
©2016 Check Point Softw are Technologies Ltd. All rights reserved | P. 1

INTRODUCTION
The cloak-and-dagger of cybercrime makes for entertaining theater.

That’s especially true for sensational breaches often caused by malware

or other sophisticated attacks. Behind the drama though are some

inherent vulnerabilities making these attacks possible.

A myriad of device models, operating system versions, and unique

software modifications makes handling Android vulnerabilities a

challenge. The earlier these vulnerabilities are born in the supply chain,

the more difficult they are to fix.

Fixes require mind-bending coordination between suppliers,

manufacturers, carriers and users before patches make it from the

drawing board to installation. The fragmented world of Android leaves

many users exposed to risk, even with out-of-the-box devices.

In this report, the research team details four newly-discovered

vulnerabilities affecting over 900 million Android smartphones and

tablets. If exploited, each of these can give attackers complete control of

devices and access to sensitive personal and enterprise data on them.

QUADROOTER
QuadRooter is a set of four vulnerabilities affecting Android devices built

on Qualcomm® chipsets. The world’s leading designer of LTE chipsets,

Qualcomm owns a 65% share of the LTE modem baseband market.1

1
 ABI Research: https://www.abiresearch.com/press/abi-research-reports-qualcomm-maintains-clear-lead/

QUADROOTER

NEW VULNERABILITIES AFFECTING OVER 900 MILLION ANDROID DEVICES

by the Check Point Research Team

https://www.abiresearch.com/press/abi-research-reports-qualcomm-maintains-clear-lead/

©2016 Check Point Software Technologies Ltd. All rights reserved. | 2

WHAT IS ROOTING?

Rooting enables administrative

control of a device and allows apps to

run privileged commands not usually

available on factory-configured

devices. An attacker can use these

commands to perform operations l ike

changing or removing system-level

fi les, deleting or adding apps, as well

as accessing hardware on the device,

including the touchscreen, camera,

microphone, and other sensors.

If any one of the four vulnerabilities is exploited, an attacker can

trigger privilege escalations and gain root access to a device.

An attacker can exploit these vulnerabilities

using a malicious app. These apps require no

special permissions to take advantage of these

vulnerabilities, alleviating any suspicion users

may have when installing.

The vulnerabilities are found in Qualcomm’s

software drivers that come with its chipsets.

The drivers, controlling communication

between chipset components, become

incorporated into Android builds

manufacturers develop for their devices.

Pre-installed on devices at the point of

manufacturing, these vulnerable drivers can

only be fixed by installing a patch from the

distributor or carrier. Distributors and carriers

can only issue patches after receiving fixed

driver packs from Qualcomm.

The research team provided Qualcomm with information about

the vulnerabilities in April 2016. The team then followed the

industry-standard disclosure policy (CERT/CC policy) of allowing

90 days for patches to be produced before disclosing these

vulnerabilities to the public.

Qualcomm reviewed these vulnerabilities, classified each as high

risk, and confirmed that it released patches to original equipment

manufacturers (OEMs).

This affects an estimated 900 million Android devices

manufactured by OEMs like Samsung, HTC, Motorola, LG and

more. In fact, some of the latest and most popular Android

devices found on the market today use the vulnerable Qualcomm

chipsets including:

©2016 Check Point Software Technologies Ltd. All rights reserved. | 3

 BlackBerry Priv

 Blackphone 1 and 2

 Google Nexus 5X, 6 and 6P

 HTC One M9 and HTC 10

 LG G4, G5, and V10

 New Moto X by Motorola

 OnePlus One, 2 and 3

 Samsung Galaxy S7 and S7 Edge

 Sony Xperia Z Ultra

Unique vulnerabilities affect four modules. Each vulnerability

impacts a device’s entire Android system:

 IPC Router (inter-process communication)

The ipc_router module provides inter-process communication

for various Qualcomm components, user mode processes, and

hardware drivers.

 Ashmem (Android kernel anonymous shared memory feature)

Android’s propriety memory allocation subsystem, Ashmem

enables processes to share memory buffers efficiently. Android

devices using Qualcomm chipsets use a modified ashmem

system, providing easy access to the subsystem API from the

GPU drivers.

 kgsl (kernel graphics support layer) &

kgsl_sync (kernel graphics support layer sync)

The Qualcomm GPU component kgsl is a kernel driver that

renders graphics by communicating with user-mode binaries.

While this driver includes many modules, kgsl_sync is the one

responsible for synchronization between the CPU and apps.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 4

FRAGMENTATION
VISUALIZED

A number of factors
contribute to Android
fragmentation including
different Android builds
for different device
makers, models, carriers
and distributors.

