
Another Brick O↵ the Wall: Deconstructing Web Application

Firewalls Using Automata Learning

George Argyros

Columbia University

argyros@cs.columbia.edu

Ioannis Stais

Census S.A.

istais@census-labs.com

Web Applications Firewalls (WAFs) are fundamental building blocks of modern application security.
For example, the PCI standard for organizations handling credit card transactions dictates that any
application facing the internet should be either protected by a WAF or successfully pass a code review
process. Nevertheless, despite their popularity and importance, auditing web application firewalls re-
mains a challenging and complex task. Finding attacks that bypass the firewall usually requires expert
domain knowledge for a specific vulnerability class. Thus, penetration testers not armed with this knowl-
edge are left with publicly available lists of attack strings, like the XSS Cheat Sheet, which are usually
insu�cient for thoroughly evaluating the security of a WAF product.

Modern WAFs are built using a combination of di↵erent technologies such as regular expression
matching, string conversion and de-obfuscation, and anomaly detection engines. This diversity of features
makes WAFs a challenging target for analyzing and finding vulnerabilities.

In this presentation we introduce a novel, e�cient, approach for bypassing WAFs using automata
learning algorithms. We show that automata learning algorithms can be used to obtain useful models
of WAFs. Given such a model, we show how to construct, either manually or automatically, a grammar
describing the set of possible attacks which are then tested against the obtained model for the firewall.
Moreover, if our system fails to find an attack, a regular expression model of the firewall is generated for
further analysis. Using this technique we found over 10 previously unknown vulnerabilities in popular
WAFs such as Mod-Security, PHPIDS and Expose allowing us to mount SQL Injection and XSS attacks
bypassing the firewalls. Finally, we present LightBulb, an open source python framework for auditing
web applications firewalls using the techniques described above. In the release we include the set of
grammars used to find the vulnerabilities presented.

The reader may consult the following pages for a full technical description of the algorithms and
techniques behind the tools presented in Black-Hat Europe 2016. The attached papers are:

1. The paper ”Back in Black: Towards, Formal, Black-box Analysis of Sanitizers and Filters”, pre-
sented in the 37th IEEE Symposium on Security and Privacy, which is joint work of the authors
with Angelos D. Keromytis and Aggelos Kiayis.

2. The paper ”SFADi↵: Automated Evasion Attacks and Fingerprinting Using Black-box Di↵erential
Automata Learning”, presented in the 23rd ACM Conference on Computer and Communications
Security 2016, which is joint work with Suman Jana, Angelos D. Keromytis and Aggelos Kiayias.

1

Back in Black: Towards Formal, Black Box Analysis
of Sanitizers and Filters

George Argyros
Columbia University

argyros@cs.columbia.edu

Ioannis Stais
University of Athens

i.stais@di.uoa.gr

Aggelos Kiayias
University of Athens

aggelos@di.uoa.gr

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

Abstract—We tackle the problem of analyzing filter and
sanitizer programs remotely, i.e. given only the ability to query
the targeted program and observe the output. We focus on two
important and widely used program classes: regular expression
(RE) filters and string sanitizers. We demonstrate that existing
tools from machine learning that are available for analyzing
RE filters, namely automata learning algorithms, require a very
large number of queries in order to infer real life RE filters.
Motivated by this, we develop the first algorithm that infers
symbolic representations of automata in the standard mem-
bership/equivalence query model. We show that our algorithm
provides an improvement of x15 times in the number of queries
required to learn real life XSS and SQL filters of popular web
application firewall systems such as mod-security and PHPIDS.
Active learning algorithms require the usage of an equivalence
oracle, i.e. an oracle that tests the equivalence of a hypothesis
with the target machine. We show that when the goal is to audit a
target filter with respect to a set of attack strings from a context
free grammar, i.e. find an attack or infer that none exists, we
can use the attack grammar to implement the equivalence oracle
with a single query to the filter. Our construction finds on average
90% of the target filter states when no attack exists and is very
effective in finding attacks when they are present.

For the case of string sanitizers, we show that existing
algorithms for inferring sanitizers modelled as Mealy Machines
are not only inefficient, but lack the expressive power to be able
to infer real life sanitizers. We design two novel extensions to
existing algorithms that allow one to infer sanitizers represented
as single-valued transducers. Our algorithms are able to infer
many common sanitizer functions such as HTML encoders and
decoders. Furthermore, we design an algorithm to convert the
inferred models into BEK programs, which allows for further
applications such as cross checking different sanitizer implemen-
tations and cross compiling sanitizers into different languages
supported by the BEK backend. We showcase the power of
our techniques by utilizing our black-box inference algorithms
to perform an equivalence checking between different HTML
encoders including the encoders from Twitter, Facebook and
Microsoft Outlook email, for which no implementation is publicly
available.

I. INTRODUCTION

Since the introduction and popularization of code injection
vulnerabilities as major threats for computer systems, saniti-
zation and filtering of unsafe user input is paramount to the
design and implementation of a secure system. Unfortunately
correctly implementing such functionalities is a very challeng-
ing task. There is a large literature on attacks and bypasses in
implementations both of filter and sanitizer functions [1]–[3].

The importance of sanitizers and filters motivated the
development of a number of algorithms and tools [4]–[7] to

analyze such programs. More recently, the BEK language [8]
was introduced. BEK is a Domain Specific Language(DSL)
which allows developers to write string manipulating functions
in a language which can then be compiled into symbolic fi-
nite state transducers(SFTs). This compilation enables various
analysis algorithms for checking properties like commutativity,
idempotence and reversibility. Moreover, one can efficiently
check whether two BEK programs are equal and, in the
opposite case to obtain a string in which the two programs
differ.

The BEK language offers a promising direction for the
future development of sanitizers where the programs developed
for sanitization will be formally analyzed in order to verify
that certain desired properties are present. However, the vast
majority of code is still written in languages like PHP/Java and
others. In order to convert the sanitizers from these languages
to BEK programs a significant amount of manual effort is
required. Even worst, BEK is completely unable to reason for
sanitizers whose source code is not available. This significantly
restricts the possibilities for applying BEK to find real life
problems in deployed sanitizers.

In this paper we tackle the problem of black-box analysis
of sanitizers and filters. We focus our analysis on regular
expression filters and string sanitizers which are modelled as
finite state transducers. Although regular expression filters are
considered suboptimal choices for building robust filters [9],
their simplicity and efficiency makes them a very popular
option especially for the industry.

Our analysis is black-box, that is, without access to any sort
of implementation or source code. We only assume the ability
to query a filter/sanitizer and obtain the result. Performing a
black-box analysis presents a number of advantages; firstly,
our analysis is generic, i.e. indepedent of any programming
language or system. Therefore, our system can be readily ap-
plied to any software, without the need for a large engineering
effort to adjust the algorithms and implementation into a new
programming language. This is especially important since in
today’s world, the number of programming languages used
varies significantly. To give an example, there are over 15
different programming languages used in the backend of the
15 most popular websites [10].

The second advantage of performing a black-box analysis
comes out of necessity rather than convience. Many times,
access to the source code of the program to be analyzed is
unavailable. There are multiple reasons this may happen; for
one, the service might be reluctant to share the source code

of its product website even with a trusted auditor. This is
the reason, that a large percentage of penetration tests are
performed in a black-box manner. Furthermore, websites such
as the ones encountered in the deep web, for example TOR
hidden services, are designed to remain as hidden as possible.
Finally, software running in hardware systems such as smart
cards is also predominately analyzed in a black-box manner.

Our algorithms come with a formal analysis; for every
algorithm we develop, we provide a precise description of the
conditions and assumptions under which the algorithm will
work within a given time bound and provide a correct model
of the target filter or sanitizer.

