bit flips on our ARMv7-based test devices was
also not successful. The probable reason is that despite the fact that we
have found a fast eviction strategy with a high eviction rate, we are still not
able to access addresses repeatedly enough. In addition, the refresh rate
of the memory decreases if the temperature increases. Thus, the window

of time in that we are required to access the different addresses shrinks
which in fact is the case as the repeated access increases the CPU load and
thus the temperature. In our first experiments we even mounted a CPU
cooler of a desktop unit on top of the CPU of the OnePlus One to lower
the refresh rate. We even put the whole setup in a fridge in order to rule
the possibility of a too high temperature out. However, as we can see now
in the results of Van der Veen et al. [83], not every device, even if it is the
same model, is vulnerable to the rowhammer bug and, thus, more devices
should have been tested.

4.4.2 Hammering using a Kernel Module

In order to verify if our devices are just not vulnerable to bit flips and if
our eviction strategies are too slow to allow high repetition accesses, we
used the privileged flush instruction. We have implemented a kernel mod-
ule that registers itself as a device such that it is possible for a userspace
program to communicate with it. Therefore, it allows the userspace pro-
gram to define two addresses that should be hammered alternately and the
number of repetitions. Thus, our previous tool could be easily modified
to use the kernel module and with that the privileged flush instruction.

While we were not able to induce bit flips neither on the OnePlus One nor
the Samsung Galaxy S6, we had success on the LG Nexus 4, LG Nexus 5
and Samsung Nexus 10.

4.4.3 Hammering using ION

With the release of Android 4.0 Google introduced the ION memory man-
ager to replace the fragmented memory management interfaces across dif-
ferent Android devices with a unified one [88]. ION manages multiple
memory pools called ION heaps that can be set to serve special hardware
requirements, e.g., for the display controllers or the GPU. In addition, ION
allows buffer allocations with uncached memory access from userspace
without any privileges or permissions.

Using ION we can circumvent the cache and access the memory in the DRAM
directly. Thus, there is no need for any flush instruction or eviction strat-

egy anymore. However, ION only allows allocating memory up to 4MB
large chunks and as much memory as the memory pool is configured to.
We have modified our attack tool to exhaust the memory pool and then
search for physically contiguous memory in DRAM rows next to each
other and to perform the double-sided row hammering. With this we can
reproduce bitflips reliable from userspace reliable on the LG Nexus 4, LG
Nexus 5 and Samsung Nexus 10.

4.4.4 Observations

Figure 4.13 shows the number of bitflips per second as well as the in-
creasing temperature of the device. We can observe a sudden drop of
the number of occurring bitflips as soon as the temperature reaches a cer-
tain point. This behaviour is caused by the increase of the refresh rate of
the DRAM that depends on certain configured temperature levels [38]. On
the LG Nexus 4 in Figure 4.14 we can also observe a clear decline in the
number of bitflips as the temperature increases.

0 20 40 60 80 100 120 140 160 180 200

50

100

150

Runtime in Seconds

Number of Bitflips
Temperature in Celsius

Figure 4.13: Number of bitflips depending on the temperature on the LG Nexus 5

In Figure 4.15 we measured the number of bitflips that occur for each row
index. We can see that not every row is as prone to bitflips as others.

0 50 100 150 200 250 300 350 400 450 500

20

40

60

80

Runtime in Seconds

Number of Bitflips
Temperature in Celsius

Figure 4.14: Number of bitflips depending on the temperature on the LG Nexus 4.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400

50

100

Row index

N
um

be
r

of
bi

tfl
ip

s

Figure 4.15: Number of bitflips per row on the LG Nexus 4

Chapter 5

Countermeasures

In this chapter, we will present and evaluate possible countermeasures as
discussed in our USENIX paper [50]. While the presented attacks exploit
weaknesses in hardware, countermeasures implemented in software could
make such attacks much more difficult to execute.

The first software weakness we exploit is the unprivileged access to the
perf event open system call interface. This interface allows access to an
accurate cycle counter among a variety of other accurate hardware perfor-
mance counters. In our attack, we use this interface as a replacement to
the x86 rdtsc instruction. If an attacker were not able to retrieve an accu-
rate cycle count, it would be significantly harder to determine whether a
memory access has been a cache hit or a cache miss. Therefore, we suggest
making the system call interface only available to privileged processes and
especially prevent Android apps from accessing it.

However, we showed in Section 3.1.4 that performing cache attacks with-
out accurate timing is possible by running a second thread that incre-
ments a global variable all the time. By reading the value of the variable
an attacker can retrieve a timestamp. Thus, only restricting access to the
perf event open system call interface is not sufficient to make the attack
impossible.

One big issue is that the operating system supplies information that fa-
cilitates our attacks. The procfs presents information about running pro-
cesses on the system in a file-like structure. For every process there will

79

be a subdirectory named after its process id in /proc, containing further
files representing information like status which provides details about
the run state and memory usage of the process. Furthermore, the pagemap

entry can be used to resolve virtual addresses to physical addresses which
we can exploit to build eviction sets. The issue is that this information
can be retrieved for any other process on the device. While access to
/proc/pid/pagemap and /proc/self/pagemap has been restricted in Linux
in early 2015 [42], the Android kernels on our test devices have not applied
this patch yet and, thus, these resources can still be accessed without any
permission.

