
When virtualization encounter AFL
- A Portable virtual device fuzzing framework with AFL

Jack Tang, Moony Li

Twitter: @jacktang310, @Flyic

TrendMicro, Security Researcher

Jack_tang@trendmicro.com, moony_li@trendmicro.com

1. Abstract

Along with virtualization technology adopted by both enterprise and customer popularly,

virtual machines escape attacking become more and more critical which could NOT be ignored.

Because of virtual devices’ nature character (virtual device emulation is in host level, guest can

access virtual devices with arbitrary data), they are a big attack surface to achieve virtual

machine escaping. In fact, among those reported virtual machines escape attacking, the virtual

device attacking takes a big ratio. For example, the VENOM attacking (Reference 5.1).

Several fuzzing methods towards virtual devices have been released including dump I/O

traces and replay in guest OS, conformance fuzzing to constraint virtual device in proper internal

state and so forth. However, rare of them considered calculating and controlling code coverage

and control in intension. And also, rare of them consider keep their fuzzing framework portable

for difference virtualization software.

So what happens when virtualization fuzzing encounter with AFL? We would like give you

one possible answer. Our portable virtual device fuzzing framework with AFL could solve both of

the two challenges—code coverage feedback and portability.

mailto:Jack_tang@trendmicro.com
mailto:moony_li@trendmicro.com

2. Outline

2.1 Problem Statement:

Security researchers have released several good methods to hunt vulnerabilities in virtual

devices (Reference 5.2, 5.4). We summarize these methods into several basic types in general.

I. Passive or active fuzzing I/O requests from guest OS

In guest OS (for example Linux or Windows), pouring fuzzing I/O requests traffic

into virtual device and monitor the virtual device‘s status from host side. The fabricated

I/O requests are usually encapsulated with system call related to virtual devices or direct

I/O access towards virtual devices. If the virtualization software panic, analyzing the

panic and find vulnerabilities.

Usually, real I/O towards specific devices would be dumped and replay the I/O

requests in the guest OS.

a. Advantage:

A. Simple to implement.

B. No need to know the hardware protocol in detail.

b. Disadvantage:

A. No code coverage feedback and control.

Hard to know testing status (for example: code coverage) and base on the status to

adjust and optimize the input data.

B. Incomplete fuzzing by design

For there exist multiple life-time stages (e.g. recognition, initialization, configuration,

R/W, de-initialization) and functions for virtual devices, fuzzing in runtime guest OS could usually

only cover some part of the whole stages (e.g. only normal R/W) and function by design.

II. Conformance fuzzing test for virtual devices

In fact, there exists so many failure testing cases because of in-conformant

internal state of registers and memories for virtual devices in I/O dump and trace replay

solution mentioned before. One possible solution is to introduce Symbolic Execution to

retrieve the constraint input data to keep virtual devices in right state.

a. Advantage:

A. It could really exclude much of meaningless or duplicated input data for fuzzing.

This method could make the fuzzing scope deeper.

b. Disadvantage:

A. Time consuming to find input constraints which are impractical

B. Also lack of code coverage statistic and control

III. Code reviewing on the virtual device code.

a. Advantage: flexible.

b. Disadvantage:

Efficiency is low.

Hard to be scalable automatically.

So we introduce our solution to make virtual device testing more controllable and

efficient: A Portable virtual device fuzzing framework with AFL (American Fuzzy Lop, see

reference 5.3).

Our approach has 2 key word: “portable”, “AFL”.

 “Portable” is got from light-weight BIOS which we describe in the next part.

 “AFL” is in order to get fuzzing status feedback. As you know, AFL is a popular and

effective fuzzing framework which has branch coverage feedback and is based on the testing

coverage feedback to mutate and tune input test data automatically to cover more code branch.

But how to adjust AFL to fuzzing various virtual devices and meanwhile can support various

virtualization software (for example: Qemu+KVM, virtual box …) is a challenging work.