Our goal is to build algorithms that will make it easier
for an auditor to understand the functionality of a filter or
sanitizer program without access to its source code. We begin
by evaluating the most common machine learning algorithms
which can be used for this task. We find that these algorithms
are not fit for learning filters and sanitizers for different
reasons: The main problem in inferring regular expressions
with classical automata inference algorithms is the explosion in
the number of queries caused by the large alphabets over which
the regular expressions are defined. This problem also occurs in
the analysis of regular expressions in program analysis appli-
cations (whitebox analysis), which motivated the development
of the class of symbolic finite automata which effectively
handles these cases [11]. Motivated by these advances, we
design the first algorithm that infers symbolic finite automata
(SFA) in the standard active learning model of membership and
equivalence queries. We evaluate our algorithm in 15 real life
regular expression filters and show that our algorithm utilizes
on average 15 times less queries than the traditional DFA
learning algorithm in order to infer the target filter.

The astute reader will counter that an equivalence oracle
(i.e., an oracle that one submits a hypothesized model and a
counterexample is returned if there exists one) is not available
in remote testing and thus it has to be simulated at potentially
great cost in terms of number of queries. In order to address
this we develop a structured approach to equivalence oracle
simulation that is based on a given context free grammar G.
Our learning algorithm will simulate equivalence queries by
drawing a single random string w from L(G) \ L(H) where
L(H) is the language of the hypothesis. If w belongs to the
target we have our counterexample, while if not, we have found
a string w that is not recognized by the target. In our setting
strings that are not recognized by the target filter can be very
valuable: we set G to be a grammar of attack strings and we
turn the failure of our equivalence oracle simulation to the
discovery of a filter bypass! This also gives rise to what we
call Grammar Oriented Filter Auditing (GOFA): our learning
algorithm, equipped with a grammar of attack strings, can be
used by a remote auditor of a filter to either find a vulnerability
or obtain a model of the filter (in the form of an SFA) that
can be used for further (whitebox) testing and analysis.

Turning our attention to sanitizers, we observe that in-
ferring finite state transducers suffers from even more fun-
damental problems. Current learning algorithms infer models
as Mealy machines, i.e. automata where at each transition one
input symbol is consumed and one output symbol is produced.
However, this model is very weak in capturing the behavior of
real life sanitizers where for each symbol consumed multiple,

or none, symbols are produced. Even worse, many modern
sanitizers employ a “lookahead”, i.e. they read many symbols
from the input before producing an output symbol. In order
to model such behavior the inferred transducers must be
non deterministic. To cope with these problems we make
three contributions: First, we show how to improve the query
complexity of the Shabaz-Groz algorithm [12] exponentially.
Second, we design an extension of the Shabaz-Groz algorithm
which is able to handle transducers which output multiple
or no symbols in each transition. Finally, we develop a new
algorithm, based on our previous extension, which is able to
infer sanitizers that employ a lookahead, i.e., base their current
output by reading ahead more than one symbol.

To enable more fine grained analysis of our inferred
models we develop an algorithm to convert (symbolic) finite
transducers with bounded lookahead into BEK programs. This
algorithm enables an interesting application: In the original
BEK paper [8] the authors manually converted different HTML
encoder implementations into BEK programs and then used the
BEK infrastructure to check equivalence and other properties.
Our algorithms enable these experiments to be performed
automatically, i.e. without manually converting each imple-
mentation to a BEK program and more importantly, being ag-
nostic of the implementation details. In fact, we checked seven
HTML encode implementations: three PHP implementations,
one implementation from the AntiXSS library in .NET and we
also included models infered from the HTML encoders used
by the websites of Twitter and Facebook and by the Microsoft
Outlook email service. We detected differences between many
implementations and found that Twitter and Facebook’s HTML
encoders match the htmlspecialcharacters function of
PHP although the Outlook service encoder does not match the
MS AntiXSS implementation in .NET. Moreover, we found
that only one of these implementations is idempotent.

Finally, we point out that although our algorithms are
focused on the analysis of sanitizers and filters they are general
enough to potentially being applied in a number of different
domains. For example, in appendix D, we show how one
can use an SFA to model decision trees over the reals. In
another application, Doupe et al. [13] create a state aware
vulnerability scanner, where they model the different states
of the application using a Mealy machine. In their paper
they mention they considered utilizing inference techniques
for Mealy machines but that this was infeasible, due to the
large number of transitions. However, our symbolic learning
algorithms are able to handle efficiently exactly those cases
and thus, we believe several projects will be able to benefit
from our techniques.

A. Limitations

Since the analysis we perform is black-box, all of our
techniques are necessarily incomplete. Specifically, there might
be some aspect of the target program that our algorithms will
fail to discover. Our algorithms are not designed to find, for
example, backdoors in filters and sanitizers where a “magic
string” is causing the program to enter a hidden state. Such
programs will necessarily require an exponential number of
queries in the worst case in order to analyze completely.
Moreover, our algorithms are not geared towards discovering
new attacks for certain vulnerability classes. We assume that

2

the description of the attack strings for a certain vulnerability
class, for example XSS, is given in the form of a context free
grammar.

B. Contributions

To summarize, our paper makes the following contribu-
tions:

Learning Algorithms: We present the first, to the best of
our knowledge, algorithm that learns symbolic finite automata
in the standard membership and equivalence query model.
Furthermore, we improve the query complexity of the Shabaz-
Groz algorithm [12], a popular Mealy machine learning al-
gorithm and present an extension of the algorithm capable
of handling Mealy Machines with "-input transitions. Finally,
we present a novel algorithm which is able to infer finite
transducers with bounded lookahead. Our transducer learning
algorithms can also be easily extended in the symbolic setting
by expanding our SFA algorithm.

Equivalence Query Implementation: We present the Gram-
mar Oriented Filter Auditing (GOFA) algorithm which imple-
ments an equivalence oracle with a single membership query
for each equivalence query and demonstrate that it is capable
to either detect a vulnerability in the filter if one is present or,
if no vulnerability is present, to recover a good approximation
of the target filter.

Conversion to BEK programs: We present, in appendix C
an algorithm to convert our inferred models of sanitizers into
BEK programs which can then be analyzed using the BEK
infrastructure enabling further applications.

Applications/Evaluation: We showcase the wide applicability
of our algorithms with a number of applications. Specifically,
we perform a thorough evaluation of our SFA learning al-
gorithm and demonstrate that it achieves a big performance
increase on the total number of queries performed. We also
evaluate our GOFA algorithm and demonstrate that it is able
to either detect attacks when they are present or give a good
approximation of the target filter. To showcase our transducer
learning algorithms we infer models of several HTML en-
coders, convert them to BEK program and check them for
equivalence.

We point out that, due to lack of space all proofs have been
moved into the appendix.

II. PRELIMINARIES

A. Background in Automata Theory

If M is a deterministic finite automaton (DFA) defined over
alphabet ⌃, we denote by |M | the number of states of M and
by L(M) the language that is accepted by M . For any k we
denote by [k] the set {1, . . . , k}. We denote the set of states
of M by QM . A certain subset F of QM is identified as the
set of final states. We denote by l : QM ! {0, 1} a function
which identifies a state as final or non final. The program of
the finite automaton M is determined by a transition function
� over QM ⇥ ⌃ ! QM . For an automaton M we denote by
¬M the automaton M with the final states inverted.

A push-down automaton (PDA) M extends a finite au-
tomaton with a stack. The stack accepts symbols over an

alphabet �. The transition function is able to read the top of the
stack. The transition function is over QM ⇥⌃⇥ (�[{"})!
QM ⇥ (�[{"}). A context-free grammar (CFG) G comprises
a set of rules of the form A ! w where A 2 V and
w 2 (⌃ [V)

⇤ where V is a set of non-terminal symbols.
The language defined by a CFG G is denoted by L(G).