WHY DOES THIS KEEP HAPPENING? THE SUPPLY CHAIN.

Suppliers, like chipset makers, provide the hardware and software modules needed to manufacture

smartphones and tables. Original equipment manufacturers (OEMs) combine these software modules,

Android builds from Google, and their own customizations to create a unique Android build for a

particular device. Distributors resell the devices, often including their own customizations and apps –

creating yet another unique Android build. When patches are required, they must flow through this supply

chain before making it onto an end user’s device. That process often takes weeks or even months.

In-market Android devices as of August 2015. (Source: OpenSignal)

©2016 Check Point Software Technologies Ltd. All rights reserved. | 5

CONSUMERS MAY BE LEFT UNPROTECTED

FOR LONG PERIODS OF TIME OR EVEN

INDEFINITELY, BY ANY DELAYS IN PATCHING

VULNERABILITIES ONCE THEY ARE DISCOVERED.
– Federal Communications Commission

RECOMMENDATIONS
Vulnerabilities like QuadRooter bring the unique challenge of securing

Android devices into focus:

 Fragmentation puts the responsibility of keeping Android devices and

their data safe into the hands of a complex supply chain.

 Making patches and security updates available is resource and time-

intensive – leaving users without protection while these are coded,

tested, accepted and distributed.

 In-market devices that cannot support the latest versions of Android

may not receive important security updates at all, leaving them

exposed to new vulnerabilities.

 End-users remain poorly informed by retailers and employers on the

risks of using mobile devices and networks, including the risks of

rooting, downloading apps from third-party sources, and using public

Wi-Fi® networks.

 These gaps not only put at risk the user’s personal information, but

also any sensitive enterprise information that may be on their device.

Stake holders throughout the Android supply chain continue to explore

comprehensive solutions that address these concerns. They are no doubt

motivated by the United States Federal Communications Commission2

2
 Federal Communications Commission: https://www.fcc.gov/document/fcc-launches-inquiry-mobile-device-

security-updates

“ “

©2016 Check Point Software Technologies Ltd. All rights reserved. | 6

and Federal Trade Commission3, which recently requested explanations

from carriers and manufacturers for why the Android security update

process is so badly broken.

Unfortunately, reasonable solutions require coordination and

standardization across the industry. Until then, Check Point continues to

recommend these best practices to keep your Android devices safe:

 Download and install the latest Android updates as soon as they

become available. These include important security updates that help

keep your device and data protected.

 Understand the risks of rooting your device – either intentionally or

as a result of an attack.

 Avoid side-loading Android apps (.APK files) or downloading apps

from third-party sources. Instead, practice good app hygiene by

downloading apps only from Google Play.

 Carefully read permission requests when installing apps. Be wary of

apps that ask for unusual or unnecessary permissions or that use

large amounts of data or battery life.

 Use known, trusted Wi-Fi networks. If traveling, use only networks

you can verify are provided by a trustworthy source.

 Consider mobile security solutions that detect suspicious behavior on

a device, including malware hiding in installed apps.

3
 Federal Trade Commission: https://www.ftc.gov/news-events/press-releases/2016/05/ftc-study-mobile-

device-industrys-security-update-practices

©2016 Check Point Software Technologies Ltd. All rights reserved. | 7

QUADROOTER TECHNICAL DETAILS

CVE-2016-2059:
Linux IPC router binding any port as a control port

A kernel module introduced by Qualcomm, called ipc_router,

contains the vulnerability. This module provides inter-process

communication capabilities for various Qualcomm components ,

user mode processes, and hardware drivers.

The module opens a unique socket (address family AF_MSM_IPC,

27) that adds propriety features to the normal IPC functionality

such as:

 Assigning a predefined identification (ID) to each hardware

module, allowing it to be addressed efficiently by any

other component.

 Components can whitelist or blacklist other IDs, controlling

and preventing communication from unprivileged

endpoints.

 Anyone can monitor the creation or destruction of new

AF_MSM_IPC sockets.

A new AF_MSM_IPC socket always starts by default as a regular

endpoint (no whitelist rules, and doesn’t receive any information

when a new socket is created or destroyed). By issuing an IOCTL

(IPC_ROUTER_IOCTL_BIND_CONTROL_PORT) on a regular socket

(CLIENT_PORT), attackers can convert it to a monitoring socket

(CONTROL_PORT).