2.2 Our Approach

As known, one of the most essential attack surface of devices is a series of I/O

communication. Our approach is from the idea that we take communicating with a device as a

sequence of accessing specified memory or IO space address with specified data. The specified

data is our fuzzing test’s input data.

In brief, our solution is composed of three parts: a customized BIOS system (named CBS)

and device control clients (named DCC) and AFL integration.

CBS (Customized BIOS System). CBS runs in the virtualization software. The CBS mainly does

following jobs:

1. Discovering attached target devices

2. Initialize serial port device as communication channel

3. Run a MIOPS (Memory and IO space Operation Proxy Server). The server receives

operation instructions from serial port and access specified address according to the

received instructions.

DCC (Device Control Client). DCC runs in the host side. The DCC does following jobs:

1. Reading input data.

2. Fork virtualization software process which runs CBS in it.

3. Initialize target devices by sending memory or IO access instruction sequence to

MIOPS via CBS’ serial port channel.

4. Sending memory or IO access instruction with input data to MIOPS via serial port

channel.

Integrating AFL is to get fuzzing coverage feedback and mutate the input data automatically.

DCC would read in mutated data and deliver it to CBS. CBS would execute the data as I/O

requests, and also CBS execution status (e.g. crash) would be monitored and notify to AFL.

The approach gains many advantages which are listed as follow:

1. Portable

Our solution has few requirements to target virtualization software. The only requirement

is the target virtualization software can start customized BIOS in a guest machine with a serial

port device. So our approach can support a number of virtualization software.

2. Good performance

The fuzzing of our solution does not depend on guest operation system which is usually

time-consuming to bootstrap and run.

Because the customized BIOS system is not a full operating system, it only focus direct I/O

with devices, the speed to launch the BIOS system is very fast.

3. Direct

The solution directly communicates with virtual device without communicating with device

drivers. In most case, device driver’s code is much complex and vulnerable than virtual device

code. By communicating directly with virtual device, we can avoid interference from the device

driver.

4. Code coverage feedback & control

This is why we introduce AFL. AFL’s function let our solution get the capabilities.

2.3 Solution implementation

Virtualization Software Process
(VSP)

Customized BIOS System

(CBS)

Instrumented Target
Virtual Device X

(e.g. USB)

Memory / IO space

Host OS

Device Control
Client
(DCC)

Virtual
Serial
Port

Memory and IO space
Operation Proxy Server

(MIOPS)

afl-fuzz

Device control data
(DCD)

Virtual Device1
(e.g. NIC,
e1000)

Virtual Device2
(e.g. SCSI)

Virtual Device3
(e.g. Printer)

Virtual Device4
(e.g. Audio

Card)

AFL Target Processes (ATP)

Memory/IO Access

request (MIOA request)
Commands entry

[1] instrument target device

[2] afl-fuzz loop

[3] DCC read in DCD
[4]

MIOPS
execute
request

[5] afl-fuzz caculate code coverage and mutate

Figure 1 Overall Architecture and workflow

The figure above shows the architecture of our solution architecture. We will explain every

part in the architecture in detail.

 In brief, target device in Virtual Software Process (VSP) would be instrumented for

execution trace as step 1. Then afl-fuzz would launch AFL Target Process(ATP) which contains

Device Control Client(DCC) and VSP in a loop as step 2. DCC would read in Device Control Data

(DCD) , translate it to MIOA (Memory / IO accessing) requests and transfer the request to

Memory and IO space Operation Proxy Server(MIOPS) in Customized BIOS System (CBS)as step 3.

MIOPS in CBS would execute the request so as to hit the execution trace in target virtual devices

as step 4. By design, afl-fuzz would calculate code coverage and mutate the DCD to generate

new DCD in the whole loop as step 5.

2.3.1 Customized BIOS System(CBS)

CBS (Customized BIOS System) is a simple BIOS running in the virtualization software which

would initiate virtual devices and prepare basic I/O execution environment for fuzzing. Actually,

vulnerabilities of virtual devices are more suitable to be hunt in BIOS than heavy-weight OS(e.g.