A transducer T extends a finite automaton with an output
tape. The automaton is capable of producing output in each
transition that belongs to an alphabet �. The transition function
is defined over QM ⇥ (⌃ [{"}) ! QM ⇥ (� [{"}). A
Mealy Machine M is a deterministic transducer without "
transitions where, in addition, all states are final. A non-
deterministic transducer has a transition function which is a
relation � ✓ QM ⇥ (⌃[{"})⇥QM ⇥ (�[{"}). For general
transducers (deterministic or not), following [8], we extend
the definition of a transducer to produce output over �

⇤. A
non-deterministic transducer is single-valued if it holds that
for any w 2 ⌃

⇤ there exists at most one � 2 �

⇤ such
that T on w outputs �. A single-valued transducer T has
the bounded lookahead property if there is a k such that
any sequence of transitions involves at most k consecutive
non-accepting states. We call such a sequence a lookahead
path or lookahead transition. In a single valued transducer
with bounded lookahead we will call the paths that start and
finish in accepting states and involve only non-accepting states
as lookahead paths. The path in its course consumes some
input w 2 ⌃

⇤ and outputs some � 2 �

⇤. The bounded
lookahead property definition is based on the one given by
Veanes et al. [14] for Symbolic Transducers, however our
definition better fits our terminology and the intuition behind
our algorithms.

For a given automaton M , we denote by Mq[s] the state
reached when the automaton is executed from state q on input
s. When the state q is omitted we assume that M is executed
from the initial state. Let l : Q! {0, 1} be a function denoting
whether a state is final. We define the transduction function
TM (u) as the output of a transducer/Mealy Machine M on
input u omitting the subscript M when the context is clear.
For transducers we will also use the notation u[M]v to signify
that TM (u) = v for a transducer M .

For a string s, denote by si the i-th character of the string.
In addition, we denote by s>i the substring s starting after si.
The operators s<i, s�i, si are defined similarly. We denote
by su↵(s, k) the suffix of s of length k.

Given two DFA’s M1,M2 it is possible to compute the
intersection M = M1 \M2 of the two as follows. The set of
states of M is the Cartesian product Q1⇥Q2 and the transition
function combines the two individual transition functions to
traverse over the pair of states simultaneously. The accepting
states of QM are those that are simultaneously accepting for
M1,M2. We can use exactly the same algorithm to obtain the
intersection between a DFA M1 and a PDA M2. The resulting
machine M is a PDA that inherits the stack operations of M2.
Moreover, one can trivially compute the completement of a
DFA by switching all terminal states with non terminal and
vice-versa.

Transducers are not closed under intersection and dif-
ference, and if the transducer is non-deterministic checking
properties as simple as equality is undecidable. However,

3

in the case the transducer is determinsitic or single valued
then equality can be efficiently computed and in the case the
transducers are not equal one can exhibit a string in which the
two transducers are different efficiently [15].

B. Symbolic Finite State Automata

Symbolic Finite Automata (SFA) [16] extend classical
automata by allowing transitions to be labelled with predicates
rather than with concrete alphabet symbols. This allows for
more compact representation of automata with large alphabets
and it could allow automata that are impossible to model as
DFAs when the alphabet size is infinite, as in the case where
⌃ = Z. For the following we refer to a set of predicates P as
a predicate family.

Definition 1. (Adapted from [16]) A symbolic finite automa-
ton or SFA A is a tuple (Q, q0, F,P,�), where Q is a finite
set of states, q0 2 Q the initial state, F ✓ Q is the set of final
states, P is a predicate family and � ✓ Q ⇥ P ⇥ Q is the
move relation.

A move (p,�, q) 2 � is taken when � is satisfied from the
current symbol ↵. We will also use an alternative notation for
a move (p,�, q) as p

��! q. We denote by guard(q) the set of
predicate guards for the state q, in other words:

guard(q) := {� : 9p 2 Q, (q,�, p) 2 �}

In this paper we are going to work with deterministic SFAs,
which we define as follows:

Definition 2. A SFA A is deterministic if for all states q 2
Q and all distinct �,�0 2 guard(q) we have that � ^ �0 is
unsatisfiable.

Finally, we also assume that for any state q and for any
symbol a in the alphabet there exists � 2 guard(q) such that
�(a) is true. We call such an SFA complete.

Finally, we define symbolic finite state transducers, the
corresponding symbolic extension of transducers similarly to
SFAs.

Definition 3. (Adapted from [15]) A symbolic finite trans-
ducer or SFT T is a tuple (Q, q0, F,P,�,�(x)), where Q is
a finite set of states, q0 2 Q the initial state, F ✓ Q is the set
of final states, P is a predicate family, �(x) is a set of terms
representing functions over ⌃! � and � ✓ Q⇥P⇥�(x)⇥Q
is the move relation.

C. Access and Distinguishing Strings

We will now define two sets of strings over an automaton
that play a very important role in learning algorithms.

Access Strings: For an automaton M we define the set of
access strings A as follows: For every state q 2 QM , there is
a string sq 2 A such that M [sq] = q. Given a DFA M , one
can easily construct a minimal set of access strings by using
a depth first search over the graph induced by M .

Distinguishing Strings: We define the set of distinguishing
strings D for a minimal automaton M as follows: For any pair
of states qi, qj 2 QM , there exists a string di,j 2 D such that

exactly one state of Mqi [di,j] and Mqj [di,j] is accepting. A set
of distinguishing strings can be constructed using the Hopcroft
algorithm for automata minimization [17].

The set of Access and Distinguishing strings play a central
role in automata learning since learning algorithms try to
construct these sets by querying the automaton. Once these
sets are constructed then, as we will see, it is straightforward
to reconstruct the automaton.

D. Learning Model

Our algorithms work in a model called exact learning
from membership and equivalence queries [18], which is a
form of active learning where the learning algorithm operates
with oracle access to two types of queries:

– Membership queries: The algorithm is allowed to
submit a string s and obtain whether s 2 L(M).

– Equivalence queries: The algorithm is allowed to
submit a hypothesis H which is a finite automaton
and obtain either a confirmation that L(H) = L(M)

or a string z that is a counterexample, i.e., a string z
that belongs to L(H)4L(M). 1

The goal of the learning algorithm is to obtain an exact
model of the unknown function. Note that, this model extends
naturally to the case of deterministic Mealy machines and
transducers by defining the membership queries to return the
output of the transducer for the input string. We say that an
algorithm gets black box access to an automaton/transducer
when the algorithm is able to query the automaton with an
input of his choice and obtain the result. No other information
is obtained about the structure of the automaton.

III. LEARNING ALGORITHMS

In this section we present two learning algorithms that
form the basis of our constructions, Angluin’s algorithm for
DFA’s [19] as optimized by Rivest and Schapire [20] and the
Shabhaz-Groz (SG) algorithm for Mealy machines [12].

A. Angluin’s Algorithm

Consider a finite automaton M . Angluin [19] suggested an
algorithm (referred to as L⇤) for learning M . The intuition
behind the functionality of Angluin’s algorithm is to construct
the set of access and distinguishing strings given the two
oracles available to it. Intuitively, the set of access strings
will suggest the set of states of the reconstructed automaton.
Furthermore, a transition from a state labeled with access string
s to a state labelled with access string s0 while consuming a
symbol b will take place if and only if the string sb leads to a
state that cannot be distinguished from s0.

In order to reconstruct the set of access and distinguishing
strings the algorithm starts with the known set of access strings
(initially just {"}) and, using equivalence queries, expands
the set of access and distinguishing strings until the whole
automaton is reconstructed.

1We denote by 4 the symmetric difference operation.

4

Technical Description. The variant L⇤ we describe below is
due to Rivest and Schapire [20]. The main data structure used
by the L⇤ algorithm is the observation table.

Definition 4. An observation table OT with respect to an
automaton M is a tuple OT = (S,W, T) where

– S ✓ ⌃

⇤ is a set of access strings.

– W ✓ ⌃

⇤ is a set of distinguishing strings which we
will also refer to as experiments.

– T is a partial function T : ⌃

⇤ ⇥ ⌃

⇤ ! {0, 1}.

The function T maps strings into their respective state label
in the target automaton, i.e., T (s, d) = l(M [s · d]). We note
here that T is defined only for those strings s, d such that s ·d
was queried using a membership query.