Additionally, we exploit the fact that shared memory in the form of shared
libraries is used on the system. While disabling shared libraries would not
yield a satisfying solution, at least access to dex and art optimised pro-
gram executables should be restricted entirely. At the moment, one can-
not retrieve a directory listing of /data/dalvik-cache/. However, every
file is readable for any process and, thus, Evict+Reload, Flush+Reload and
Flush+Flush attacks on Android applications possible.

We have shown cache attacks against AES T-table implementation in Sec-
tion 4.3. While it has been well-known for quite some time that these
attacks are possible, a vulnerable T-table implementation is still employed
as the default implementation in BouncyCastle [3]. It is advised to imple-
ment AES using dedicated instructions as they are available in the ARM
NEON instruction set. Since OpenSSL 1.0.2 a bit-sliced implementation
has been introduced on ARMv8-A devices [61].

Since we were able to induce bit flips on mobile devices using the ION
memory manager, the userspace interface to ION could be restricted. In
addition, memory isolation can be used such that allocated memory from
the userspace does not reside next to kernel memory and, thus, the rowham-
mer bug can’t be triggered on security critical memory. As we have ob-
served that the number of bit flips decrease depending on the refresh rate,
a higher refresh rate might also be used by default.

Chapter 6

Conclusion

Despite the fact that powerful cross-core cache attacks have been consid-
ered not applicable [87] on smartphones, we showed the possibility of
highly accurate attacks on ARM. In this thesis, we demonstrated that
the cross-core cache attacks Prime+Probe, Flush+Reload, Evict+Reload and
Flush+Flush can be performed on ARM-based devices.

In order to run these attacks without the requirement of any permis-
sion or privileges, we identified different timing sources to retrieve high-
resolution timings. Furthermore, we show that coherence protocols can
be used to attack caches that are not inclusive and thus enable cache at-
tacks on various ARM platforms. We demonstrate that eviction can be
successfully used to compensate a missing unprivileged flush instruction
and identify optimal eviction strategies for our test devices.

To emphasize the potential of these attacks, we implemented a covert-
channel that is more than 250 times faster than any other state-of-the-
art covert channel on Android. In addition, we showed that this covert
channel can be established not only cross-core but also cross-CPU. We
used these attacks to spy on user input to determine the length of entered
words on the soft-keyboard and attack cryptographic implementations in
Java. Moreover, we showed that it is possible to monitor the cache activity
of the ARM TrustZone from within the normal world.

We showed that ARM-based devices are also vulnerable to the rowham-
mer bug and are capable of triggering bit flips in a reliable way.

81

Finally, we have implemented all presented techniques in the form of a li-
brary called libflush that allows the development of platform-independent
cache attacks for the x86 as well as the ARM platform.

Since mobile devices like smartphones and tablets have become the pri-
mary personal computing platform, it is of particular importance to de-
ploy hardware and software-based protection mechanisms to prevent unau-
thorized access and theft of personal data. While our presented attacks by
no means cover all possible exploitable information leaks, they stress that
it is necessary to deploy effective countermeasures against cache attacks
as well as the rowhammer bug.

List of Tables

1.1 Test devices used in this thesis. 7

2.1 Cache instructions . 18
2.2 DRAM mapping functions . 41

3.1 Eviction strategies - Krait 400 51
3.2 Eviction strategies - Cortex-A53 52

4.1 Comparison of covert channels on Android. 62
4.2 Shared libraries on Android 67

83

List of Figures

2.1 Memory hierarchy . 10

2.2 Harvard/Von-Neumann architecture 10

2.3 Direct-Mapped cache . 11

2.4 Direct-Mapped Cache Address 12

2.5 N-way associative cache . 13

2.6 Alcatel One Touch Pop 2 cache hierarcy 15

2.7 Cache coherence problem . 19

2.8 Bus snoop . 21

2.9 Snoop Control Unit . 22

2.10 big.LITTLE technology . 22

2.11 Snoop coherence protocol . 24

2.12 MESI protocol . 27

2.13 MOESI protocol . 28

2.14 Shared memory . 30

2.15 Prime+Probe attack . 33

2.16 Prime+Probe histogram . 34

2.17 Flush+Reload attack . 35

2.18 Flush+Reload histogram . 36

2.19 Evict+Reload histogram . 37

2.20 Flush+Flush histogram . 38

2.21 DRAM structure . 39

3.1 Histogram of the cycle count register 44

3.2 Histogram of the perf interface 45

3.3 Histogram of the monotonic counter 47

3.4 Histogram of the dedicated thread timer 47

3.5 Eviction strategy access pattern 52

85

3.6 Cross-core cache eviction (Instruction-inclusive, Data-non-
inclusive) . 54

3.7 Cross-core instruction cache eviction (non-inclusive) 55
3.8 Cross-core, same-core histogram 55
3.9 Cross-CPU histogram . 56