Linux) because I/O operations are almost the same for the two environments but BIOS is usually

more “light” than OS.

The CBS mainly does following jobs:

1. Discovering attached target devices

2. Initialize serial port device

3. Run a MIOPS (Memory and IO space Operation Proxy Server).

2.3.1.1 Seabios customization

The CBS is a simple BIOS system which is customized with Seabios project (reference5.7). So

why we select it as code base?

1. Seabios is very light weight.

2. Seabios provides basic device/bus support (for example: basic PCI bus). This saves effort for

testing PCI device.

3. Seabios is open source which code is easy to understand.

In view of traditional BIOS, Seabios ‘s code execution flow can be divided into 3 phases (refer

5.8):

1. POST (Power On Self Test) phase:

The goal of the phase is to initialize internal state, initialize external interfaces, detect and

setup hardware, and to then start the boot phase.

2. Boot phase:

 The goal of the boot phase is to load the first sectors which contain boot loader into

memory and start execution of that boot loader. After boot loader is executed, operation

system will be launched. As we do not need boot to operation system, the boot phase code is

removed in CBS.

3. BIOS runtime service phase:

 The goal of this phase is to support basic and legacy I/O system service for runtime operation

system. The BIOS runtime service usually provides legacy calling interfaces which are compatible

with BIOS standards specification. Also, this part is not needed in CBS.

Actually, CBS would only keep the POST phase and customized it as follow:

1. Detect physical memory

2. Setup platform hardware (for example: PCI bus, clock…)

3. Setup necessary device hardware (for example: serial port device which is used as

communication channel in our solution)

4. Recognize the devices which would be fuzzed.

5. Start to run MIOPS (Memory and IO space Operation Proxy Server) handle loop. The

specific serial port is a communication channel which we can send request from DCC to

MIOPS.

2.3.1.2 Memory and IO space Operation Proxy Server (MIOPS)

 MIOPS is a memory/IO access proxy server is responsible for handling MIOA (Memory/IO

Access) request which is sent from DCC. MIOPS’ goal is to parse MIOA request and execute

it in CBS.

I. What is MIOA request (Memory/IO Access request)

MIOA request is a very simple protocol which describes low level IO access request

which is usually described in pseudo disassembly code. For example:

“inb <address>”

“inw <address>”

“inl <address>”

“outb <address> <value>”

“outw <address> <value>”

“outl <address> <value>”

“write <address> <value> <length>”

“read <address> <length>”

II. Execute MIOA request

When MIOPS receives MIOA requests from DCC, it parses the request and does real

IN/OUT instruction or memory space access operation. The handling process is very like

QEMU ‘s QTest framework (refer 5.9). The code snippet is as following:

Figure 2 Process function code snippet of MIOA request

As we wish, the execution of fuzzed rquests in MIOPS would trigger potential vulnerability of

virtual devices. Finally, the virtual device bug could cause VSP to crash.

III. Poll device status instead of using interruption

In order to simplifying our CBS, we do not support interrupt mechanism which is usually

common design in guest OS for target virtual device status notification. To get the result of

virtual device request‘s result, we use another solution to replace interruption: Polling.

In order to get target virtual device request’s result, we follow RFC(Requests For Comments)

documents to poll specific registers or memory space address before timeout.

Following is an example for waiting for USB XHCI device’s request to set specific bits:

Figure 3 Code snippet of poll result of USB XHCI device’s request to set bits

2.3.1.3 Virtual Serial Port

 Actually, serial port device is a very common device which is supported by virtualization

software. In our solution, it is designed to bridge the connection of DCC and CBS. Why we

choosing virtual serial port as the connection channel is based on consideration as follow:

1. No need to modify virtual machine code

To make solution portable, the less modification to your target virtual machine,

the better the solution is. For CBS or DCC, what they just should do is to open the

device and read/write data stream from/to it.