Next we define an equivalence relation between strings
with respect to a set of strings and a finite automaton M .

Definition 5. (Nerode Congruence) Given a finite automaton
M , for a set W ✓ ⌃

⇤ and two strings s1, s2 we say that

s1 ⌘ s2 mod W

when for all w 2W we have that l(M [s1 ·w]) = l(M [s2 ·w]).

Note that for any M there will be a finite number of differ-
ent equivalence classes for any set W (this stems immediately
from the fact that M is a finite automaton). This relates to the
Myhill-Nerode theorem [21] that, for the above equivalence
defined over a language L (i.e., requiring that either both
s1 ·w, s2 ·w 2 L or none), it states that having a finite number
of equivalence classes for L is equivalent to L being regular.

The observation table is going to give us a hypothesis
automaton H when the property of closedness holds for the
table.

Definition 6. Let OT = (S,W, T) be an observation table.
We say that OT is closed when, for all t 2 S ·⌃, there exists
s 2 S such that t ⌘ s mod W .

Given a closed observation table we can produce a hy-
pothesis automaton as follows: For each string s 2 S we
create a state qs. The initial state is q". For a state qs and
a symbol b 2 ⌃ we set �(qs, b) = qt iff s · b ⌘ t mod W . By
the closedness property there will be always at least one such
string. In the following, we will also see that by the way we
fill the table that string will always be unique.

We are now ready to describe the algorithm: Initially we
start with the observation table OT = (S = {"},W = {"}, T).
The table T has |⌃| + 1 rows and is filled by querying an
equal number of membership queries. The table is checked
for closedness. If the table is not closed then let t 2 S · ⌃ be
a string such that for all s 2 S, we have that s 6⌘ t mod W .
Then, we set S = S [{t}, complete remaining entries of
the table via |⌃| membership queries and we check again
for closedness. Eventually the table becomes closed and we
create a hypothesis automaton H . Observe that the number
of times we will repeat the above process until we reach a
closed table cannot exceed |QM |. A useful invariant in the
above algorithmic process is the property of the observation
table OT to be reduced: for all s, s0 2 S it holds that

s 6= s0 mod W . Observe that the initial OT is trivially reduced
while augmenting the set S with a new state as described above
preserves the property.

Now suppose that we have a hypothesis automaton H
produced by a closed and reduced observation table. Given
H , the algorithm makes an equivalence query and based on
the outcome either the algorithm stops (no counterexample
exists) or the counterexample z is processed and the set of
distinguishing strings W is augmented by one element as
shown below.

Processing a counterexample. For any i 2 {0, . . . , |z|} define
↵i to be the outcome (that is accept or reject) that is produced
by processing the first i symbols of z with the hypothesis H
and the remaining with M in the following manner. Given i
we simulate H on the first i symbols of z to obtain a state
si 2 S. Let z>i be the suffix of z that is not processed
yet; by submitting the membership query siz>i we obtain ↵i.
Observe that based on the fact that z is a counterexample
it holds that ↵0 6= ↵|z|. It follows that there exists some
i0 2 {0, . . . , |z|�1} for which ↵i0 6= ↵i0+1. We can find such
i0 via a binary search using O(log |z|) membership queries.
The new distinguishing string d will be defined as the suffix
of z>i0 that excludes the first symbol b (denoted as z>i0+1).
We observe the following: recall that ↵i0 is the outcome of the
membership query of si0z>i0 = si0bz>i0+1 and ↵i0+1 is the
outcome of the membership query si0+1z>i0+1. Furthermore,
in H , si0 transitions to si0+1 by consuming b, hence we have
that si0b ⌘ si0+1 mod W . By adding d = z>i0+1 to W we
have that T (si0b, z>i0+1) 6= T (si0+1, z>i0+1) and hence the
state si0+1 and the state that is derived by si0 consuming b
should be distinct (while H pronounced them equal). We ob-
serve that the new observation table OT is not closed anymore:
on the one hand, it holds that si0b 6⌘ si0+1 mod W [{d}
(note that since " 2 W it should be that d 6= "), while if
si0b ⌘ sj mod W [{d} for some j 6= i0+1 this would imply
that si0b ⌘ sj mod W and thus si0+1 ⌘ sj mod W as well.
This latter equality contradicts the property of the OT being
reduced. Hence we conclude that the new OT is not closed
and the algorithm continues as stated above (specifically it will
introduce si0b as a new state in S and so on).

We remark that originally, L⇤ as described by Angluin
added all prefixes of a counterexample in S and thus violated
the reduced table invariant (something that lead to a sub-
optimal number of membership queries). The variant of L⇤ we
describe above due to [20] maintains the reduced invariant.

For a target automaton M with n states, the total number
of membership queries required by the algorithm is bounded
by n2

(|⌃|+1)+n logm where m is the length of the longest
counterexample.

B. The Shabhaz-Groz (SG) Algorithm

In [12], Shabhaz and Groz extended Angluin’s algorithm
to the setting of Mealy machines which are deterministic
Transducers without "-transitions.

The core of the algorithm remains the same: a table
OT will be formed and as before will be based on rows
corresponding to S [S ⇥ ⌃ and columns corresponding to
distinguishing strings W . The table OT will not be a binary

5

table in this case, but instead it will have values in �

⇤.
Specifically, the partial function T in the SG observation table
is defined as T (s, d) = su↵(T (sd), |d|). The rows of T satisfy
the non-equivalence property, i.e., for any s, s0 2 S it holds
that s 6⌘ s0 mod W , thus as in the Rivest-Schapire variant of
L⇤ each access string corresponds to a unique state in the
hypothesis automaton. Further, provided that ⌃ ✓ W , we
have for each s 2 S, the availability of the output symbol
produced when consuming any b 2 ⌃ is given by T (s, b).
In this way a hypothesis Mealy machine can be constructed
in the same way as in the L⇤ algorithm. On the other hand,
Shabhaz and Groz [12] contribute a new method for processing
counterexamples described below.

Let z be a counterexample, i.e., it holds that the hypothesis
machine H and the target machine produce a different output
in �. Let s be the longest prefix of z that belongs to the access
strings S. If s ·d = z, in [12] it is observed that they can add d
as well as all of its suffixes as columns in OT . The idea is that
at least one of the suffixes of d will contain a distinguishing
string and thus it can be used to make the table not closed.In
addition, this method of processing counterexamples makes
the set W suffix closed. After adding all suffixes and making
the corresponding membership queries, the algorithm proceeds
like the L⇤ algorithm by checking the table for closedness.
The overall query complexity of the algorithm is bounded by
O(|⌃|2n+ |⌃|mn2

) queries, where n,m,⌃ are defined as in
the L⇤ algorithm.

IV. LEARNING SYMBOLIC AUTOMATA

In this section we present our algorithm for learning
symbolic finite automata for general predicate families. Then,
we specialize our algorithm for the case of regular expression
filters.

A. Main Algorithm

Symbolic finite automata extend classical finite automata
by allowing transitions to be labelled by predicate formulas
instead of single symbols. In this section we will describe the
first, to the best of our knowledge, algorithm to infer SFAs
from membership and equivalence queries. Our algorithm,
contrary to previous efforts to infer symbolic automata [22]
which required the counterexample to be of minimal length,
works in the standard membership and equivalence query
model under a natural assumption, that the guards themselves
can be inferred using queries.

The main challenge in learning SFA’s is that counterexam-
ples may occur due to two distinct reasons: (i) a yet unlearned
state in the target automaton (which is the only case in the L⇤

algorithm), (ii) a learned state with one of the guards being
incorrect and thus, leading to a wrong transition into another
already discovered state. Our main insight is that it is possible
to distinguish between these two cases and suitably adjust
either the guard or expand the hypothesis automaton with a
new state.