4.1 Covert channel packets . 59
4.2 Flush+Flush on Samsung Galaxy S6 63
4.3 Cache template matrix - libinput.so 65
4.4 Tap and swipe events - Alcatel One Touch Pop 2 65
4.5 Tap and swipe events - OnePlus One 66
4.6 Tap and swipe events - Samsung Galaxy S6 66
4.7 Cache template matrix - AOSP keyboard 68
4.8 Word length detection - AOSP keyboard 69
4.9 Attack on Bouncy Castle AES - Evict+Reload and Flush+Reload 71
4.10 Attack on Bouncy Castle AES - Prime+Probe 72
4.11 Prime+Probe attack on TrustZone 74
4.12 Prime+Probe attack on TrustZone 74
4.13 Bitflips - LG Nexus 5 . 77
4.14 Bitflips - LG Nexus 4 . 78
4.15 Bitflips per row . 78

List of acronyms

PMCCNTR Performance Monitor Cycle Count Register. 44

PMUSERENR User Enable Register. 44

adb Android Debug Bridge. 51, 64

ACP Accelerator Coherency Port. 22

AES Advanced Encryption Standard. 2, 31, 32, 34, 36, 69, 70, 72

AOSP Android Open Source Project. 67, 68

ART Android Runtime Engine. 30, 63, 67

ASLR Address Space Layout Randomization. 64

AXI Advanced eXtensible Interface Bus. 21

DES Data Encryption Standard. 31

DFA Differential Fault Analysis. 2

DMA Direct Memory Access. 18, 19, 22

DPA Differential Power Analysis. 1

DRAM Dynamic Random-Access Memory. 2, 3, 8, 9, 39–41, 75–77, 83

DRM Digital Rights Management. 73

ECDSA Elliptic Curve Digital Signature Algorithm. 36

I/O Input/Output. 19, 22

87

JIT just-in-time. 29

LLC Last-Level-Cache. 35

LPDDR Low Power Double Data Rate. 40

LRU Least-Recently Used. 13, 48, 51, 52

MAC Maximum Activation Count. 75

MESI Modified Exclusive Shared Invalid. 23, 25–28, 85

MOESI Modified Owned Exclusive Shared Invalid. 23, 27, 28, 85

PMU Performance Monitoring Unit. 43, 44

PoC Point of Coherency. 18

PoU Point of Unification. 18

ROM Read-Only Memory. 51, 57

SCU Snoop Control Unit. 21, 22, 27

SDRAM Synchronous Dynamic Random-Access Memory. 40

SoC System on Chip. 7, 72

SPA Simple Power Analysis. 1

TLB Translation Lookaside Buffer. 13, 18

TRR Target Row Refresh. 75

VA Virtual address. 18

Bibliography

[1] AlFardan, Nadhem J. ; Paterson, Kenneth G.: Lucky thirteen:
Breaking the TLS and DTLS record protocols. In: Proceedings - IEEE
Symposium on Security and Privacy, 2013. – ISBN 9780769549774, S.
526–540

[2] Android Open Source Project: Configuring ART. https://source.
android.com/devices/tech/dalvik/configure.html. Version: 2015

[3] Archive, Crypto D.: Bouncy Castle. https://www.bouncycastle.org.
Version: 2015

[4] ARM: Cortex-A15 MPCore Processor Technical Reference Manual. ARM
Limited, 2013

[5] ARM Limited: ARM Cortex-A Series - Programmers Guide. 4.0. ARM
Limited, 2013

[6] ARM Limited: big.LITTLE Technology: The Future of Mobile. 2013

[7] ARM Limited: ARM® Cortex-A53 MPCore Processor Technical Reference
Manual. ARM Limited, 2014 http://infocenter.arm.com/help/

topic/com.arm.doc.ddi0500g/DDI0500G_cortex_a53_trm.pdf

[8] ARM Limited: ARM CoreLink CCI-400 Cache Coherent Interconnect
Technical Reference Manual. r1p5. ARM Limited, 2015

[9] Bernstein, Daniel J.: Cache-timing attacks on AES. http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf. Version: 2005

[10] Biham, Eli ; Shamir, Adi: Differential Fault Analysis of Secret Key
Cryptosystem. In: Advances in Cryptology – CRYPTO ’97 Bd. 1294.

89

https://source.android.com/devices/tech/dalvik/configure.html
https://source.android.com/devices/tech/dalvik/configure.html
https://www.bouncycastle.org
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500g/DDI0500G_cortex_a53_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500g/DDI0500G_cortex_a53_trm.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

London, UK, UK : Springer-Verlag, 1997 (CRYPTO ’97). – ISBN 3–
540–63384–7, 513–525

[11] Bogdanov, Andrey ; Eisenbarth, Thomas ; Paar, Christof ; Wie-
necke, Malte: Differential cache-collision timing attacks on AES with
applications to embedded CPUs. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) Bd. 5985 LNCS, Springer, 2010 (LNCS). – ISBN
3642119247, S. 235–251

[12] Boneh, Dan ; DeMillo, Richard A. ; Lipton, Richard J.: On the Im-
portance of Checking Cryptographic Protocols for Faults. In: Proceed-
ings of the 16th Annual International Conference on Theory and Application
of Cryptographic Techniques. Berlin, Heidelberg : Springer-Verlag, 1997
(EUROCRYPT’97). – ISBN 978–3–540–62975–7, 37–51