2. General device for virtual machine

Among all virtual devices supported by virtual machine, Virtual serial port may

be one of the most basic and common device.

2.3.2 Device Control Client (DCC)

DCC is running in host side which goal is to generate device control request base on tester’s

requirement and communicate requests with MIOPS in CBS.

The workflow of DCC can be divided into 4 parts:

1. Launch VSP to load CBS.

2. Ping MIOPS in CBS.

3. Initialize target virtual device.

4. Parsing DCD and translating to MIOA request.

2.3.2.1 Launch VSP to load CBS

 Actually, VSP is the run-time process instance of your target virtual machine. Usually, CBS

could be loaded in VSP‘s guest OS. DCC forks VSP directly.

For example, on KVM+QEMU, we use following command:

mkfifo jack_pipe

mkfifo jack_pipe1

 qemu-system-x86_64 -bios out/bios.bin -serial pipe:jack_pipe -serial pipe:jack_pipe1

This means the bios.bin (which contains CBS) would be launched with 2 serial ports which link

respective pipes on host.

2.3.2.2 Ping MIOPS in CBS.

DCC will open the pipe and write “hello”. If MIOPS returns “ok”, this means MIOPS is ready for

receiving MIOA requests.

2.3.2.3 Initialize target virtual device

Communicating MIOPS with MIOA requests, we can initialize target virtual device. If we want

to test the initialization code, this step could be ignored. For many devices, initialization is

necessary in order to handle requests to it properly. For example, USB XHCI devices

initialization would be as following steps:

1. Find XHCI controller device from PCI bus base on device ID and function ID.

 2. Read PCI capability configuration of XHCI controller device, for example: operational

registers address, doorbell address …

 3. Map specific memory space to XHCI controller device memory for specific function. For

example: command queue, event queue.

 4. Find USB device attached to the controller.

 5. Initialize device basing on USB device type

In essence, these initialization steps are a series of IOMA requests. Taking USB XHCI device

initialization for example, the MIOA requests snippet is as follow:

Figure 4 MIOA requests snippet for USB XHCI device initialization

2.3.2.4 Parse DCD and translate to MIOA request

DCD is Device Control Data which is essentially sequence of MIOA requests. Usually we

format DCD suitable for AFL fuzz and put it in a test case file.

Taking USB XHCI device for example, the DCD looks like this:

Figure 5 DCD for testing USB XHCI device

 typedef struct _command_entry

{

 u32 _slotid;

 u32 _command_id;

 void* _inctx;

 u8 _input_buf[32];

}command_entry_t;

This DCD contains 2 USB XHCI commands as defined above. The first_command_id (the first 4

bytes is green underlined) is “Address Device”. Next part which is red underlined is the

parameter (actually it is _input_buf) for “Address Device” command. The second command id

(the second 4 bytes is green underlined) is “Configure Endpoint”. Next part which is red

underlined is the “Configure Endpoint” command’s parameter. (USB XHCI spec refer 5.10)

Similarly, we implement DCD format for floppy device as following:

struct fdc_command

{

unsigned char cid;

unsigned int args_count;

unsigned int args[0];

};

The DCD for testing floppy device contains several fdc_command structures. The cid field in

fdc_command structure represents floppy device control command id . For example,

 0x6: FD_CMD_READ,

0x5: FD_CMD_WRITE. (refer 5.11)

For DCC translating the DCD content to MIOA request, one fdc_command for testing floppy

device in DCD looks like this:

 struct fdc_command

{

cid = 0x8e

args_count = 0x5

args[] = [0x45, 0x12, 0x34, 0x7f, 0x98]

};

The command structure will be translated to following MIOA requests

“outb 0x3f5 0x8e”

“outb 0x3f5 0x45”

“outb 0x3f5 0x12”

“outb 0x3f5 0x34”

“outb 0x3f5 0x7f”

“outb 0x3f5 0x98”

Actually, the 0x3f5 is floppy controller’s FIFO port. (Refer 5.11)

The snippet above is very simple. Some translation from command structure to MIOA

requests would be complex. Taking USB XHCI device for example, we need follow USB XHCI

specification to generate MIOA requests. Some MIOA request may need special attributes (e.g.