The vulnerability is located in the conversion function (figure 1),

which uses a flawed locking logic to corrupt the monitoring

sockets’ list. Corrupting the sockets’ list is possible by deleting

port_ptr (an extension struct to the original struct socket) from its

list, using list_del function and while the local_ports_lock_lhc2

lock is used.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 8

Figure 1: Conversion of a “CLIENT_PORT” socket to a “CONTROL_PORT” socket

Calling this function on a monitoring socket removes the

monitoring socket from its list while locking the regular sockets’

list, which has nothing to do with the monitoring sockets’ list.

Attackers can use this vulnerability to corrupt control_ports list

causing it to point to a free data, which they then control with

heap spraying. Assuming an attacker can occupy the newly freed

memory and control it, the kernel treats the sprayed memory like

a regular msm_ipc_port object.

As discussed, control_ports is a list of the monitoring sockets

repeated each time notifications send for a socket creation or

destruction. A function called post_control_ports notifies every

item in the control_ports list. It goes over the list and calls the

post_pkt_to_port function for each item. Figure 2 contains the

functions source code, highlighting the variable representing a

fake object.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 9

Figure 2: Function is called once the control_ports l ist is iterated, with

the fake object marked.

Faking a port_ptr allows for multiple methods of exploitation, as

the object contains multiple function call primitives, information

disclosure, and other helpful primitives.

Attackers can take advantage of the lack of kASLR on Android

devices and use the wake_up function. This function is a macro

which eventually leads to a function called __wake_up_common

(figure 3).

©2016 Check Point Software Technologies Ltd. All rights reserved. | 10

Figure 3: the __wake_up_common function.

By using __wake_up_common, an attacker can completely control

the content (but not the address) of the q argument.

Controlling q allows attackers to manipulate control q->task_list,

enabling the attacker to call any kernel-function and control most

of the first argument4. Since it is an iterated list, the attacker can

call as many functions as they wish.

The vulnerability’s exploit goal is to gain root privileges while

disabling SELinux. The discussed primitive disables SELinux (since

it is possible to just call enforce_setup, passing a “0” string as the

first parameter), however, it is not enough to call to the

commit_creds function to gain root privileges.

To call commit_creds successfully, the attacker must ensure it

doesn’t defer a user space memory address in another thread,

resulting in a kernel crash. To do so, it can pass the kernel’s

4
An attacker can only control most of the argument because the pointers to the function as well as the

pointer to next are contained in curr.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 11

init_cred struct (shown in figure 4) as a first argument. This is

possible due to the cred struct being statically allocated instead of

allocated on the heap.

However, since wake_up_common does not allow control of first

argument memory address, another function that can must be

found. Usb_read_done_work_fn is an excellent candidate.

.

Figure 4: The init_cred struct, representing the permission that

the init process receives.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 12

Figure 5: usb_read_done_work_fn function is used as a gadget

to improve function-call primitive.

Since the first argument is controllable, so are the ch pointer and

also the req pointer, (derived from the ch pointer). The last line of

code in figure 5 is exactly what the attacker needs –a call to an

arbitrary function while controlling the address of the parameters

(req->buf is a pointer).

By then chaining the function calls, the attacker can create a q-

>task_list, granting root privileges and disabling SELinux.

 The first function called in the chain is qdisc_list_del,

which allows the attacker to close the control_ports list,

preventing a fake object from being used multiple times.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 13

 The second function of the chain, enforcing_setup, sets up

a pointer to a string that contains ‘0’. This value sets the

SELinux status to “permissive”.

 The last chained function is commit_creds, which receives

the function init_cred as the first argument. The function

sets the UID to 0, elevating the maximum capabilities

available on the system.

CVE-2016-5340
Ashmem vulnerability

Ashmem is Android’s propriety memory allocation subsystem that

enables processes to efficiently share memory buffers. Devices

using Qualcomm chipsets use a modified ashmem system that

provides easy access to the subsystem API from the GPU drivers.

The driver provides a convenient way to access an ashmem file’s

struct file from a file descriptor. The driver supplies two new

functions in the ashmem module to allow this: get_ashmem_file

and put_ashmem_file.

The function get_ashmem_file (figure 6) gets a file descriptor and

checks whether the file descriptor points to an ashmem file. If the

file descriptor points to it, the function extracts its private_data

struct and returns it back to the caller.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 14

Figure 6: get_ashmem_file function added by Qualcomm to ease access

to the ashmem API.

The problem is in the is_ashmem_file function, which

inappropriately checks the file type (figure 7).

