
Introduction to the
Witchcraft Compiler
Collection

 Jonathan Brossard
@endrazine

4th of November 2016 Blackhat Europe Conference,
London, UK

The Witchcraft Compiler Collection is free
software (MIT/BSD License).
• https://github.com/endrazine/wcc
• You can write in Lua, Punk-C or C.
• No assembly skills required.

TL ; DR

Who am
I ?

Who Am I ?

https://www.defcon.org/images/defcon-20/dc-20-
presentations/Brossard/DEFCON-20-Brossard-Hardware-Backdooring-is-
Practical.pdf

DISCLAIMER
S

Disclaimer

• My employers are not associated with this talk
in any way.

• This is my personal research.
•

DISCLAIMER

• This talk received help from the EFF.
• Warmest thank you to Nate Cardozo, Andrew

Crocker and Mitch Stoltz

Free legal advising to security researchers :
https://www.eff.org/
https://www.eff.org/issues/coders/reverse-
engineering-faq

Legal help

• WCC components
• “Libifying” a binary
• Unlinking binaries
• Crossing a Fish and a Rabbit
• Introduction to Witchcraft
• Binary “reflection” without a VM
• Towards binary self awareness
• Future work

Agenda

WCC : components

Binaries (C):
wld : witchcraft linker
wcc : witchcraft core compiler
wsh : witchcraft shell : dynamic interpreter + scripting
engine

Scripts (lua, …):
wcch : witchcraft header generator
wldd : witchcraft compiler flags generator
...

Host machine : GNU/Linux x86_64 (mostly portable to POSIX
systems).

WCC Components

Transforming an ELF executable binary into an ELF shared
library.

Wld : “Libification”

Libification of proftpd

DEMOS

Libification of proftpd

We really patched 1 byte only

typedef struct
{
 unsigned char e_ident[EI_NIDENT]; /* Magic number and
other info */
 Elf64_Half e_type; /* Object file type */
 Elf64_Half e_machine; /* Architecture */
 Elf64_Word e_version; /* Object file version */
 Elf64_Addr e_entry; /* Entry point virtual address
*/
 Elf64_Off e_phoff; /* Program header table file
offset */
 Elf64_Off e_shoff; /* Section header table file
offset */
 Elf64_Word e_flags; /* Processor-specific flags */
 Elf64_Half e_ehsize; /* ELF header size in bytes */
 Elf64_Half e_phentsize; /* Program header table
entry size */
 Elf64_Half e_phnum; /* Program header table
entry count */
 Elf64_Half e_shentsize; /* Section header table
entry size */
 Elf64_Half e_shnum; /* Section header table
entry count */
 Elf64_Half e_shstrndx; /* Section header string
table index */
} Elf64_Ehdr;

libification

Using our new shared library

We’re really creating a “non relocatable” shared library.

ET_DYN and ET_EXEC ELF files are both executable (ASLR
support in the kernel)

This is equivalent to creating a shared library with a non
NULL base address (equivalent to prelinking)

Note: Amazingly, this shared library is still a valid executable
too.

How comes this works ?

Linking against apache2

DEMOS

Apache2 as a shared library

APache2 as a shared library

The typical approach to reverse engineering is to transform
binaries or shared libraries back to source code.
Instead, we aim at transforming final binaries or shared
libraries back to ELF relocatable objects, that can later be
relinked normally (using gcc/ld) into executables or shared
objects.

Wcc : “unlinking”

Source code

Wcc : “unlinking”

Relocatable
objects

(*.o)

Binaries
(executables,

shared libs…)

Compiler

L
i
n
k
e
r

Source code

Wcc : “unlinking”

Relocatable
objects

(*.o)

Binaries
(executables,

shared libs…)

Compiler

L
i
n
k
e
r

Decompiler

Source code

Wcc : “unlinking”

Relocatable
objects

(*.o)

Binaries
(executables,

shared libs…)

Compiler

L
i
n
k
e
r

Decompiler

Source code

unlinking

Relocatable
objects

(*.o)

Binaries
(executables,

shared libs…)

Compiler

L
i
n
k
e
r

Decompiler

w
c
c

The command line is made to resemble the syntax of gcc :

WCC : Command line

The front end is build around libbfd. The backend is trivial C
to copy each mapped section of the binary, handle symbols
and relocations.

Benefit of using libbfd : the input binary doesn’t need to be
an ELF !

=> We can for instance transform a Win64 executable into
ELF 64b relocatable objects…

Wcc : internals

(Binary to object file to relocatable to
unstripped library)

DEMO

WCC : demo

(Crossing a Fish and a Rabbit)

DEMO

PE + ELF = PELF

WCC : PE32 to ELF64

Native OpenBSD on linux

DEMO

Introduction to
Witchcraft

Now that we know how to transform arbitrary binaries into
shared libraries, we can load them into our address space via
dlopen().
Let’s implement the same features as traditional virtual
machines, but for raw binaries !

Whish list :
- Load arbitrary applications into memory
- Execute arbitrary functions with any arguments (and get

results)
- Monitor/Trace execution
- Automated functions prototyping/annotation
- Learn new behavior
- Examine/Modify arbitrary memory

Binary “reflection”
without a VM

Loading is done via dlopen().
The core engine/shell is built around lua.
Can be compiled with luajit to get JIT compilation.
Tracing/Memory analysis doesn’t rely on ptrace() : we share
the address space.
Lightweight : ~5k lines of C.
No disassembler (as of writing. Subject to change).
No need for /proc support !
Function names mapped in each library is dumped from the
link_map cache.

WSH : architecture

Distinctive features:

- We fully share the address space with analyzed applications
(no ptrace() nor context switches).
- Requires no privileges/capabilities (no root, no ptrace(), no
CAP_PTRACE, no /proc…)
- No disassembly : fully portable (POSIX)
- Implements “reflection” for binaries
- Full featured programming language
- Interactive and/or fully scriptable, autonomous programs
- Has no types
- Has no fixed API : any function you load in memory

becomes available in WSH
- Functions have no prototypes
- => Can call arbitrary functions without knowing their

prototypes
- => Allows for extended function annotations (to be fully

automated)
- => Steal/Reuse any code. Add scripting to any application.
-
-

 NONE OF THIS IS SUPPOSED TO WORK

Wsh : The wichcraft
interpreter

Advanced features:
- Loads any code via dlopen() : this solves relocations,
symbols resolution, dependencies for us.
- Secondary loader bfd based (could load invalid binaries,
anything in memory).
- Dumping of dynamic linker cash internals (undocumented) :
linkmap
- Breakpoints without int 0x03 (use SIGINVALID + invalid
opcode)
- Bruteforcing of mapped memory pages via msync() (0day, no
/proc needed)
- Wsh can be compiled to do JIT compilation on the fly at
runtime.
- Automated fuzzing/extended prototyping/functional testing

 NONE OF THIS IS SUPPOSED TO WORK

Wsh : The wichcraft
interpreter

(Punk-C/Punxie)

Witchcraft

Lua Interpreter
+
 “Reflected” C API
=

Punk-C

Punk-C Language (WSH)

DEMO

Witchcraft

DEMO ARM

Witchcraft

FUTURE WORK

Witchcraft

- Hyde our own presence better in memory (second heap)
- Remote debugging, running process injection
- Shadow mapping, internal libraries tracing (recursive ltrace)
- ltrace/strace to valid scripts
- system call tracing

FUTURE WORK

Questions ?

TO BE CONTINUED

