
Effective file format fuzzing
Thoughts, techniques and results

aŀǘŜǳǎȊ άƧллǊǳέ WǳǊŎȊȅƪ

Black Hat Europe 2016, London

PS> whoami

ÅProject Zero @ Google

ÅPart time developer and frequent user of the fuzzing infrastructure.

ÅDragon Sector CTF team vice captain.

ÅLow-level security researcher with interest in all sorts of vulnerability

research and software exploitation.

Åhttp://j00ru.vexillium.org/

Å@j00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

Agenda

ÅWhat constitutes real-life offensive fuzzing (techniques and mindset).

ÅHow each of the stages is typically implemented and how to improve

them for maximized effectiveness.

Å¢ƛǇǎ ϧ ǘǊƛŎƪǎ ƻƴ ǘƘŜ ŜȄŀƳǇƭŜǎ ƻŦ ǎƻŦǘǿŀǊŜ LΩǾŜ ŦǳȊȊŜŘ ŘǳǊƛƴƎ ǘƘŜ Ǉŀǎǘ ŦŜǿ

years: Adobe Reader, Adobe Flash, Windows Kernel, Oracle Java, Hex-Rays IDA Pro,

FreeType2, FFmpeg, pdfium, WiresharkΣ Χ

Fuzzing

Fuzz testingor fuzzingis a software testing technique, often

automated or semi-automated, that involves providing

invalid, unexpected, or random data to the inputs of a

computer program.

http://en.wikipedia.org/wiki/Fuzz_testing

Lƴ Ƴȅ όŀƴŘ ǘƘƛǎ ǘŀƭƪΩǎύ ŎŀǎŜ

ÅSoftware= commonly used programs and libraries, both open and closed-source,

written in native languages (C/C++ etc.), which may be used as targets for

memory corruption-style 0-day attacks.

ÅInputs= files of different (un)documented formats processed by the target

software (e.g. websites, applets, images, videos, documents etc.).

On a scheme

START

choose input

mutate input

feed to target

target
crashed

save input
noyes

Easy to learn, hard to master.

Key questions

ÅHow do we choose the fuzzing target in the first place?

ÅHow are the inputs generated?

ÅWhat is the base set of the input samples? Where do we get it from?

ÅHow do we mutate the inputs?

ÅHow do we detect software failures / crashes?

Å5ƻ ǿŜ ƳŀƪŜ ŀƴȅ ŘŜŎƛǎƛƻƴǎ ƛƴ ŦǳǘǳǊŜ ŦǳȊȊƛƴƎ ōŀǎŜŘ ƻƴ ǘƘŜ ǎƻŦǘǿŀǊŜΩǎ ōŜƘŀǾƛƻǊ ƛƴ ǘƘŜ ǇŀǎǘΚ

ÅHow do we minimize the interesting inputs / mutations?

ÅHow do we recognize uniquebugs?

ÅWhat if the software requires user interaction and/or displays windows?

ÅWhat if the application keeps crashing at a single location due to an easily reachable bug?

ÅWhat if the fuzzed file format includes checksums, other consistency checks, compression or encryption?

[ŜǘΩǎ ƎŜǘ ǘŜŎƘƴƛŎŀƭΦ

Gathering an initial corpus of input files

ÅA desired step in a majority of cases:

ÅMakes it possible to reach some code paths and program states immediately after starting the

fuzzing.

ÅMay contain complex data structures which would be difficult or impossible to generate

organicallyusing just code coverage information, e.g. magic values, correct headers, compression

trees etc.

ÅEven if the same inputs could be constructed during fuzzing with an empty seed, having them

right at the beginning saves a lot of CPU time.

ÅCorpora containing files in specific formats may be frequently reused to fuzz various software

projects which handle them.

Gathering inputs: the standard methods

ÅOpen-source projects often include extensive sets of input data for testing, which can be freely

reused as a fuzzing starting point.

ÅExample: FFmpegFATE, samples.ffmpeg.org. Lots of formats there, which would be otherwise very difficult to

obtain in the wild.

Å{ƻƳŜǘƛƳŜǎ ǘƘŜȅΩǊŜ ƴƻǘ ǇǳōƭƛŎƭȅ ŀǾŀƛƭŀōƭŜ ŦƻǊ ŜǾŜǊȅƻƴŜΣ ōǳǘ ǘƘŜ ŘŜǾŜƭƻǇŜǊǎ ƘŀǾŜ ǘƘŜƳ ŀƴŘ ǿƛƭƭ ǎƘŀǊŜ ǿƛǘƘ

someone willing to report bugs in return.

ÅMany of them also include converters from format X to their own format Y. With a diverse set of

files in format X and/or diverse conversion options, this can also generate a decent corpus.

ÅExample: cwebp, a converter from PNG/JPEG/TIFF to WEBP images.

samples.ffmpeg.org

Gathering inputs: Internet crawling

ÅDepending on the popularity of the fuzzed file format, Internet crawling is

the most intuitive approach.

ÅDownload files with a specific file extension.

ÅDownload files with specific magic bytes or other signatures.

ÅIf the format is indeed popular (e.g. DOC, PDF, SWF etc.), you may end up

with many terabytes of data on your disk.