[13] Callan, Robert ; Zajic, Alenka ; Prvulovic, Milos: A Practical
Methodology for Measuring the Side-Channel Signal Available to the
Attacker for Instruction-Level Events. In: 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture. Washington, DC, USA :
IEEE Computer Society, 2014 (MICRO-47). – ISBN 978–1–4799–6998–
2, 242–254

[14] Carlisle, Adams: Constructing of Symmetric ciphers using the
CAST design Procedure. In: Designs, Codes, and Cryptography 12
(1997), Nov, Nr. 3, S. 283–316. http://dx.doi.org/10.1023/A:

1008229029587. – DOI 10.1023/A:1008229029587. – ISSN 09251022

[15] Culler, David E. ; Gupta, Anoop ; Singh, Jaswinder P.: Parallel
Computer Architecture: A Hardware/Software Approach. 1st. San Fran-
cisco, CA, USA : Morgan Kaufmann Publishers Inc., 1997. – ISBN
1558603433

[16] Daemen, Joan ; Rijmen, Vincent: The Design of Rijndael. Secaucus,
NJ, USA : Springer-Verlag New York, Inc., 2002. – 255 S. http:

//dx.doi.org/10.1007/978-3-662-04722-4. http://dx.doi.org/

10.1007/978-3-662-04722-4. – ISBN 3540425802

[17] Eck, Wim van: Electromagnetic radiation from video display units:
An eavesdropping risk? In: Computers and Security 4 (1985), Dec, Nr.

http://dx.doi.org/10.1023/A:1008229029587
http://dx.doi.org/10.1023/A:1008229029587
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-662-04722-4

4, S. 269–286. http://dx.doi.org/10.1016/0167-4048(85)90046-X.
– DOI 10.1016/0167–4048(85)90046–X. – ISSN 01674048

[18] Edge, Jake: Perfcounters added to the mainline. http://lwn.net/

Articles/339361/. Version: Jul 2009

[19] Genkin, Daniel ; Pachmanov, Lev ; Pipman, Itamar ; Tromer, Eran:
ECDH key-extraction via low-bandwidth electromagnetic attacks on PCs.
Cryptology ePrint Archive, Report 2016/129

[20] Goodman, James R.: Retrospective: Using cache memory to reduce
processor-memory traffic. In: ACM SIGARCH Computer Architecture
News Bd. 11. New York, NY, USA : ACM, 1983 (ISCA ’83 3). – ISBN
1581130589, 124–131

[21] Google Inc.: BoringSSL. https://boringssl.googlesource.com/

boringssl. Version: 2016

[22] Google Inc.: Full-Disk Encryption. https://source.android.com/

security/encryption/full-disk.html. Version: 2016

[23] Gruss, Daniel: Rowhammer bitflips on Skylake with DDR4. https:

//twitter.com/lavados/status/685618703413698562. Version: Jan
2016

[24] Gruss, Daniel ; Maurice, Clémentine ; Mangard, Stefan: Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
arXiv:1507.06955v1 2016 (2015). http://arxiv.org/abs/1507.06955

[25] Gruss, Daniel ; Maurice, Clémentine ; Wagner, Klaus: Flush +
Flush : A Stealthier Last-Level Cache Attack. In: arXiv:1511.04594
abs/1511.0 (2015), 1–14. http://arxiv.org/abs/1511.04594

[26] Gruss, Daniel ; Spreitzer, Raphael ; Mangard, Stefan: Cache tem-
plate attacks: Automating attacks on inclusive last-level caches. In:
Proceedings of the 24th USENIX Security Symposium, USENIX Associa-
tion, 2015. – ISBN 9781931971232, 897–912

[27] Gullasch, David ; Bangerter, Endre ; Krenn, Stephan: Cache
games - Bringing access-based cache attacks on AES to practice. In:
Proceedings - IEEE Symposium on Security and Privacy, IEEE Computer
Society, 2011. – ISBN 9780769544021, S. 490–505

http://dx.doi.org/10.1016/0167-4048(85)90046-X
http://lwn.net/Articles/339361/
http://lwn.net/Articles/339361/
https://boringssl.googlesource.com/boringssl
https://boringssl.googlesource.com/boringssl
https://source.android.com/security/encryption/full-disk.html
https://source.android.com/security/encryption/full-disk.html
https://twitter.com/lavados/status/685618703413698562
https://twitter.com/lavados/status/685618703413698562
http://arxiv.org/abs/1507.06955
http://arxiv.org/abs/1511.04594

[28] Gülmezoglu, Berk ; Inci, Mehmet S. ; Irazoqui, Gorka ; Eisen-
barth, Thomas ; Sunar, Berk: A Faster and More Realistic Flush +
Reload Attack on AES. In: Proceedings of the 6th international workshop
on Constructive Side-Channel Analysis and Secure Design (COSADE’15)
Bd. 9064, Springer, 2015 (LNCS). – ISBN 978–3–319–21476–4; 978–3–
319–21475–7, S. 111–126

