

# blackhat EUROPE 2016

### I Know What You Saw Last Minute -The Chrome Browser Case

#### Ran Dubin<sup>1</sup>, Amit Dvir<sup>2</sup>, Ofir Pele<sup>2,3</sup>, Ofer Hadar<sup>1</sup>

- 1. Department of Communication System Engineering, Ben-Gurion University of the Negev, Israel.
- 2. Center for Cyber Technologies, Department of Computer Science, Ariel University, Israel.
- 3. Department of Electrical and Electronics Engineering, Ariel University, Israel.

# About Me

- Ph.D. candidate at Ben-Gurion University, Israel
  - Optimization of HTTP adaptive streaming
  - Encrypted network traffic classification problems
- Senior data scientist at Seculert
  - Seculert develop an automated breach analytics platform in the cloud.
  - Supervised machine learning for detection of malicious activity within the enterprise network





#### A black hat EUROPE 2016

# Agenda

- Motivation
- The scenario
- Our goal
- How can "I know what you saw"?
- Related works
- Proposed algorithm
- Results

# Motivation

- Google encourages network privacy:
  - "77 percent of Google online traffic is encrypted"<sup>1</sup>
  - "Google started giving HTTPS pages a ranking boost"
- HTTPS keeps your data anonymous:
  - "No one will be able to snoop on the traffic such as your ISP"<sup>2</sup>
  - Let's try to break it!

[1] http://gadgets.ndtv.com/internet/news/google-reveals-77-percent-of-its-online-traffic-is-encrypted-814191

# The Scenario

### • Passive Sniffing:

- Traffic control and optimization
- Open Source Intelligence Techniques (OSINT) vector<sup>3</sup>
  - Web searches, visited sites ..

#### YouTube is the world's leading social network video platform

- YouTube is used also large protests and propaganda!
- Protecting user privacy and viewing habits is important!

# Our Goal

- To show that HTTPS\2.0 is not enough in order to protect your viewing habits
- Contribution:
  - Dataset
  - Data crawler based on selenium
  - New encrypted traffic feature and classification algorithm

### Brief Partial Overview of SSL/TLS

- Step (0): browse to: <u>https://www.youtube.com/watch?v=\_b</u> <u>P6aVG6L1w</u>
- Step (1): use Service Name Indicator
- Step (5): content and header are fully encrypted
  - HTTPS request (URL) is not visible in the encrypted traffic
  - All HTTP headers are encrypted



### How Can "I Know What You Saw"?

- 1. How are YouTube videos encoded?
- 2. How is the video downloaded?
- 3. What is the video download behavior in the network?
- 4. How to tie everything together for a classification?

### Introduction To HTTP Adaptive Streaming (HAS)



\* How YouTube Works: https://www.youtube.com/watch?v=UkIDSMG9ffU

### YouTube Encrypted Network Traffic



#### A black hat EUROPE 2016

### YouTube Flow Patterns – The Web Proxy Perspective



First 10 seconds of downloading audio + video



First 10 seconds of downloading only video

- Mixture of audio/video in a single flow
- HTTP2 multiplexed application layer protocol
- Multi-Bit-Rate Video Encoding

# YouTube HTTP Byte Range

Fiddler (Video) Stream Request Vs Byte Range



# **Related Works**

- 1. Most discuss application type classification and not content classification
- 2. HTTPS classification was found to achieve low accuracy
- 3. Wright et al. exploit the VBR codec characteristics of encrypted Voice Over Internet Protocol (VOIP) for language identification
- 4. Liu et al. and Saponas et al. presented methods for video title classification of RTP/UDP and TCP internet traffic (not MBR)
- 5. Changes in video traffic over the Internet:
  - HTTP byte range selection over HTTP
  - MBR adaptive streaming
  - HTTP version 2

### **Proposed Machine Learning Solution**

- 1. Traffic Analysis
- 2. Traffic Features
- 3. Traffic Preprocessing
- 4. Machine Learning Algorithms



# Feature Extraction

#### 1. Many features:

Number of packets in a session, payload size, information bit rate, Round-Trip Time (RTT), packet time differences

- 2. Bit Per Peak (BPP): Sum of bytes in each peak after TCP ACK mechanism
- 3. Why BPP?
  - Represent the traffic On/Off behavior
  - Real time classification constraints
  - Compact feature representation
  - Robust to packet loss and delays



# **BPP Index Vs Download Copy**



# **Pre-Processing**

- With/without audio removal
- <400 Kbytes BPPs are considered as audio

# Proposed algorithms

- 1. Support Vector Machines (SVM) with Radial Basis Function (RBF)
  - With a BPP feature vector
- 2. Nearest Neighbor Algorithm NN
  - With a set of BPP features

### SVM with Radial Basis Function (RBF) Kernel

• SVM RBF maps data to high dimensional space. The classifier:

$$f(\mathbf{x}) = \sum_{i=1}^{N_s} lpha_i y_i \expigl(-\gamma \|\mathbf{x}-\mathbf{x}_i\|^2igr) + b$$

 Ongoing work uses SVM with intersection similarities as features



# **BPP Set Feature**

- $S_{ij}$  is a set of Bit-Per-Peak (BPP) features (no duplicates)
  - *i* video title index
  - *j* stream index
- Note that each BPP-set may have different cardinality

# NN Algorithm

A

• Similarity score between two BPP-sets is the cardinality of the intersection set:

$$sim(S,S') = |S \cap S'|$$

 At test time, each video stream BPP-set, S<sub>test</sub>, is classified as the video title i (class) that matches the maximum similarity score to class index. m<sub>i</sub> is the number of streams per title i:

$$1 \le i \le n, \quad s_i = \max_{\substack{j=1 \\ j=1}}^{m_i} \operatorname{sim}(\mathcal{S}_{\text{test}}, \mathcal{S}_{ij})$$
$$y(\mathcal{S}_{\text{test}}) = \begin{cases} \operatorname{argmax}_{i=1}^n & \text{if } \left(\max_{i=1}^n s_i\right) > \text{Thr}\\ \text{unknown} & \text{otherwise} \end{cases}$$

## Dataset

Train/ test: 30 different titles, each with 100 streams copies (Train- 90, Test -10)

Videos outside of the dataset: 200 additional different video titles (titles not in the regular dataset used only in testing)

Added delay evaluation: 4 subsets with added delay of 100/300/600/900 ms. (10 titles with 10 different downloads)

Added packet loss evaluation: 4 subsets with added packet loss of 1/3/6/9 % (10 titles with 10 different downloads)

#### **O** black hat EUROPE 2016

### **Classification Accuracy**



**Training Dataset Size** 

### **Confusion Matrices**



# Classification of Unknown Videos: 100% accuracy

# **Ongoing Results**



Accuracy: 93.6%

# Conclusions

- Created an OSINT vector from YouTube video traffic
- We demonstrated that HTTP2.0 is not protecting your viewing habits.
- NN algorithm 98% accuracy
- BPP feature is robust to high network delays and packet loss
- Ongoing research 10000 streams of 100 titles, similar results
- Contribution crawler, dataset and algorithms



# Thank you!@

# Questions?



# **Backup Slides**

0.51

### **Different Network Conditions**