Technical Description. The algorithm is parameterized by
a predicate family P over ⌃. The goal of the algorithm is
to both infer the structure of the automaton and label each
transition with the correct guard � 2 P . Compared to the L⇤

algorithm, our learning algorithm, on top of the ability to make

membership and equivalence queries will also require that the
guards come from a predicate family for which there exists a
guard generator algorithm that we define below.

Definition 7. A guard generator algorithm guardgen() for
a predicate family P over an alphabet ⌃ takes as input a
sequence R of pairs (b, q) where b 2 ⌃ and q an arbitrary
label and returns a set of pairs G of the form (�, q) such that
the following hold true:

– (Completeness) 8(b, q) 2 R 9� : (�, q) 2 G ^ �(b).

– (Uniqueness) 8�,�0, q : (�, q), (�0, q) 2 G! � = �0.

– (Determinism) 8b 2 ⌃ 9!(�, q) 2 G : �(b).

The algorithm fails if such set of pairs does not exist.

Given a predicate family P that is equipped with a guard
generator algorithm, our SFA learning algorithm employs a
special structure observation table SOT = (S,W,⇤, T) so
that the table T has labelled rows for each string in S [⇤

where ⇤ ✓ S ·⌃. The initial table is SOT = {S = {"},W =

{"},⇤ = ;, T}. Closedness of SOT is determined by checking
that for all s 2 S it holds that sb 2 ⇤ ! 9s0 2 S : (sb ⌘
s0 mod W). Furthermore the table is reduced if and only if
for all s, s0 2 S it holds that s 6⌘ s0 mod W . Observe that the
initial table is (trivially) closed and reduced.

Our algorithm operates as follows. At any given step, it
will check T for closedness. If a table is not closed, i.e., there
is a sb 2 ⇤ such that sb 6⌘ s0 for any s0 2 S, the algorithm
will add sb to the set of access strings S updating the table
accordingly.

On the other hand, if the table is closed, a hypothesis SFA
H = (QH , q", F,P,�) will be formed in the following way.
For each s 2 S we define a state qs 2 QH . The initial state
is q". A state qs is final iff T (s, ") = 1. Next, we need to
determine the move relation that contains triples of the form
(q,�, q0) with � 2 P . The information provided by SOT for
each qs is the transitions determined by the rows T (sb) for
which it holds sb 2 ⇤. Using this we form the pairs (b, qs0)
such that sb ⌘ s0 mod W (the existence of s0 is guaranteed
by the closedness property). We then feed those pairs to the
guardgen() algorithm that returns a set Gqs of pairs of the
form (�, q). We set guard(qs) = {� | (�, q) 2 Gqs} and
add the triple (qs,�, q) in �. Observe that by definition the
above process when executed on the initial SOT returns as
the hypothesis SFA a single state automaton with a self-loop
marked with true as the single transition over the single state.

Processing Counterexamples. Assume now that we have a
hypothesis SFA H which we submit to the equivalence oracle.
In case H is correct we are done. Otherwise, we obtain a coun-
terexample string z. First, as in the L⇤ algorithm, we perform
a binary search that will identify some i0 2 {0, 1, . . . , |z|�1}
for which the response of the target machine is different
for the strings si0z>i0 and si0+1z>i0+1. This determines a
new distinguishing string defined as d = z>i0+1. Notice that
si0b 6⌘ si0+1 mod W [{d} something that reflects that si0
over b should not transition to si0+1 as the hypothesis has
predicted. In case si0b 6⌘ sj mod W [{d} for any j, the
table will become not closed if augmented by d and thus
the algorithm will proceed by adding d to W and update

6

the table accordingly (this is the only case that occurs in
the L⇤ algorithm). On the other hand, it may be the case
that adding d to SOT preserves closedness as it may be that
si0b ⌘ sj mod W [{d} for some j 6= i0 + 1. This does
not contradict the fact that the table prior to its augmentation
was reduced, as in the case of the L⇤ algorithm, since the
transition si0 to si0+1 when consuming b that is present in
the hypothesis could have been the product of guardgen()

and not an explicit transition defined in ⇤. In such case ⇤

is augmented with si0b and the algorithm will issue another
equivalence query, continuing in this fashion until the SOT
becomes not closed or the hypothesis is correct.

The above state of affairs distinguishes our symbolic learn-
ing algorithm from learning via the L⇤ algorithm: not every
equivalence query leads to the introduction of a new state.
We observe though that some progress is still being made:
if a new state is not discovered by an equivalence query, the
set ⇤ will be augmented making a transition that was before
implicit (defined via a predicate) now explicit. For suitable
predicate families this augmentation will lead to more refined
guard predicates which in turn will result to better hypothesis
SFA’s submitted to the equivalence oracle and ultimately to
the reconstruction of an SFA for the target.

In order to establish formally the above we need to prove
that the algorithm will converge to a correct SFA in a finite
number of steps (note that the alphabet ⌃ may be infinite
for a given target SFA and thus the expansion of ⇤ by each
equivalence query is insufficient by itself to establish that the
algorithm terminates).

Convergence can be shown for various combinations of
predicate families P and guardgen() algorithms that relate to
the ability of the guardgen() algorithm to learn guard predi-
cates from the family P . One such case is when guardgen()

learns predicates from P via counterexamples. Let G ✓ 2

P a
guard predicate family. Intuitively, the guardgen() algorithm
operates on a training set containing actual transitions from
a state that were previously discovered. Given the symbols
labeling those transitions, the algorithm produces a candidate
guard set for that state. If the training set is small the candidate
guard set is bound to be wrong and a counterexample will
exist. The guardgen() algorithm learns the guard set via
counterexamples if by adding a counterexample in the training
set in each iteration will eventually stabilize the output of
the algorithm to the correct guard set. We will next define
what a counterexample means with respect to the guardgen()

algorithm, a set of predicates � and an input to guardgen()

which is consistent with �. Recall that inputs to guardgen()

are sets R of the form (b, si) where b is a symbol and si is a
label; a set R is consistent with � if it holds that �i(b) is true
for all (b, si) 2 R (we assume a fixed correspondence between
the labels si and the predicates �i of �). A counterexample
would be a pair (b⇤, s⇤) where s⇤ labels a predicate �j in �
but the output predicate � of guardgen() that is labelled by sj
disagrees with �j on symbol b⇤. More formally we give the
following definition.

Definition 8. For k 2 N, consider a set of predicates
� = {�1, . . . ,�k} 2 G labelled by s = (s1, . . . , sk) so that
�i is labelled by si and a sequence of samples R containing
pairs of the form (b, si) where �i(b) for some i 2 [k]. A
counterexample (b⇤, s⇤) for (R,�, s) w.r.t. guardgen() is a

pair such that if G = guardgen(R) it holds that there is a
j 2 {1, . . . , k} with sj = s⇤, (�, sj) 2 G and �(b⇤) 6= �j(b⇤).

Let t be a function of k. A guard predicate family G is t-
learnable via counterexamples if it has a guardgen() algorithm
such that for any � = (�1, . . . ,�k) 2 G labelled by s =

(s1, . . . , sk), it holds that the sequence R0 = ;, Ri = Ai [
Ri�1 where Ai is a singleton containing a counterexample
for (Ri�1,�, s) w.r.t. guardgen() (or empty if none exist),
satisfies that guardgen(Rj) = {(�i, si) | i = 1, . . . , k} for any
j � t. In other words, a guard predicate family is t-learnable if
the guardgen() converges to the target guard set in t iterations
when in each iteration the training set is augmented with a
counterexample from the previous guard set.

We are now ready to prove the correctness of our SFA
learning algorithm.

Theorem 1. Consider a guard predicate family G that is t-
learnable via counterexamples using a guardgen() algorithm.
The class of deterministic symbolic finite state automata with
guards from G can be learned in the membership and equiva-
lence query model using at most O(n(logm+n)t(k)) queries,
where n is size of the minimal SFA for the target language,
m is the maximum length of a counterexample, and k is the
maximum outdegree of any state in the minimal SFA of the
target language.

In appendix D we describe an example of a guardgen()

algorithm when SFAs are used to model decision trees.