[29] Hennessy, J.L. ; Patterson, D.a.: Computer architecture: a quantitative
approach - Appendix D. 3. San Francisco, CA, USA : Morgan Kaufmann
Publishers Inc., 2003. – ISBN 1558607242

[30] Hund, Ralf ; Willems, Carsten ; Holz, Thorsten ; Bochum, Ruhr-
university: Practical Timing Side Channel Attacks Against Kernel
Space ASLR. In: IEEE Symposium on Security and Privacy – S&P, IEEE,
2013, S. 191–205

[31] Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual.
2005. – 1–660 S. http://dx.doi.org/10.1535/itj.0903.05. http:

//dx.doi.org/10.1535/itj.0903.05. ISSN 15222594

[32] Intel: Intel’ s Advanced Encryption Standard (AES) Instructions Set.
2010

[33] Irazoqui, Gorka ; Eisenbarth, Thomas ; Sunar, Berk: S$A : A
Shared Cache Attack that Works Across Cores and Defies VM Sand-
boxing — and its Application to AES. In: IEEE Symposium on Security
and Privacy – S&P, IEEE Computer Society, 2015

[34] Irazoqui, Gorka ; Eisenbarth, Thomas ; Sunar, Berk: Cross Pro-
cessor Cache Attacks. In: Proceedings of the 2016 ACM Asia Con-
ference on Computer and Communications Security (AsiaCCS’16) (2016),
353–364. http://dx.doi.org/10.1145/2897845.2897867. – DOI
10.1145/2897845.2897867. ISBN 9781450342339

[35] Irazoqui, Gorka ; Inci, Mehmet S. ; Eisenbarth, Thomas ; Sunar,
Berk: Wait a minute! A fast, cross-VM attack on AES. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) Bd. 8688 LNCS, Springer,
2014 (LNCS). – ISBN 9783319113784, S. 299–319

[36] Irazoqui, Gorka ; IncI, Mehmet S. ; Eisenbarth, Thomas ; Sunar,

http://dx.doi.org/10.1535/itj.0903.05
http://dx.doi.org/10.1535/itj.0903.05
http://dx.doi.org/10.1535/itj.0903.05
http://dx.doi.org/10.1145/2897845.2897867

Berk: Know Thy Neighbor: Crypto Library Detection in Cloud.
In: Proceedings on Privacy Enhancing Technologies 1 (2015), Nr. 1,
25–40. http://dx.doi.org/10.1515/popets-2015-0003. – DOI
10.1515/popets–2015–0003. – ISSN 2299–0984

[37] Irazoqui, Gorka ; IncI, Mehmet S. ; Eisenbarth, Thomas ; Sunar,
Berk: Lucky 13 strikes back. In: ASIACCS 2015 - Proceedings of the
10th ACM Symposium on Information, Computer and Communications Se-
curity, ACM, 2015. – ISBN 9781450332453, 85–96

[38] Jedec Solid State Technology Association: Low Power Double
Data Rate 3. http://www.jedec.org/standards-documents/docs/

jesd209-4a. Version: 2013

[39] Käsper, Emilia ; Schwabe, Peter: Faster and timing-attack resistant
AES-GCM. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Bd. 5747 LNCS, Springer, 2009 (LNCS). – ISBN 364204137X, S. 1–17

[40] Kelsey, John ; Schneier, Bruce ; Wagner, David ; Hall, Chris:
Side channel cryptanalysis of product ciphers. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 1485 (1998), Nr.
2/3, S. 97–110. http://dx.doi.org/10.1007/BFb0055858. – DOI
10.1007/BFb0055858. – ISBN 3540650040

[41] Kim, Yoongu ; Daly, Ross ; Kim, Jeremie ; Fallin, Chris ; Lee, Ji H.
; Lee, Donghyuk ; Wilkerson, Chris ; Lai, Konrad ; Mutlu, Onur ;
Labs, Intel: Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors. In: Proceeding of the
41st Annual International Symposium on Computer Architecuture. Piscat-
away, NJ, USA : IEEE Press, 2012 (ISCA ’14). – ISBN 9781479943944,
1–12

[42] Kirill A. Shutemov: Pagemap: Do Not Leak Physical Ad-
dresses To Non-Privileged Userspace. https://git.kernel.org/

cgit/linux/kernel/git/torvalds/linux.git/commit/?id=

ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce. Version: 2015

[43] Kocher, Paul C.: Timing Attacks on Implementations of Diffie-

http://dx.doi.org/10.1515/popets-2015-0003
http://www.jedec.org/standards-documents/docs/jesd209-4a
http://www.jedec.org/standards-documents/docs/jesd209-4a
http://dx.doi.org/10.1007/BFb0055858
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce

Hellman, RSA, DSS, and Other Systems. In: Proc. of Advances in
Cryptology (CRYPTO 1996), Lecture Notes in Computer Scicence 1109 Bd.
1109, Springer, 1996 (LNCS). – ISBN 978–3–540–61512–5, 104–113

[44] Kocher, Paul C. ; Jaffe, Joshua ; Jun, Benjamin: Differential Power
Analysis. In: Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology. London, UK, UK : Springer-
Verlag, 1999 (CRYPTO ’99). – ISBN 3–540–66347–9, 388–397

