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HTTPS is broken

• BREACH broke HTTPS + RC4 in 2013
• People upgraded to AES – thought they were safe
• Rupture attacked HTTPS with block ciphers

 
Today... 

• We show a generic defense for compression side-channel 
attacks

• Best balance between compression and security
• We launch an open source implementation of the defense for 

popular web frameworks
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CRIME, 2012

• Targets HTTPS requests 
• Side-channel compression attacks against TLS first-time successful
• Τakes advantage of the characteristics of the DEFLATE algorithm
• Hinted at attacking responses
• Mitigated by disabling compression at the TLS level



TIME, 2013

• Exploits compression on HTTP responses
• Exploits compression by measuring time transmission
• No need for permanent Man-in-the-Middle agents



BREACH, 2013

• Exploits compression on HTTP response body
• Attacks stream ciphers
• Adds methods for bypassing compression noise



RC4 insecurity, 2015

• RC4 is considered insecure
• Most websites use block ciphers
• AES is the industry standard



Rupture, 2016

• Exploits compression on HTTP responses
• Performs statistical analysis
• Bypasses noise/length hiding
• Attacks block ciphers, eg AES
• Automates the attack process
• Production code



HEIST, 2016

• No need for Man-in-the-Middle agents to perform BREACH
• Abuses the way responses are sent at the TCP level



Attack methodology

• Compression is better across same content
• Example: “test_test” compresses better than “test_rand”

• Method
• Target an HTTPS website
• Find a web page that: 

• Allows parameter reflection
• Contains a secret

• Issue requests with different reflections using the victim’s cookies
• Measure the responses’ lengths
• Decrypt the secret using statistical analysis





• Attacker guesses part of secret
• Uses it in reflection
• Compressed/encrypted response is shorter if right!

 Reflection

Secret



The CTX defense



CTX, Context Transformation Extension

Context hiding in a per-origin manner 
to separate secrets and avoid cross-compression



Origin

• Party that generated the secret
• Web application 
• User

• Secrets of the same origin → Cross-compression
• Secrets of different origin → Separate compression





Secret

• Parts of the response
• CSRF tokens
• Private messages
• E-mails
• Financial data

• Any piece of information which is only accessible when logged in





OK to compress 
together



NOT OK to compress 
together!



Cross-compression

• Cross-compression between “a”, “b” → Presence of “a” affects 
compression of “b”

• Example:
• LZ77 compression
• Plaintext: a + b
• a = “secret1”, b = “secret2”
• Cross-compression:

• C(a) = “secret1”, C(b) = (7, 6) + “2”
• Separate compression:

• C(a) = “secret1”, C(b) = “secret2”



How can we protect secrets?
• Disable compression  ✗ 

    Unacceptable performance penalty
• Change the compression function   ✗

    All good compression functions are vulnerable
• Modify the web server compression module   ✗

    Requires changing both the web server & application
    Hard to achieve good compression rate

• Hide length with random padding (TLS 1.3)   ✗
    Susceptible alignment + statistical analysis (Rupture)

• Change the response plaintext  ✓



CTX, Context Transformation Extension

• Protects HTTPS responses
• Runs at the application layer
• Is opt-in
• Balances between performance and security

• Slight compression size increase
• Small time performance overhead
• Fully prevents complete plaintext recovery
• Successful defense for all known compression attacks
• (TIME, CRIME, BREACH etc)



CTX, Context Transformation Extension

Application developer must do the following:

• Import ctx library server-side ( Django, Flask, Node.js … )
• Import ctx library client-side ( <script src=”ctx.js”></script> )
• Select sensitive secrets
• Define origin for each secret





Secret          Origin







Permutations

• Define secret alphabet
•    Contains all possible characters in the secret

    e.g. ASCII, UTF-8
• Pseudo-random permutation of the secret alphabet for each origin
• Fisher-Yates shuffle algorithm
• Permute secrets using the origin’s permutation
• TLS encryption and network transmission of the permuted secret
• Apply inverse permutation → Decode the secret



Secret Origin Permuted 
secret

secret1 origin1 )o5eoc8

secret2 origin1 )o5eock

secret3 origin2 heb^eV#

Origin Permutation

origin1
s → )     e → o
c → 5     r → e
t → c     1 → 8
2 → k     3 → #

(...)

origin2
s → h     e → e
c → b      r → ^
t → V     1 → g
2 → !      3 → #

(...)



Attack mitigated

• New per-origin permutations per HTTP response
• Multiple responses contain differently permuted secrets
• Permutations cannot be statistically predicted



Performance experiments

• We test size/time performance under CTX
• Test web page:

• 650KB (e.g. YouTube timeline)
• 50 origins
• 1% secrets in the response equally distributed in origins
• 1 secret position per origin



Performance experiments

• Results:
• Disable total compression:

• 1,100% size overhead
• Few seconds time delay during transmission

• Masking secrets:
• 21% size overhead

• CTX:
• 5% size overhead ~ 7KB
• 4ms time delay



Performance experiments

• Origins ↑ → Performance ↓
• Total secrets ↑ → Performance ↓
• Secrets per origin ↑ → Performance ↑
• Total response ↑ → Performance ↑ 



Total response performance
• Bigger response:

• Similar byte size overhead
• Better percentage size overhead
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CTX Architecture



CTX Architecture

• Server
• Parses HTML for ctx-protect div tags
• Creates permutation for every new origin
• Permutes secrets in a per-origin manner
• Includes a JSON file with all permutations
• Sends response containing permuted secrets and permutations



Client

• Parses the HTML for data−ctx−origin div tags
• Parses the JSON and collects each origin’s permutation
• Applies reverse permutation on each secret



Today, we defend BREACH attacks

• Today in Black Hat Europe 2016, we launch CTX for popular web 
frameworks
• Python: Django, Flask
• Node.js: Express [express-Handlebars, pug (jade), EJS], Koa 

[koa-pug]
• Open source - MIT licensed

https://github.com/dimkarakostas/ctx

https://ctxdefense.com

https://github.com/dimkarakostas/ctx
https://github.com/dimkarakostas/ctx
https://github.com/dimkarakostas/ctx


Future Work

• Implement CTX for other languages/web frameworks
• Extend CTX for other encoding standards
• Implement CTX for API web frameworks



Key Takeaways

1. HTTPS + gzip = broken
2. CTX provides full security 
3. Add CTX protection to your web applications



Thank you! Questions?
https://dimkarakostas.com

DF46 7AFF 3398 BB31 CEA7 1E77 F896 1969 A339 D2E9

http://www.kiayias.com

E5F2 7045 437B 168B 39AD  1BFA C876 8019 6DBB 04E0

https://esarafianou.github.io

2FA9 7528 9554 F1EB F5F8  675B E371 5849 8CD0 92EE

https://dionyziz.com

45DC 00AE FDDF 5D5C B988  EC86 2DA4 50F3 AFB0 46C7
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