XHCI command queue mapping physical memory address, XHCI event queue mapping physical

memory address) which should be gotten from previous USB XHCI device initialization.

2.3.3 AFL integration

In this part, you will see why traditional AFL fuzzing is integrated into our whole solution.

What is more, you will know how we tailor AFL to be suitable for virtual devices fuzzing with

detail in practice.

Virtualization Software Process
(VSP)

AFL Instrumented Target
Virtual Device X

Tailored AFL architecure

Device
Control
Client
(DCC)

afl-fuzz

Device control data
(DCD)

AFL Target Processes (ATP)

[2] Remove afl instrument existence check
in afl-fuzz and launch afl-fuzz DCC

[3] DCC read in DCD

[8] afl-fuzz caculates code coverage (of VSP) and
mutate DCD and record crash (of VSP)

[1]AFL instrument device parts in
VSP (e.g.QEMU)

[4] DCC
communicate to VSP
with Qtest and wait
for VSP

[5] VSP crashes

[6] waitpid() returns

[7] DCC Checks returned
crash status(WIFSIGNALED)
and crash itself

Figure 6 Tailored AFL fuzzing system

The figure above shows the tailored AFL fuzzing system in detail in practice.

2.3.3.1 AFL introduction

American fuzzy lop (i.e. AFL) is a security-oriented fuzzer that employs a novel type of

compile-time instrumentation and genetic algorithms to automatically discover clean,

interesting test cases that trigger new internal states in the targeted binary.

Actually, AFL is perfect generic fuzzing method towards open-source applications (e.g. media

player, pdf reader) which handle structured data in file without complex semantic and

grammars. Also AFL provides distinct code coverage feedback and mutation strategy to increase

code coverage gradually.

Based on the perfect compile-time instrumentation and code coverage mechanism, AFL has

been enhanced to adjust to non-traditional scenario. For example, fuzzing kernel file system (i.e.

fuzzing ext4 file system type for file read/write/mount, referring to 5.5), Linux system call

fuzzing in QEMU (e.g. Triforce, Referring to 5.6).

2.3.3.2 Basic Workflow with AFL integrated

2.3.3.2.1 Setup instrumentation for target devices

Instrumentation at compile time using AFL-gcc to compile the target virtual device source

code (for example: hcd-xhci.c in QEMU if your target device is USB) is an efficient way for code

coverage trace.

If the target virtual device is NOT open source (for example: vmware), we reverse the

binary code(i.e. the executable file of VSP process) to determine the target virtual device ‘s

process address scope, and patch binary instruction into the binary code within the scope.

By instrument the code of target devices in VSP process leaving the other part un-touched

at all, the code coverage calculation and feedback could be more accurate. And also the whole

fuzzing performance could be higher.

2.3.3.2.2 Setup trace and feedback with AFL

Using AFL-fuzz to launch DCC with DCD as input argument, then DCC will fork VSP

attaching with target virtual device. The VSP would then load up CBS which would visit and fuzz

target virtual devices.

Internally, afl-fuzz would mutate the DCD according to its mutation strategies (e.g. bit

flip, insert, delete, splicing) and trigger ATP(i.e. VSP and DCC) running. Whenever ATP is finished,

new code coverage is calculated and new DCD is mutated for next try. Here below is the glance

of afl-fuzz GUI which target device is USB.

Figure 7 Fuzzing UI glance

2.3.3.2.3 Handle device controls internally in AFL loop

MIOPS in CBS is a memory/IO access proxy server is responsible for handle MIOA

request and execute it in CBS.

DCC is the bridge between DCD and MIOPS. DCC would read DCD as device control

command and then convert it to MIOA request to MIOPS.