[45] Könighofer, Robert: A fast and cache-timing resistant implemen-
tation of the AES. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) Bd. 4964 LNCS, Springer, 2008 (LNCS). – ISBN 3540792627,
S. 187–202

[46] Lal Shimpi, AnandTech: Answered by the Experts: ARM’s Cortex
A53 Lead Architect, Peter Greenhalgh. http://www.anandtech.com/

show/7591/answered-by-the-experts-arms-cortex-a53-lead-

architect-peter-greenhalgh. Version: 2013

[47] Lanteigne, Mark: How Rowhammer Could Be Used to Exploit Weak-
ness Weaknesses in Computer Hardware. http://www.thirdio.com/

rowhammer.pdf. Version: Mar 2016

[48] Limited, a R M.: ARM Architecture Reference Manual. ARM Limited,
2007. – 1–1138 S. http://dx.doi.org/ARMDDI0406C.c. http://dx.

doi.org/ARMDDI0406C.c. – ISBN 0201737191

[49] Limited, a R M.: ARM Architecture Reference Manual. ARM Limited,
2007. – 1–1138 S. http://dx.doi.org/ARMDDI0406C.c. http://dx.

doi.org/ARMDDI0406C.c. – ISBN 0201737191

[50] Lipp, Moritz ; Gruss, Daniel ; Spreitzer, Raphael ; Maurice,
Clémentine ; Mangard, Stefan: ARMageddon: Cache Attacks on
Mobile Devices. In: 25th USENIX Security Symposium (USENIX Se-
curity 16). Austin, TX : USENIX Association, August 2016. – ISBN
978–1–931971–32–4, 549–564

[51] Lipp, Moritz ; Maurice, Clémentine: ARMageddon: How Your
Smartphone CPU Breaks Software-Level Security and Privacy. In:
Black Hat Europe (2016), Nov. https://www.blackhat.com/eu-

http://www.anandtech.com/show/7591/answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh
http://www.anandtech.com/show/7591/answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh
http://www.anandtech.com/show/7591/answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh
http://www.thirdio.com/rowhammer.pdf
http://www.thirdio.com/rowhammer.pdf
http://dx.doi.org/ARM DDI 0406C.c
http://dx.doi.org/ARM DDI 0406C.c
http://dx.doi.org/ARM DDI 0406C.c
http://dx.doi.org/ARM DDI 0406C.c
http://dx.doi.org/ARM DDI 0406C.c
http://dx.doi.org/ARM DDI 0406C.c
https://www.blackhat.com/eu-16/briefings/schedule/index.html#armageddon-how-your-smartphone-cpu-breaks-software-level-security-and-privacy-4887
https://www.blackhat.com/eu-16/briefings/schedule/index.html#armageddon-how-your-smartphone-cpu-breaks-software-level-security-and-privacy-4887

16/briefings/schedule/index.html#armageddon-how-your-

smartphone-cpu-breaks-software-level-security-and-

privacy-4887

[52] Liu, Fangfei ; Yarom, Yuval ; Ge, Qian ; Heiser, Gernot ; Lee,
Ruby B.: Last-level cache side-channel attacks are practical. In: Pro-
ceedings - IEEE Symposium on Security and Privacy Bd. 2015-July, IEEE
Computer Society, 2015. – ISBN 9781467369497, S. 605–622

[53] Marforio, Claudio ; Ritzdorf, Hubert ; Francillon, Aurélien ;
Capkun, Srdjan: Analysis of the communication between collud-
ing applications on modern smartphones. In: Proceedings of the 28th
Annual Computer Security Applications Conference, ACM, 2012. – ISBN
9781450313124, 51–60

[54] Maurice, Clémentine ; Neumann, Christoph ; Heen, Olivier ; Fran-
cillon, Aurélien: C5: Cross-cores cache covert channel. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) Bd. 9148, Springer, 2015
(LNCS). – ISBN 9783319205496, S. 46–64

[55] Maurice, Clémentine ; Scouarnec, Nicolas le ; Neumann, Christoph
; Heen, Olivier ; Francillon, Aurélien: Reverse Engineering Intel
Last-Level Cache Complex Addressing Using Performance Counters.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) Bd. 9404,
Springer, 2015 (LNCS). – ISBN 9783319263618, S. 48–65

[56] Mowery, Keaton ; Keelveedhi, Sriram ; Shacham, Hovav: Are AES
x86 cache timing attacks still feasible? In: Proceedings of the 2012 ACM
Workshop on Cloud computing security workshop - CCSW ’12, ACM, 2012.
– ISBN 9781450316651, 19