ÅNot a huge problem, since storage is cheap, and the corpus can be later minimized to

consume less space while providing equivalent code coverage.

You may also ask what the program thinks

ÅThings can get a bit dire if you plan to fuzz a program which supports

dozens of different formats.

ÅCode coverage analysis is of course a good idea, but it tends to slow down the

process considerably (esp. for closed-source software).

ÅIn some cases, you can use the target itself to tell you if a given file can be

handled by it or not.

ÅCase study: IDA Pro.

IDA Pro supported formats (partial list)

MS DOS, EXE File, MS DOS COM File, MS DOS Driver, New Executable (NE), Linear Executable (LX), Linear

Executable (LE), Portable Executable (PE) (x86, x64, ARM), Windows CE PE (ARM, SH-3, SH-4, MIPS), MachOfor

OS X and iOS (x86, x64, ARM and PPC), DalvikExecutable (DEX), EPOC (Symbian OS executable), Windows Crash

Dump (DMP), XBOX Executable (XBE), Intel Hex Object File, MOS Technology Hex Object File, Netware Loadable

Module (NLM), Common Object File Format (COFF), Binary File, Object Module Format (OMF), OMF library, S-

record format, ZIP archive, JAR archive, Executable and Linkable Format (ELF), WatcomDOS32 Extender

(W32RUN), Linux a.out (AOUT), PalmPilotprogram file, AIX ar library (AIAFF), PEF (Mac OS or Be OS

executable), QNX 16 and 32-bits, Nintendo (N64), SNES ROM file (SMC), Motorola DSP56000 .LOD, Sony

PlaystationPSX executable files, object (psyq) files, library (psyq) files

How does it work?

IDA Pro loader architecture

ÅModular design, with each loader (also disassembler) residing in a separate

module, exporting two functions: accept_file and load_file .

ÅOne file for the 32-bit version of IDA (.llx on Linux) and one file for 64-bit (.llx64).

$ ls loaders
aif64.llx64 coff64.llx64 epoc.llx javaldr64.llx64 nlm64.llx64 pilot.llx snes_spc.llx
aif.llx coff.llx expload64.llx64 javaldr.llx nlm.llx psx64.llx64 uimage.py
amiga64.llx64 dex64.llx64 expload.llx lx64.llx64 omf64.llx64 psx.llx w32run64.llx64
amiga.llx dex.llx geos64.llx64 lx.llx omf.llx qnx64.llx64 w32run.llx
aof64.llx64 dos64.llx64 geos.llx macho64.llx64 os964.llx64 qnx.llx wince.py
aof.llx dos.llx hex64.llx64 macho.llx os9.llx rt1164.llx64 xbe64.llx64
aout64.llx64 dsp_lod.py hex.llx mas64.llx64 pdfldr.py rt11.llx xbe.llx
aout.llx dump64.llx64 hppacore.idc mas.llx pe64.llx64 sbn64.llx64
bfltldr.py dump.llx hpsom64.llx64 n6464.llx64 pef64.llx64 sbn.llx
bios_image.py elf64.llx64 hpsom.llx n64.llx pef.llx snes64.llx64
bochsrc64.llx64 elf.llx intelomf64.llx64 ne64.llx64 pe.llx snes.llx
bochsrc.llx epoc64.llx64 intelomf.llx ne.llx pilot64.llx64 snes_spc64.llx64

IDA Pro loader architecture

int (idaapi * accept_file)(linput_t * li ,
char fileformatname [MAX_FILE_FORMAT_NAME],
int n) ;

void (idaapi * load_file)(linput_t * li ,
ushort neflags ,
const char * fileformatname) ;

ÅThe accept_file function performs preliminary processing and returns 0 or 1 depending on whether the

given module thinks it can handle the input file as Nth of its supported formats.

Å If so, returns the name of the format in the fileformatname argument.

Åload_file performs the regular processing of the file.

ÅBoth functions (and many more required to interact with IDA) are documented in the IDA SDK.

Easy to write an IDA loader enumerator

$./ accept_file accept_file

[+] 35 loaders found.

[-] os9.llx: format not recognized.

[-] mas.llx : format not recognized.

[-] pe.llx : format not recognized.

[-] intelomf.llx : format not recognized.

[-] macho.llx : format not recognized.

[-] ne.llx : format not recognized.

[-] epoc.llx : format not recognized.

[-] pef.llx : format not recognized.

[-] qnx.llx : format not recognized.

ƛ

[-] amiga.llx : format not recognized.

[-] pilot.llx : format not recognized.

[-] aof.llx : format not recognized.

[-] javaldr.llx : format not recognized.

[-] n64.llx: format not recognized.

[-] aif.llx : format not recognized.

[-] coff.llx : format not recognized.

[+] elf.llx : accept_file recognized as "ELF for Intel 386 (Executable)"

Asking the program for feedback

ÅThanks to the design, we can determine if a file can be loaded in IDA:

Åwith a very high degree of confidence.

Åexactly by which loader, and treated as which file format.

Åwithout ever starting IDA, or even requiring any of its files other than the loaders.