B. A Learning Algorithm for RE Filters

Consider the SFA depicted in figure 1 for the regular
expression (.)⇤<a>(.)⇤. This represents a typical regular ex-
pression filter automaton where a specific malicious string is
matched and at that point any string containing that malicious
substring is accepted and labeled as malicious. When testing
regular expression filters many times we would have to test
different character encodings. Thus, if we assume that the
alphabet ⌃ is the set of two byte chatacter sequences as
it would be in UTF-16, then each state would have 2

16

different transitions, making traditional learning algorithms too
inefficient, while we point out that the full unicode standard
contains around 110000 characters.

We will now describe a guard generator algorithm and
demonstrate that it efficiently learns predicates resulting from
regular expressions. The predicate family used by our algo-
rithm is P = 2

⌃ where ⌃ is the alphabet of the automaton,
for example UTF-16. The guard predicate family Gl,k is
parameterized by integers l, k and contains vectors of the form
h�1, . . . ,�k0i with k0 k, so that �i 2 P and2 |�i| l
for any i, except for one, say j, for which it holds that
�j = ¬(_i 6=j�i). The main intuition behind this algorithm
is that, for each state all but one transitions contain a limited
number of symbols, while the remaining symbols are grouped
into a single (sink) transition.

In an SFA over Gl,k, a transition (q,�, q0) is called normal
if |�| l. A transition that is not normal is called a sink
transition. Our algorithm updates transitions lazily with new

2We use the notation |�| = |{b | �(b) = 1}|.

7

q0 q1 q2 q3
x =<

x 6=<

x = a

x 6= a

x =>

x 6=>

true

Fig. 1. SFA for regular expression (.)⇤<a>(.)⇤.

symbols whenever a counterexample shows that a symbol
belongs to a different transition, while the transition with the
largest size is assigned as the sink transition.

Consider R, an input sequence for the guard generator
algorithm. We define Rq = {(b, q) | (b, q) 2 R}. If |Rq| l
then we define the predicate for Rq denoted by �q . Let q0 be
such that |Rq0 | � |Rq| for all q. We define � = ⌃

⇤ \[q 6=q0Rq .
The output is the set G = {(�q, q) | q 6= q0} [{(�, q0)}. In
case R = ; the algorithm returns ⌃

⇤ as the single predicate.

We observe now that Gl,k is t-learnable via counterex-
amples with t = O(lk). Indeed, note that counterexamples
will be augmenting the cardinality of the predicates that
are constructed by the guard generator. At some point one
predicate will exceed l elements and will correctly be identified
as the sink transition. We conclude that the target SFA will be
inferred using O(nlk(logm+ n)) queries.

V. LEARNING TRANSDUCERS

In this section we present our learning algorithms for
transducers. We start with our improved algorithm for Mealy
machines and then we move to single-valued transducers with
bounded lookahead. We conclude with how to extend our
results to the symbolic transducer setting. To motivate this
section we present in Figure 5 three examples of common
string manipulating functions. For succinctness we present the
symbolic versions of all three sanitizers. The first example is
a typical tolowercase function which converts uppercase
ascii letters to lowercase and leaves intact any other part
of the input. The second example is a simplified HTML
Encoder which only encodes the character “<”. In this case,
the transition reading the input symbol “<” needs to produce
multiple output symbols that represent the encoded version
of the symbol. An equivalent formulation of this property is
to assume that the resulting Mealy machine is deterministic
but allow "-transitions. This transformation is not expressible
with a Mealy machine which requires that only one output
symbol will be produced for each input symbol consumed.
Finally, the third sanitizer is a transformation function used
by mod-security, a popular web application firewall, in order
to remove comments from an SQL expression. This helps
to deobfuscate the input before passing it through regular
expression filters. In this case, to match the beggining of
an SQL comment, i.e. the string “/*”, the transducer need
to employ an 1-lookahead. This transformation can only be
modelled using non determinism in the resulting finite state
transducer model. In the learning algorithms of this section,
we will replace membership queries with transduction queries
that output the result of the transduction of the input string.

A. Improved learning of Mealy machines

In this section we describe two improvements of the SG
algorithm for Mealy machines. In the first one we provide an
efficiency improvement over SG on the number of transduction
queries required in order to learn a target Mealy machine of
size n. Specifically we drop the counterexample processing
complexity from O(m · n) to O(m + log n) where m is the
length of the counterexample. Our main observation is that
contrary to what is implied by Shabaz and Groz, processing
Mealy machine counterexamples can take advantage of the
binary-search counter example processing similar to Rivest-
Schapire’s version of the L⇤ algorithm something that leads
to major improvements in the query complexity of the algo-
rithm. In our second improvement we show how the learning
algorithm can handle a more general class of Mealy Machines
which are deterministic but also allow "-transitions in the input.
In practice, this modification allows for multiple symbols in the
output to be produced for each single input symbol. This case
is particularly relevant to our setting as such Mealy machines
are very frequently encountered in practice notably as string
encoders such url and HTML encoders, cf. Figure 5.

Improved Counterexample Processing: We now intro-
duce a new way of handling counterexamples in the SG
algorithm that is based on Rivest and Schapire’s version of
the L⇤ algorithm [20]. Recall that in the SG algorithm all the
suffixes of a counterexample are added as new experiments in
the table and therefore, in the worst case, O(m ·n) new entries
must be filled in the table using transduction queries where m
is the length of the counterexample and n is the number of
access strings.

Our improved counterexample processing operates as fol-
lows. Suppose that z is the given counterexample, i.e. it is a
string where the target machine and the hypothesis disagree.
Furthermore suppose that the hypothesis transducer is pro-
duced by a reduced observation table. We notice that even
though the last state reached in the counterexample may be
identical in both cases, we can find a point where a wrong
state is traversed by the counterexample by inspecting the
transduction of z. Indeed, there exists a (smallest) index i such
that TH(z)i 6= TM (z)i. Therefore we can conclude that z<i

reaches different states in the hypothesis and target machine.
It follows we can trim the counterexample to z0 = zi and
this way we know that the last symbol produced by the
counterexample is wrong in the hypothesis automaton.

We now describe formally our improved counterexample
processing algorithm. For any j 2 {0, . . . , |z0|} let �j be a
string that is produced as follows: first run the hypothesis H
machine on z0j to obtain �H

j ; the hypothesis terminates on a
state sj ; subsequently submit sjz0>j to M in order to obtain a
string �M

j . Let �j = �H
j · su↵(�M

j , |z0| � j) and observe that
�0 = TM (z0), �|z0| = TH(z0) and �0 6= �|z0|.

The binary search then is performed in this fashion. The
initial range is [0, |z0|] and the middle point is j = d|z0|/2e.
Given a range [jleft, jright] and a middle point position j, we
check whether �j = �0; if this is the case we set the new range
as [j, jright] else we set the new range as [jleft, j � 1] and we
continue recursively. The process finishes when the range is a
singleton [j0, j0] which is the output of the search.

8

Fig. 2. ToLowerCase function. Mealy
machine.

Fig. 3. Simplified version of HTML Encoder
function. Deterministic Transducer with mul-
tiple output symbols per transition.

Fig. 4. ReplaceComments Mod-security
transformation function. Non deterministic
Transducer with ✏ transitions and 1-lookhead.

Fig. 5. Three different sanitizers implementing widely used functions and their respective features when modeled as transducers. Only the first sanitizer can
be inferred using existing algorithms.

Theorem 2. The binary search process described above re-
turns j0 2 {0, . . . , |z0|� 1} such that �j0 6= �j0+1.