Figure 7: is_ashmem_file function. Obscure check for the fi le type of the given fd.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 15

Attackers can use a deprecated feature of Android, called Obb5 to

create a file named ashmem on top of a file system. With this

feature, an attacker can mount their own file system, creating a

file in their root directory called “ashmem.”

By sending the fd of this file to the get_ashmem_file function, an

attacker can trick the system to think that the file they created is

actually an ashmem file, while in reality, it can be any file.

CVE-2016-2503, CVE-2106-2504
Use after free due to race conditions in KGSL

CVE-2016-2503

One of Qualcomm’s GPU components is called “kgsl” (Kernel

Graphics Support Layer). This kernel driver communicates with

userland binaries to render graphics. While there are many

modules in this driver, kgsl_sync is responsible for synchronization

between the CPU and the apps.

The vulnerability lies in the ‘destroy’ function. Creating and

destroying this object can be done by IOCTLing the driver

(/dev/kgsl-3d0) and sending the following IOCTLs:

 IOCTL_KGSL_SYNCSOURCE_CREATE

 IOCTL_KGSL_SYNCSOURCE_DESTROY

5
More information can be found at https://developer.android.com/google/play/expansion-files.html

https://www.codeaurora.org/use-after-free-due-race-conditions-kgsl-module-cve-2016-2504-cve-2016-2503

©2016 Check Point Software Technologies Ltd. All rights reserved. | 16

Figure 8: kgsl_ioctl_syncsource_destroy function. Receives an ID of a

syncsource object, checks for its preexistence and then destroys it.

The function is prone to a race condition flaw, where two parallel

threads call the function simultaneously. This could make the

kernel force a context switch in one thread. This happens right

after the kgsl_syncsource_get call to the second thread which will

call this function too.

Together, these two threads can pass the kgsl_syncsource_get

before starting the refcount reduction. This drops the refcount of

a syncsource object below 0, exposing itself to a use-after-free

attack.

CVE-2016-2504

Another vulnerability is found in the kernel graphics support layer driver

when a module called kgsl creates an object called kgsl_mem_entry

(representing a GPU memory). Since a user-space process can allocate

and map memory to the GPU, it can both create and destroy a

kgsl_mem_entry.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 17

The kgsl_mem_entry is created using a function called

kgsl_mem_entry_create. The function allocates memory for the

kgsl_mem_entry objects and upon success, sets the refcount to 1

using the kref mechanism.

The allocated object is then passed to the function

kgsl_mem_entry_attach_process (figure 9), binding it to a

particular process. Process binding is done by either referencing

kgsl_mem_entry using the “idr” mechanism, or through the GPU

mapping mechanism (kgsl_mem_entry_track_gpuaddr).

Once the kernel calls the idr_alloc function with kgsl_mem_entry

as its argument (figure 9), attackers can free this specific id using

another IOCTL (IOCTL_KGSL_GPUMEM_FREE_ID). Since there’s no

access protection enforced, another thread can simply free this

object, invoking an use-after-free flaw.

©2016 Check Point Software Technologies Ltd. All rights reserved. | 18

Figure 9: kgsl_mem_entry_attach_process. Access to UM is granted before

initialization of entry

©2016 Check Point Software Technologies Ltd. All rights reserved. | 19

©2016 Check Point Software Technologies Ltd. All rights reserved.

Learn More About
Check Point Mobile Threat Prevention

Schedule a Demo

https://www.checkpoint.com/request-a-demo/?utm_source=content&utm_medium=pdf&utm_content=productpage&utm_campaign=16%2DQ3%2DGLOBALPRGMS%2DMobility%2DQuadRooter%20Enterprise
https://www.checkpoint.com/products/mobile-threat-prevention/?utm_source=content&utm_medium=pdf&utm_content=productpage&utm_campaign=16%2DQ3%2DGLOBALPRGMS%2DMobility%2DQuadRooter%20Enterprise
https://www.checkpoint.com/products/mobile-threat-prevention/?utm_source=content&utm_medium=pdf&utm_content=productpage&utm_campaign=16%2DQ3%2DGLOBALPRGMS%2DMobility%2DQuadRooter%20Enterprise
https://www.checkpoint.com/products/mobile-threat-prevention/?utm_source=content&utm_medium=pdf&utm_content=demo&utm_campaign=16%2DQ3%2DGLOBALPRGMS%2DMobility%2DQuadRooter%20Enterprise
https://www.checkpoint.com/request-a-demo/?utm_source=content&utm_medium=pdf&utm_content=demo&utm_campaign=16%2DQ3%2DGLOBALPRGMS%2DMobility%2DQuadRooter%20Enterprise