[57] Neve, Michael: Cache-based vulnerabilities and SPAM analysis, UCL,
thesis, 2006. http://dial.academielouvain.be/vital/access/

services/Download/boreal:5035/PDF_01

[58] Neve, Michael ; Seifert, Jean-Pierre: Advances on Access-Driven
Cache Attacks on AES. In: Sac Bd. 4356, Springer, 2006 (LNCS). –
ISBN 978–3–540–74461–0, S. 147–162

https://www.blackhat.com/eu-16/briefings/schedule/index.html#armageddon-how-your-smartphone-cpu-breaks-software-level-security-and-privacy-4887
https://www.blackhat.com/eu-16/briefings/schedule/index.html#armageddon-how-your-smartphone-cpu-breaks-software-level-security-and-privacy-4887
https://www.blackhat.com/eu-16/briefings/schedule/index.html#armageddon-how-your-smartphone-cpu-breaks-software-level-security-and-privacy-4887
https://www.blackhat.com/eu-16/briefings/schedule/index.html#armageddon-how-your-smartphone-cpu-breaks-software-level-security-and-privacy-4887
https://www.blackhat.com/eu-16/briefings/schedule/index.html#armageddon-how-your-smartphone-cpu-breaks-software-level-security-and-privacy-4887
http://dial.academielouvain.be/vital/access/services/Download/boreal:5035/PDF_01
http://dial.academielouvain.be/vital/access/services/Download/boreal:5035/PDF_01

[59] Neve, Michael ; Seifert, Jean-Pierre ; Wang, Zhenghong: A refined
look at Bernstein’s AES side-channel analysis. In: Proceedings of the
2006 ACM Symposium on Information, computer and communications se-
curity - ASIACCS ’06, ACM, 2006. – ISBN 1595932720, 369

[60] Nilsen, Kelvin: Cache Issues in Real-Time Systems. 1994

[61] OpenSSL Software Foundation: OpenSSL Project. http://www.

openssl.org. Version: 2014

[62] Oren, Yossef ; Kemerlis, Vasileios P. ; Sethumadhavan, Simha ;
Keromytis, Angelos D.: The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security -
CCS ’15, ACM, 2015. – ISBN 9781450338325, 1406–1418

[63] Osvik, Dag A. ; Shamir, Adi ; Tromer, Eran: Cache Attacks and
Countermeasures: the Case of AES. In: Topics in Cryptology – CT-RSA
Bd. 3860, Springer, 2005 (LNCS), S. 1–20

[64] Page, Dan: Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. In: IACR Cryptology ePrint Archive 2002 (2002), Nr. August,
S. 169

[65] Papamarcos, Mark S. ; Patel, Janak H.: A low-overhead coherence
solution for multiprocessors with private cache memories. In: ACM
SIGARCH Computer Architecture News Bd. 12. New York, NY, USA :
ACM, 1984 (ISCA ’84). – ISBN 0–8186–0538–3, 348–354

[66] Percival, Colin: Cache missing for fun and profit. http://pdos.csail.
mit.edu/6.858/2011/readings/ht-cache.pdf. Version: 2005

[67] Pessl, Peter ; Gruss, Daniel ; Maurice, Clémentine ; Schwarz,
Michael ; Mangard, Stefan: Reverse Engineering Intel DRAM
Addressing and Exploitation. In: ArXiv e-prints abs/1511.0 (2015).
http://arxiv.org/abs/1511.08756

[68] Rebeiro, Chester ; Selvakumar, David ; Devi, A. S. L.: Bitslice Im-
plementation of AES. In: Cryptology and Network Security – CANS Bd.
4301, Springer, 2006 (LNCS), 203–212

[69] Savaş, Erkay ; Yilmaz, Cemal: A Generic Method for the Analysis

http://www.openssl.org
http://www.openssl.org
http://pdos.csail.mit.edu/6.858/2011/readings/ht-cache.pdf
http://pdos.csail.mit.edu/6.858/2011/readings/ht-cache.pdf
http://arxiv.org/abs/1511.08756

of a Class of Cache Attacks: A Case Study for AES. In: The Computer
Journal 58 (2015), Nr. 10, 2716–2737. http://dx.doi.org/10.1093/

comjnl/bxv027. – DOI 10.1093/comjnl/bxv027. – ISSN 0010–4620

[70] Schlegel, Roman ; Zhang, Kehuan ; Zhou, Xiaoyong: Sound-
comber: A stealthy and context-aware sound trojan for smartphones.
In: Proceedings of the 18th Annual Network and Distributed System Secu-
rity Symposium (NDSS), The Internet Society, 2011, 17–33

[71] Schneier, Bruce: Description of a New Variable-Length Key, 64-Bit
Block Cipher (Blowfish). In: Fast Software Encryption. Lecture Notes in
Computer Science. Cambridge Security Workshop Proceedings (December
1993) Bd. 809. London, UK, UK : Springer-Verlag, 1994. – ISBN 978–
3–540–58108–6, 191–204

[72] Seaborn, Mark: Exploiting the DRAM rowhammer bug to gain
kernel privileges. http://googleprojectzero.blogspot.com/2015/

03/exploiting-dram-rowhammer-bug-to-gain.html. Version: Mar
2015

[73] Seaborn, Mark: Exploiting the DRAM rowhammer bug to gain kernel
privileges. https://www.blackhat.com/docs/us-15/materials/us-

15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-

Kernel-Privileges.pdf. Version: Aug 2015

[74] Sorin, Daniel J. ; Hill, Mark D. ; Wood, David A.: A Primer
on Memory Consistency and Cache Coherence. 1st. Morgan &
Claypool Publishers, 2011. – 1–212 S. http://dx.doi.org/10.