Given such j0, we observe that since the prefixes of
�j0 , �j0+1 that correspond to the processing of zj0 are identi-
cal by definition, the difference between the strings should lie
in their suffixes. Furthermore, (�j0)j0+1 = (�j0+1)j0+1 since
the former is the last output symbol produced by H when
consuming zj0b and the latter is the last symbol produced by
M when consuming sj0b, where b = z0j0+1 is the (j0 + 1)-th
symbol of the counterexample. As a result the difference of
�j0 , �j0+1 is in their (|z0|�j0�1)-suffixes that by definition are
equal to the same length suffixes of �M

j0
, �M

j0+1. This implies
that j0 < |z0|� 1 and thus we can define a new distinguishing
string d = z0>j0+1. The observation table augmented by this
new string d is not closed any more: the string sj0bd = sj0z

0
>j0

when queried to M produces the string �M
j0

which disagrees
in its |d|-suffix with the string �M

j0+1 produced by M on input
sj0+1d. Closing the table will now introduce the new access
string sjb and hence the algorithm continues by expanding the
hypothesis machine.

The approach we outlined above offers a significant ef-
ficiency improvement over the SG algorithm. Performing the
binary search detailed above requires merely O(logm) queries
where m is the length of the counterexample. This gives a total
of O(n + logm) queries for processing a counterexample as
opposed to the O(n ·m) of the SG algorithm where n is the
number of access strings in the observation table.

Handling "-transitions: We next show how to tackle the
problem of a Mealy machine that takes "-transitions but still
is deterministic in its output. The effect of such "-transitions
is that many or no output symbols may be generated due to a
single input symbol. Even though this is a small generalization
it complicates the learning process. First, if more than one
output symbols are produced for each input symbol our coun-
terexample processing method will fail because the breakpoint
output symbol (TM (z))i may be produced by less than i
symbols of z. Further, in the observation table, bookkeeping
will be inaccurate since, if we keep only the su↵(TM (sd), |d|)
string in each table entry, then this might not correspond to
the output symbols that correspond to last d symbols of the
input string.

We show next how to suitably modify our bookkeeping
and counterexample processing so that Mealy machines with
"-transitions are handled.

– Instead of keeping in each table entry the string
su↵(TM (sd), |d|) we only keep the output that corre-
sponds to the experiment d. While in standard Mealy
machines this is simply su↵(TM (sd), |d|), when "-
transitions are used the output may be longer or
shorter. Therefore, we compute the output of the ex-
periment as the substring of TM (sd) when we subtract
the longest common prefix with the string TM (s).
Intuitively, we keep only the part of the output that
is produced by the experiment d. Given that we do
not know the length of that output we subtract the
output produced by the access string s. Notice that,
because the observation table is prefix closed, we can
obtain the output TM (s) without making an additional
transduction query to the target M .

– When processing a counterexample, the method we
outlined above can still be used. However, as we men-
tioned, the index i where the output of the hypothesis
and the target machine differ may not be the correct
index in which we must trim the input at. Specifically,
if TH(z) and TM (z) differ in position i (and i is the
smallest such position), then we are looking for an
index i0 i such that TM (zi0) = TM (z)i. Given
i, such a position i0 can be found with log |z| queries
using a binary search on the length of the output of
each substring of z. We will then define z0 = zi0 .

Given the above modifications we will seek j0 via a binary
search as in Theorem 2 but using the strings �j that are
defined as �H

j · su↵(�M
j , |�M

j | � j0) where j0 = |TM (sj)|
for j = 0, . . . , |z0|. Then, the same proof as in Theorem 2
applies. Further, using a similar logic as before we argue that
the string d = z>j0+1 is non-empty and it can be used as a
new distinguishing string. The asymptotic complexity of the
algorithm will remain the same.

B. Learning Transducers with Bounded Lookahead

It is easy to see that if the target machine is a single-
valued non-deterministic transducer with the bounded looka-
head property the algorithm of the previous section fails. In
fact the algorithm may not even perform any progress beyond
the initial single state hypothesis even if the number of states
of the target is unbounded; for instance, consider a transducer
that modifies only a certain input symbol sequence w (say
by redacting its first symbol) while leaving the remaining
input intact. The algorithm of the previous section will form a

9

hypothesis that models the identity function and obtain from
the equivalence oracle, say, the string w as the counterexample
(any string containing w would be a counterexample, but w
is the shortest one). The binary search process will identify
j0 = 0 (it is the only possibility) and will lead the algorithm to
the adoption of d = w>1 as the distinguishing string. However,
TM (sj0bd) = TM (w) = w>1, and also TM (sj0+1d) = w>1

hence d is not distinguishing: sj0b ⌘ sj0+1 mod W [{d}. At
this moment the algorithm is stuck: the table remains closed
and no progress can be made. For the following we assume that
the domain of the target transducer is ⌃

⇤, i.e. for every string
↵ 2 ⌃

⇤ there exists exactly one � 2 �

⇤ such that TM (↵) = �.

Technical Description. The algorithm we present builds on
our algorithm of the previous section for Mealy Machines
with "-transitions. Our algorithm views the single-valued trans-
ducer as a Mealy Machine with "-transitions augmented with
certain lookahead paths. As in the previous section we use
an observation table OT that has rows on S [S ⇥ ⌃ and
columns corresponding to the distinguishing strings W . In
addition our algorithm holds a lookahead list L of quadraples
(src, dst,↵, �) where src, dst are index numbers of rows in
the OT , ↵ 2 ⌃

⇤ is the input string consumed by the lookahead
path, while � 2 �

⇤ is the output produced by the lookahead
path. Whenever a lookahead path is detected, it is added in
the lookahead transition list L. Our algorithm will also utilize
the concept of a prefix-closed membership query: In a prefix
closed membership query, the input is a string s and the result
is the set of membership queries for all the prefixes of s. Thus,
if O is the membership oracle, then a prefix-closed member-
ship query on input a string s will return {O(s1), . . . , O(s)}.
We will now describe the necessary modifications in order to
detect and process lookahead transitions.

Detecting and Processing lookahead transitions. Observe
that in a deterministic transducer the result of a prefix-closed
query on a string s would be a prefix closed set r1, . . . , rt.
The existence of i0 2 {1, . . . , t} with ri0 not a strict prefix
of ri0+1 suggests that a lookahead transition was followed.
Let rj0 be the longest common prefix of r1, . . . , ri0+1. The
state src = sj0 that corresponds to qj0 is the state that the
lookahead path commences while the state dst = si0+1 that
corresponds to input qi0+1 is the state the path terminates. The
path consumes the string ↵ that is determined by the suffix of
qi0+1 starting at the (j0 + 1)-position. The output of the path
is � = su↵(ri0+1, |ri0+1|� |rj0 |).

The algorithm proceeds like the algorithm for Mealy ma-
chines with "-transitions. However, all membership queries are
replaced with prefix-closed membership queries. Every query
is checked for a lookahead transition. In case a lookahead
transition is found, it is checked if it is already in the list L. In
the opposite case the quadraple (src, dst,↵, �) is added in L
and all suffixes of ↵ are added as columns in the observation
table. The reason for the last step is that every lookahead
path of length m defines m � 2 final states in the single-
valued transducer. The suffixes of ↵ can be used to distinguish
these states. Finally, when the table is closed, a hypothesis is
generated as before taking care to add the respective lookahead
transitions, removing any other transitions which would break
the single-valuedness of the transducer.

Processing Counterexamples. For simplicity, in this algo-
rith we utilize the Shabaz-Groz counterexample processing

method. We leave the adjustment of our previous binary
search counterexample method as future work. Notice that,
a counterexample may occur either due to a hidden state or
due to a yet undiscovered lookahead transition. We process a
counterexample string as follows: We follow the counterex-
ample processing method of Shabaz Groz and we add all
the suffixes of the counterexample string as columns in the
OT . Since the SG method already adds all suffixes, this also
covers our lookahead path processing. In case we detect a
lookahead we also take care to add the respective transition in
the lookahead list L. Notice that, following the same argument
as in the analysis of the SG algorithm, one of the suffixes will
be distinguishing, thus the table will become not closed and
progress will be made.

Regarding the correctness and complexity of our algorithm
we prove the following theorem.