Åwithout using any instrumentation, which together with the previous point speeds

things up significantly.

ÅSimilar techniques could be used for any software which makes it possible

to run some preliminary validation instead of fully fledged processing.

Corpus distillation

ÅIn fuzzing, it is important to get rid of most of the redundancy in the input corpus.

ÅBoth the base one and the livingone evolving during fuzzing.

ÅIn the context of a single test case, the following should be maximized:

ȿὴὶέὫὶὥάίὸὥὸὩίὩὼὴὰέὶὩὨȿ

ὭὲὴόὸίὭᾀὩ

which strives for the highest byte-to-program-feature ratio: each portion of a file should

exercise a new functionality, instead of repeating constructs found elsewhere in the sample.

Corpus distillation

ÅLikewise, in the whole corpus, the following should be generally maximized:

ȿὴὶέὫὶὥάίὸὥὸὩίὩὼὴὰέὶὩὨȿ

ȿὭὲὴόὸίὥάὴὰὩίȿ

¢Ƙƛǎ ŜƴǎǳǊŜǎ ǘƘŀǘ ǘƘŜǊŜ ŀǊŜƴΩǘ ǘƻƻ Ƴŀƴȅ ǎŀƳǇƭŜǎ ǿƘƛŎƘ ŀƭƭ ŜȄŜǊŎƛǎŜ ǘƘŜ ǎŀƳŜ

functionality (enforces program state diversity while keeping the corpus size

relatively low).

Format specific corpus minimization

ÅIf there is too much data to thoroughly process, and the format is easy to parse and

recognize (non-)interesting parts, you can do some cursory filtering to extract unusual

samples or remove dull ones.

ÅMany formats are structured into chunks with unique identifiers: SWF, PDF, PNG, JPEG, TTF, OTF

etc.

ÅSuch generic parsing may already reveal if a file will be a promising fuzzing candidate or not.

Å¢ƘŜ ŘŜŜǇŜǊ ƛƴǘƻ ǘƘŜ ǎǇŜŎǎΣ ǘƘŜ ƳƻǊŜ ǿƻǊƪ ƛǎ ǊŜǉǳƛǊŜŘΦ LǘΩǎ ǳǎǳŀƭƭȅ ƴƻǘ Ŏƻǎǘ-effective to go beyond

the general file structure, given other (better) methods of corpus distillation.

ÅBe careful not to reduce out interesting samples which only appear to be boring at first glance.

How to define a program state?

ÅFile sizes and cardinality (from the previous expressions) are trivial to

measure.

Å¢ƘŜǊŜ ŘƻŜǎƴΩǘ ŜȄƛǎǘ ǎǳŎƘ ŀ ǎƛƳǇƭŜ ƳŜǘǊƛŎ ŦƻǊ program states, especially with

the following characteristics:

Åtheir number should stay within a sane range, e.g. counting all combinations of every

bit in memory cleared/set is not an option.

Åthey should be meaningful in the context of memory safety.

Åthey should be easily/quickly determined during process run time.

ὅέὨὩὧέὺὩὶὥὫὩḙὴὶέὫὶὥάίὸὥὸὩί

ÅMost approximations are currently based on measuring code coverage, and not the

actual memory state.

ÅPros:

Å Increased code coverage is representative of new program states. In fuzzing, the more tested code is executed,

the higher chance for a bug to be found.

ÅThe sane range requirement is met: code coverage information is typically linear in size in relation to the overall

program size.

ÅEasily measurable using both compiled-in and external instrumentation.

ÅCons:

ÅConstant code coverage does not indicate constant ȿὴὶέὫὶὥάίὸὥὸὩίȿ. A significant amount of information on

distinct states may be lost when only using this metric.

Current state of the art: counting basic blocks

ÅBasic blocks provide the best granularity.

ÅSmallest coherent units of execution.

ÅMeasuring just functions loses lots of information on

what goes on inside.

ÅRecording specific instructions is generally redundant,

since all of them are guaranteed to execute within the

same basic block.

ÅSupported in both compiler (gcovetc.) and

external instrumentations (Intel Pin, DynamoRIO).

ÅIdentified by the address of the first instruction.

Basic blocks: incomplete information

void foo (int a, int b) {
if (a == 42 || b == 1337) {

printf (" Success! ") ;
}

}

void bar () {
foo (0, 1337) ;
foo (42, 0) ;
foo (0, 0) ;

}

Basic blocks: incomplete information

void foo (int a, int b) {
if (a == 42 || b == 1337) {

printf (" Success! ") ;
}

}

void bar () {
foo (0, 1337) ;
foo (42, 0) ;
foo (0, 0) ;

}

paths taken

Basic blocks: incomplete information

void foo (int a, int b) {
if (a == 42 || b == 1337) {

printf (" Success! ") ;
}

}

void bar () {
foo (0, 1337) ;
foo (42, 0) ;
foo (0, 0) ;

}

new path

Basic blocks: incomplete information

void foo (int a, int b) {
if (a == 42 || b == 1337) {

printf (" Success! ") ;
}

}

void bar () {
foo (0, 1337) ;
foo (42, 0) ;
foo (0, 0) ;

}

new path