2200/S00346ED1V01Y201104CAC016. http://dx.doi.org/10.2200/

S00346ED1V01Y201104CAC016. – ISBN 9781608455645

[75] Spreitzer, Raphael ; Gérard, Benoı̂t: Towards more practical time-
driven cache attacks. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) Bd. 8501 LNCS, Springer, 2014 (LNCS). – ISBN
9783662438251, S. 24–39

[76] Spreitzer, Raphael ; Plos, Thomas: Cache-Access Pattern Attack on
Disaligned AES T-Tables. In: Constructive Side-Channel Analysis and
Secure Design – COSADE Bd. 7864, Springer, 2013 (LNCS), 200–214

http://dx.doi.org/10.1093/comjnl/bxv027
http://dx.doi.org/10.1093/comjnl/bxv027
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016
http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016
http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016
http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016

[77] Spreitzer, Raphael ; Plos, Thomas: On the applicability of time-
driven cache attacks on mobile devices. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) Bd. 7873 LNCS, Springer, 2013 (LNCS). –
ISBN 9783642386305, S. 656–662

[78] Sweazey, P. ; Smith, a. J.: A class of compatible cache consistency pro-
tocols and their support by the IEEE futurebus. In: ACM SIGARCH
Computer Architecture News Bd. 14. Los Alamitos, CA, USA : IEEE
Computer Society Press, 1986 (ISCA ’86 2). – ISBN 0–8186–0719–X,
414–423

[79] Systems, Multicore: Fundamentals of Parallel Computer Architecture.
1st. Chapman & Hall/CRC, 2015. – ISBN 9780984163007

[80] Takahashi, Junko ; Fukunaga, Toshinori ; Aoki, Kazumaro ; Fuji,
Hitoshi: Highly accurate key extraction method for access-driven
cache attacks using correlation coefficient. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) Bd. 7959 LNCS, Springer, 2013
(LNCS). – ISBN 9783642390586, S. 286–301

[81] Tromer, Eran ; Osvik, Dag A. ; Shamir, Adi: Efficient cache attacks
on AES, and countermeasures. In: Journal of Cryptology 23 (2010),
Nr. 1, S. 37–71. http://dx.doi.org/10.1007/s00145-009-9049-y. –
DOI 10.1007/s00145–009–9049–y. – ISBN 978–3–540–31033–4

[82] Tsunoo, Yukiyasu ; Tsujihara, Etsuko ; Minematsu, Kazuhiko ;
Miyauchi, Hiroshi: Cryptanalysis of Block Ciphers Implemented
on Computers with Cache. In: International Symposium on Information
Theory and Its Applications Bd. 2779, Springer, 2002 (LNCS), S. 803–806

[83] Veen, Victor van d. ; Fratantonio, Yanick ; Lindorfer, Martina ;
Gruss, Daniel ; Maurice, Clémentine ; Vigna, Giovanni ; Bos, Her-
bert ; Razavi, Kaveh ; Giuffrida, Christiano: Drammer : Determin-
istic Rowhammer Attacks on Commodity Mobile Platforms. In: ACM
Conference on Computer and Communications Security – CCS, 2016

[84] Weiß, Michael ; Heinz, Benedikt ; Stumpf, Frederic: A cache tim-
ing attack on AES in virtualization environments. In: Lecture Notes

http://dx.doi.org/10.1007/s00145-009-9049-y

in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) Bd. 7397 LNCS, Springer,
2012 (LNCS). – ISBN 9783642329456, S. 314–328

[85] Weiß, Michael ; Weggenmann, Benjamin ; August, Moritz ; Sigl,
Georg: On cache timing attacks considering multi-core aspects in
virtualized embedded systems. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) Bd. 9473, Springer, 2015 (LNCS). – ISBN
9783319279978, S. 151–167

[86] Yarom, Yuval ; Benger, Naomi: Recovering OpenSSL ECDSA
Nonces Using the Flush+Reload Cache Side-channel Attack. In: Cryp-
tology ePrint Archive, Report 2014/140 (2014)

[87] Yarom, Yuval ; Falkner, Katrina: FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack. In: USENIX Security
Symposium, USENIX Association, 2014, S. 719–732

[88] Zeng, Thomas M.: The Android ION memory allocator. http://lwn.

net/Articles/480055/. Version: 2012

[89] Zhang, Kehuan ; Wang, Xiaofeng: Peeping Tom in the Neighbor-
hood : Keystroke Eavesdropping on Multi-User Systems. In: USENIX
Security Symposium Bd. 20, USENIX Association, 2009, 23

http://lwn.net/Articles/480055/
http://lwn.net/Articles/480055/

	Introduction
	Motivation
	Key Challenges and Results
	Contributions
	Test devices
	Outline

	Background
	CPU caches
	Cache coherence
	Shared memory
	Cache Attacks
	DRAM

	Attack primitives
	Timing Measurements
	Cache Eviction
	Defeating the Cache-Organization

	Attack Case Studies
	High Performance Covert-Channels
	Spying on User input
	Attacks on Cryptographic Algorithms
	Rowhammer on ARM

	Countermeasures
	Conclusion
	List of tables
	List of figures
	List of acronyms
	References