I. Encoding MIOA requests to DCD

 All the MIOA requests should be encoded to DCD which is suitable for AFL fuzz. Basically,

every field in MIOA is encoded into special Bits/Bytes. AFL would naturally mutate(e.g. Bit/Bytes

flip) this kind of data structure and generate new DCD for further fuzz.

II. Devices communication loop

Step 1: VSP starts up

VSP would load up CBS as its guest VM which is relatively light weight. CBS in guest VM

would start and discover the attached device, and then start MIOPS.

Step 2: After MIOPS is ready, DCC would communicate with MIOPS to initialize the target

devices. For example, if the target virtual device is USB XHCI device, the basic information would

include doorbell address, command ring address, event address.

Step 3: After target device is ready, DCC will read in DCD as sequence of commands, translate

the command into MIOA request and send the request to CBS via virtual serial port finally.

Step 4: MIOPS would receive the MIOA request through virtual serial port, will execute

corresponding request. For example, if MIOPS receives request “out 0xf000 0x8” in MIOA

request, it will use ” out” instruction to access port address 0xf000 with data 0x8.

2.3.3.3 Why to tailor AFL

Just like the other non-traditional AFL fuzzing, virtual device fuzzing in virtual machine (e.g.

QEMU) is NOT naturally suitable to be fuzzed by traditional AFL.

The major obstacles which are different from traditional AFL fuzzing could be listed as below:

I. Encoding DCD into structured data file

 Traditionally, there exists an input file which is handled by target process during afl-fuzz, and

the data structure of the input file should be formatted suitable for mutation (e.g. flip-bytes,

flip-bit, insert, delete, spice). So we decide to encode the bus/device protocol in DCD and extract

the CDC as input file.

II. AFL fuzz multiple processes

 Actually there exists two processes (VSP and DCC)using in our solution. How to synchronize the

two processes including crash, start/end synchronization to “cheat” afl-fuzz as if it is fuzzing one

process seems a potential headache.

III. Instrument target process in part

In general, we only care about virtualization device part instead of the whole one in VSP

during afl-fuzz. Because unnecessary part except the virtualization device (e.g. QEMU

initialization, hypervisor, binary translation) would not only drop the fuzzing performance but

also introduce unexpected crash/hang/abortion/failure for AFL fuzzing.

So we should find tricks to instrument part of the source code when AFL compile or

instrument part of the binary code for the executable file.

2.3.3.4 Tips in practice

These are key tricks which we found out in practice for your reference.

2.3.3.4.1 Part instrumentation during compile for open-source software

 Actually, during AFL compilation, afl-gcc would compile the source code into the ASM

code(i.e. assemble code) using gcc , parse all branch instruction in ASM code , insert extra ASM

code for instrumentation and compile the modified ASM code to object file finally.

Hence, we introduce ticks which we call “conditional compilation”. Actually, we could afl-gcc

the interesting source file leaving the other source file compiled by gcc instead of afl-gcc. The

afl-instrumented object file could be linked into executable file without any side effect.

Here below is the sample code in make file for conditional compilation. It means when any

source file (*.c) related with target (*.o) hcd-xhci is found, then we would use afl-gcc to

compile. Any other source file would be compiled by gcc.

%.o: %.c

 $(call quiet-command,\

 if [$@ = "hw/usb/hcd-xhci.o" -o $@ = "hw/usb/dev-storage.o"] ;\

 then \

 echo afl-gcc... $< $@ ;\

 afl-gcc $(QEMU_INCLUDES) $(QEMU_CFLAGS) $(QEMU_DGFLAGS) $(CFLAGS)

$($@-cflags) -c -o $@ $< ;\

 else \

 echo cc... $< $@ ; \

 $(CC) $(QEMU_INCLUDES) $(QEMU_CFLAGS) $(QEMU_DGFLAGS) $(CFLAGS)

