
CTX: Eliminating
BREACH with

Context Hiding
Dimitris Karakostas
Aggelos Kiayias
Eva Sarafianou
Dionysis Zindros

Who are we?

Dimitris Karakostas, Eva Sarafianou, Dionysis Zindros
Researchers at Security & Cryptography lab
University of Athens, Greece

Aggelos Kiayias
Chair in Cyber Security and Privacy
University of Edinburgh, Scotland

HTTPS is broken

• BREACH broke HTTPS + RC4 in 2013
• People upgraded to AES – thought they were safe
• Rupture attacked HTTPS with block ciphers

Today...

• We show a generic defense for compression side-channel
attacks

• Best balance between compression and security
• We launch an open source implementation of the defense for

popular web frameworks

Overview
• Introduction

• History
• Attack vectors

• The CTX defense
• Origins, Secrets, Cross compression
• Permutations
• CTX architecture

• Release
• Future work

CRIME, 2012

• Targets HTTPS requests
• Side-channel compression attacks against TLS first-time successful
• Τakes advantage of the characteristics of the DEFLATE algorithm
• Hinted at attacking responses
• Mitigated by disabling compression at the TLS level

TIME, 2013

• Exploits compression on HTTP responses
• Exploits compression by measuring time transmission
• No need for permanent Man-in-the-Middle agents

BREACH, 2013

• Exploits compression on HTTP response body
• Attacks stream ciphers
• Adds methods for bypassing compression noise

RC4 insecurity, 2015

• RC4 is considered insecure
• Most websites use block ciphers
• AES is the industry standard

Rupture, 2016

• Exploits compression on HTTP responses
• Performs statistical analysis
• Bypasses noise/length hiding
• Attacks block ciphers, eg AES
• Automates the attack process
• Production code

HEIST, 2016

• No need for Man-in-the-Middle agents to perform BREACH
• Abuses the way responses are sent at the TCP level

Attack methodology

• Compression is better across same content
• Example: “test_test” compresses better than “test_rand”

• Method
• Target an HTTPS website
• Find a web page that:

• Allows parameter reflection
• Contains a secret

• Issue requests with different reflections using the victim’s cookies
• Measure the responses’ lengths
• Decrypt the secret using statistical analysis

• Attacker guesses part of secret
• Uses it in reflection
• Compressed/encrypted response is shorter if right!

 Reflection

Secret

The CTX defense

CTX, Context Transformation Extension

Context hiding in a per-origin manner
to separate secrets and avoid cross-compression

Origin

• Party that generated the secret
• Web application
• User

• Secrets of the same origin → Cross-compression
• Secrets of different origin → Separate compression

Secret

• Parts of the response
• CSRF tokens
• Private messages
• E-mails
• Financial data

• Any piece of information which is only accessible when logged in

OK to compress
together

NOT OK to compress
together!

Cross-compression

• Cross-compression between “a”, “b” → Presence of “a” affects
compression of “b”

• Example:
• LZ77 compression
• Plaintext: a + b
• a = “secret1”, b = “secret2”
• Cross-compression:

• C(a) = “secret1”, C(b) = (7, 6) + “2”
• Separate compression:

• C(a) = “secret1”, C(b) = “secret2”

How can we protect secrets?
• Disable compression ✗

 Unacceptable performance penalty
• Change the compression function ✗

 All good compression functions are vulnerable
• Modify the web server compression module ✗

 Requires changing both the web server & application
 Hard to achieve good compression rate

• Hide length with random padding (TLS 1.3) ✗
 Susceptible alignment + statistical analysis (Rupture)

• Change the response plaintext ✓

CTX, Context Transformation Extension

• Protects HTTPS responses
• Runs at the application layer
• Is opt-in
• Balances between performance and security

• Slight compression size increase
• Small time performance overhead
• Fully prevents complete plaintext recovery
• Successful defense for all known compression attacks
• (TIME, CRIME, BREACH etc)

CTX, Context Transformation Extension

Application developer must do the following:

• Import ctx library server-side (Django, Flask, Node.js …)
• Import ctx library client-side (<script src=”ctx.js”></script>)
• Select sensitive secrets
• Define origin for each secret

Secret Origin

Permutations

• Define secret alphabet
• Contains all possible characters in the secret

 e.g. ASCII, UTF-8
• Pseudo-random permutation of the secret alphabet for each origin
• Fisher-Yates shuffle algorithm
• Permute secrets using the origin’s permutation
• TLS encryption and network transmission of the permuted secret
• Apply inverse permutation → Decode the secret

Secret Origin Permuted
secret

secret1 origin1)o5eoc8

secret2 origin1)o5eock

secret3 origin2 heb^eV#

Origin Permutation

origin1
s →) e → o
c → 5 r → e
t → c 1 → 8
2 → k 3 → #

(...)

origin2
s → h e → e
c → b r → ^
t → V 1 → g
2 → ! 3 → #

(...)

Attack mitigated

• New per-origin permutations per HTTP response
• Multiple responses contain differently permuted secrets
• Permutations cannot be statistically predicted

Performance experiments

• We test size/time performance under CTX
• Test web page:

• 650KB (e.g. YouTube timeline)
• 50 origins
• 1% secrets in the response equally distributed in origins
• 1 secret position per origin

Performance experiments

• Results:
• Disable total compression:

• 1,100% size overhead
• Few seconds time delay during transmission

• Masking secrets:
• 21% size overhead

• CTX:
• 5% size overhead ~ 7KB
• 4ms time delay

Performance experiments

• Origins ↑ → Performance ↓
• Total secrets ↑ → Performance ↓
• Secrets per origin ↑ → Performance ↑
• Total response ↑ → Performance ↑

Total response performance
• Bigger response:

• Similar byte size overhead
• Better percentage size overhead

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0

0.5

1

1.5

2

2.5

0

1000

2000

3000

4000

5000

6000

7000

8000

Total response

Size (%) Size (Bytes)

CTX Architecture

CTX Architecture

• Server
• Parses HTML for ctx-protect div tags
• Creates permutation for every new origin
• Permutes secrets in a per-origin manner
• Includes a JSON file with all permutations
• Sends response containing permuted secrets and permutations

Client

• Parses the HTML for data−ctx−origin div tags
• Parses the JSON and collects each origin’s permutation
• Applies reverse permutation on each secret

Today, we defend BREACH attacks

• Today in Black Hat Europe 2016, we launch CTX for popular web
frameworks
• Python: Django, Flask
• Node.js: Express [express-Handlebars, pug (jade), EJS], Koa

[koa-pug]
• Open source - MIT licensed

https://github.com/dimkarakostas/ctx

https://ctxdefense.com

https://github.com/dimkarakostas/ctx
https://github.com/dimkarakostas/ctx
https://github.com/dimkarakostas/ctx

Future Work

• Implement CTX for other languages/web frameworks
• Extend CTX for other encoding standards
• Implement CTX for API web frameworks

Key Takeaways

1. HTTPS + gzip = broken
2. CTX provides full security
3. Add CTX protection to your web applications

Thank you! Questions?
https://dimkarakostas.com

DF46 7AFF 3398 BB31 CEA7 1E77 F896 1969 A339 D2E9

http://www.kiayias.com

E5F2 7045 437B 168B 39AD 1BFA C876 8019 6DBB 04E0

https://esarafianou.github.io

2FA9 7528 9554 F1EB F5F8 675B E371 5849 8CD0 92EE

https://dionyziz.com

45DC 00AE FDDF 5D5C B988 EC86 2DA4 50F3 AFB0 46C7

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