$($@-cflags) -c -o $@ $< ;\

2.3.3.4.2 Part instrumentation executable file for close-source software

Actually, some virtualization software such as Vmware WorkStation is close-sourced. The best

practice for setting up trace towards target software is to instrument its executable file. Usually,

you should detect the (virtual devices) code scope for instrument by reverse engineering. Like

instrumentation in compile time, we should modify and patch(e.g. inline hook) all the branch

instruction using trampoline code like _afl_maybe_log(). The trampline code would look like

this:

static const u8* trampoline_fmt_32 =

"/* --- AFL TRAMPOLINE (32-BIT) --- */\n"

".align 4\n"

"leal -16(%%esp), %%esp\n"

"movl %%edi, 0(%%esp)\n"

"movl %%edx, 4(%%esp)\n"

"movl %%ecx, 8(%%esp)\n"

"movl %%eax, 12(%%esp)\n"

"movl $0x%08x, %%ecx\n"

"call __afl_maybe_log\n"

"movl 12(%%esp), %%eax\n"

"movl 8(%%esp), %%ecx\n"

"movl 4(%%esp), %%edx\n"

"movl 0(%%esp), %%edi\n"

"leal 16(%%esp), %%esp\n"

"/* --- END --- */\n"

We could add extra executable segment to contain trampoline code and initialization code. At

last, we should modify the entry point of the executable file to our initialization code.

2.3.3.4.3 Multiple process fuzzing in afl-fuzz

Actually, our aim is to afl-fuzz DCC process, and at the same time DCC would launch VSP

process which is instrumented and traced for code coverage control. Internally, VSP process

would synchronize its important events(e.g. crash, start/exit process)in its life cycle with DCC

process.

I. AFL naturally shares instrumentation trace info crossing processes

using shared memory

 This is good news for fuzzing two-process targets. In AFL, actually, all branch instructions in

target process would be instrumented with API like

static inline void afl_maybe_log(abi_ulong cur_loc)

 and the cur_loc means offset address during compilation.

The instrumentation info (i.e. cur_loc variable) is hashed and recorded into system shared

memory (i.e. Linux shmat) which is cross processes if the instrumented target process is

launched.

 AFL would NOT care whether the target process is single process or multiple processes if only

the instrumentation info is generated in shared memory.

II. Remove afl instrumentation existence check in afl-fuzz

 When afl-fuzz launch the target process (DCC in our design), it would check afl instrument

existence before processing on. So we should remove this kind of code in afl-fuzz because DCC

has not any afl instrument code in its process.

 Actually, the command for afl fuzzing is like this:

 ${test_prog} is DCC.

 ${test_root}/IN/ contains structured data file of DCD.

 afl-fuzz -t 90 -m 1024 -i ${test_root}/IN/ -o ${test_root}/OUT/ ${test_prog} @@

 (@@ means file path of every file in ${test_root}/IN/ folder.)

III. Check crash status for VSP

 Another obstacle is that: traditionally afl-fuzz would just monitor and collect crashes from

target process which is DCC process in our solution, however, what interesting crashes we really

care about is VSP process. So the crash of VSP should be delivered to DCC as one practical trick

in our design.

Actually, there exist many ways you can check crash status of VPS in practice.

1. Fork and Waitpid()

The basic principle is that: DCC would fork and wait for VSP’s crash signal and crash DCC itself

if any crash happens in VSP. In this way, the crash info of VSP is “delivered” to DCC.

 The pseudo- code for crash delivery in DCC would be like this:

 fpid = fork();

if (fpid == 0)

{

//In child process

 launchVSP(argv);

 exit(0);

 }

 else

{

 //In parent process (DCC)

 waitpid(fpid, &status, 0);

 if (WIFEXITED(status))

 {

 //Child process normal exit, bypass

 }

 else if (WIFSIGNALED(status))

 {

 //Child process crash signal, crash self

 crashMyself();

 }

 }

2. Check serial port status

As one of the basic virtual devices, serial port is usually bond to VSP process life cycle. If

the VSP process exits (because of crash), you could check and detect corresponding

status change in virtual port. If such status change is found in virtual port, you should also

crash DCC process.

3. Real case study

With our solution, we fuzz floppy disk controller and reproduce one critical vulnerability

(CVE-2015-3456, Venom) which is reported by Jason Geffner.

The vulnerability exists in QEMU floppy disk controller handling control command code.

Floppy disk controller will put command id and its arguments into a buffer which named

FIFO buffer. The buffer size is 512. When handling some specific command, floppy disk

controller will overflow the buffer.

Our fuzzing strategy is taking floppy disk controller command as attacking surface.

Step 1: Using AFL-gcc to compile fdc.c

We modified the make file (rules.mak) as following:

Figure 8 make file modification for testing fdc

It means that we use afl-gcc to compile source file if fdc.c file is encountered during

compiling so that afl instrumentation is set.

Step 2: Designing input case file format (DCD)

One input case file contains several commands like this:

struct fdc_command

{

unsigned char cid;

unsigned int args_count;

unsigned int args[0];

 };

The field cid in fdc_command means the floppy disk controller command ID. As I mentioned

above, the structures will be translated to MIOA requests.

Step 3. We prepare 30 input case file (one case input file for each floppy disk control

command) for afl mutation.

Step 4: Preparing DCC

1. Parsing input case file and translating to MIOA requests.

2. Fork VSP using following commands:

mkfifo jack_pipe

mkfifo jack_pipe1

 qemu-system-x86_64 -bios out/bios.bin -serial pipe:jack_pipe -serial

pipe:jack_pipe1

The bios.bin is CBS.

3. Open pipe, and write MIOA requests to pipe and read response from pipe.

4. Wait the VSP ‘s pid.

Step 5: Using commands to start fuzzing.

afl-fuzz -t 99000 -m 2048 -i IN/ -o OUT/ <DCC command> @@

In our testing environment (8G ram, 4 cores CPU), we reproduce the Venom vulnerability

on the QEMU 2.3 after running the solution about 1.5 hours.

4. Conclusion

Virtualization security would keep increasingly “hot” because more and more enterprises

have embraced virtualization infrastructure for cloud computing. For the virtual device bug

hunting, we have designed novel fuzzing approach which is light-weight with good

performance, easy to be ported and also provide fuzzing code coverage feedback and

control.

 We have introduced the implementation of our solution in detail, and also best practice

we have ever encountered.

 As to prove and verify our approach, using the solution we have fuzzed floppy disk

controller and reproduce one critical vulnerability (CVE-2015-3456) which is reported by

Jason Geffner.

5. Reference

5.1 http://venom.crowdstrike.com/

5.2 http://www.slideshare.net/CanSecWest/csw2016-tang-virtualizationdevice-

emulator-testing-technology

5.3 http://lcamtuf.coredump.cx/AFL/

5.4 https://www.youtube.com/watch?v=O9P7kXm5WSg

5.5 Filesystem Fuzzing with American Fuzzy Lop

https://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf

5.6 Triforce-run-afl-on-everything

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-

everything/

5.7 https://www.seabios.org/SeaBIOS

5.8 https://www.seabios.org/Execution_and_code_flow

5.9 http://wiki.qemu.org/Features/QTest

5.10 http://www.intel.com/content/www/us/en/io/universal-serial-bus/extensible-host-

controler-interface-usb-xhci.html

5.11 http://wiki.osdev.org/Floppy_Disk_Controller

http://venom.crowdstrike.com/
http://www.slideshare.net/CanSecWest/csw2016-tang-virtualizationdevice-emulator-testing-technology
http://www.slideshare.net/CanSecWest/csw2016-tang-virtualizationdevice-emulator-testing-technology
https://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
http://wiki.qemu.org/Features/QTest
http://www.intel.com/content/www/us/en/io/universal-serial-bus/extensible-host-controler-interface-usb-xhci.html
http://www.intel.com/content/www/us/en/io/universal-serial-bus/extensible-host-controler-interface-usb-xhci.html
http://wiki.osdev.org/Floppy_Disk_Controller