Theorem 3. The class of non-deterministic single-valued
transducers with the bounded lookahead property and domain
⌃

⇤ can be learned in the membership and equivalence query
model using at most O(|⌃|n(mn+|⌃|+kn)(n+max{m,n}))
membership queries and at most n + k equivalence queries
where m is the length of the longest counterexample, n is the
number of states and k is the number of lookahead paths in
the target transducer.

C. Learning Symbolic Finite Transducers

The algorithm for inferring SFAs can be extended naturally
in order to infer SFTs. Due to space constraints we won’t
describe the full algorithm here rather sketch certain aspects
of the algorithm.

The main difference between the SFA algorithm and the
SFT algorithm is that on top of inferring predicates guards,
the learning algorithm for SFTs need to also infer the term
functions that are used to generate the output of each transition.
This implies that there might be more than one transition
from a state si to a state sj due to differences in the term
functions of each transition. This scenario never occurs in
the case of SFAs. Thus, the guardgen() algorithm on an
SFT inference algorithm should also employ a termgen()

algorithm which will work as a submodule of guardgen()
in order to generate the term functions for each transition and
possibly split a predicate guard into more.

Finally, we point out that in our implementation we utilized
a simple SFT learning algorithm which is a direct extension of
our RE filter learning algorithm in the sense that we generalize
the pair (predicate, term) with the most members to become
the sink transition for each state.

VI. IMPLEMENTING AN EQUIVALENCE ORACLE

In practice a membership oracle is usually easy to obtain
as the only requirement is to be able to query the target filter
or sanitizer and inspect the output. However, simulating an
equivalence oracle is not trivial. A straightforward approach is
to perform random testing in order to find a counterexample
and declare the machines equal if a counterexample is not
found after a number of queries. Although this is a feasible
approach, it requires a very large number of membership
queries.

10

Taking advantage of our setting, in this section we will
introduce an alternative approach where an equivalence oracle
is implemented using just a single membership query. To
illustrate our method consider a scenario where an auditor is
remotely testing a filter or a sanitizer. For that purpose the
auditor is in possession of a set of attack strings given as a
context free grammar (CFG).

The goal of the auditor is to either find an attack-string
bypassing the filter or declare that no such string exists and
obtain a model of the filter for further analysis. In the latter
case, the auditor may work in a whitebox fashion and find new
attack-strings bypassing the inferred filter, which can be used
to either obtain a counterexample and further refine the model
of the filter or actually produce an attack. Since performing
whitebox testing on a filter is much easier than black-box,
even if no attack is found the auditor has obtained information
on the structure of the filter.

Formally, we define the problem of Grammar Oriented
Filter Auditing as follows:

Definition 9. In the grammar oriented filter auditing problem
(GOFA), the input is a context free grammar G and a mem-
bership oracle for a target DFA F . The goal is to find s 2 G,
such that s 62 F or determine that no such s exists.

One can easily prove that in the general case the GOFA
problem requires an exponential number of queries. Simply
consider the CFG L(G) = ⌃

⇤ and a DFA F such that
L(F) = ⌃

⇤ \ {random-large-string}. Then, the problem re-
duces in guessing a random string which requires an exponen-
tial number of queries in the worst case. A formal proof of a
similar result was presented by Peled et al. [23].

Our algorithm for the GOFA problem uses a learning
algorithm for SFAs utilizing Algorithm 1 as an equivalence
oracle. The algorithm takes as input a hypothesis machine H . It
then finds a string s 2 L(G) such that s 62 L(H). If the string
s is an attack against the target filter, the algorithm outputs
the attack-string and terminates. If it is not it returns the string
as a counterexample. On the other hand if there is no string
bypassing the hypothesis, the algorithm terminates accepting
the hypothesis automaton H . Note that, this is the point
where we trade completeness for efficiency since, even though
L(G \ ¬H) = ;, this does not imply that L(G \ ¬F) = ;.

Algorithm 1 GOFA Algorithm
Require: Context Free Grammar G, membership oracle O

function EQUIVALENCE ORACLE(H)
GA G \ ¬H
if L(GA) = ; then

return Done
else

s L(GA)

if O(s) = True then
return Counterexample, s

else
return Attack, s

end if
end if

end function

IDS RULES DFA LEARNING SFA LEARNING

ID STATES ARCS MEMBER EQUIV MEMBER EQUIV SPEEDUP

1 7 13 4389 3 118 8 34.86
2 16 35 21720 3 763 24 27.60
3 25 33 56834 6 6200 208 8.87
4 33 38 102169 7 3499 45 28.83
5 52 155 193109 6 37020 818 5.10
6 60 113 250014 7 38821 732 6.32
7 66 82 378654 14 35057 435 10.67
8 70 99 445949 15 17133 115 25.86
9 86 123 665282 27 34393 249 19.21
10 115 175 1150938 31 113102 819 10.10
11 135 339 1077315 24 433177 4595 2.46
12 139 964 1670331 29 160488 959 10.35
13 146 380 1539764 28 157947 1069 9.68
14 164 191 2417741 29 118611 429 20.31
15 179 658 770237 14 80283 1408 9.43

AVG= 15.31

TABLE I. SFA VS. DFA LEARNING

Fig. 6. Speedup of SFA vs. DFA learning.

Adaptation to sanitizers. The technique above can be
generilized easily to sanitizers. Assume that we are given a
grammar G as before and a target transducer T implementing
a sanitization function. In this variant of the problem we would
like to find a string sA such that there exists s 2 L(G) for
which sA[T]s holds.

In order to determine whether such a string exists, we
first construct a pushdown transducer TG with the following
property: A string s will reach a final state in TG if and only
if s 2 L(G). Moreover, every transition in TG is the identity
function, i.e. outputs the character consumed. Therefore, we
have a transducer which will generate only the strings in L(G).
Finally, given a hypothesis transducer H , we compute the
pushdown transducer H�TG and check the resulting transducer
for emptiness. If the transducer is not empty we can obtain a
string sA such that sA[H � TG]s. Since TG will generate only
strings from L(G) it follows that sA when passed through
the sanitizer will result in a string s 2 L(G). Afterwards, the
GOFA algorithm continues as in the DFA case.

In appendix A, B we describe a comparison of the GOFA
algorithm with random testing as well as ways in which an
complete equivalence oracle may be implemented.

VII. EVALUATION

A. Implementation

We have implemented all the algorithms described in the
previous sections. In order to evaluate our DFA/SFA learn-
ing algorithms in the standard membership/equivalence query
model we implemented an equivalence oracle by computing

11

DFA LEARNING SFA LEARNING
ID MEMBER EQUIV LEARNED MEMBER EQUIV LEARNED SPEEDUP

1 3203 2 100.00% 81 5 100.00% 37.27
2 18986 2 100.00% 521 11 100.00% 35.69
3 52373 5 100.00% 1119 7 96.00% 46.52
4 90335 5 96.97% 2155 10 96.97% 41.73
5 176539 4 98.08% 4301 38 80.77% 40.69
6 227162 5 96.67% 5959 32 96.67% 37.92
7 355458 12 98.48% 8103 17 98.48% 43.78
8 420829 13 98.57% 11013 34 98.57% 38.10
9 634518 25 98.84% 15221 30 98.84% 41.61
10 1110346 29 99.13% 27972 54 99.13% 39.62
11 944058 19 94.81% 100522 955 93.33% 9.30
12 1645751 28 100.00% 113714 662 96.40% 14.39
13 1482134 26 97.95% 45494 143 93.15% 32.48
14 1993469 24 90.85% 45973 32 90.85% 43.33
15 14586 5 8.94% 428 22 8.94% 32.42

AVG= 91.95 AVG= 89.87% 35.66

TABLE II. SFA VS. DFA LEARNING + GOFA

Fig. 7. Speedup of SFA vs. DFA learning with GOFA.

the symmetric difference of each hypothesis automaton with
the target filter. In order to evaluate regular expression fil-
ters we used the flex regular expression parser to generate
a DFA from the regular expressions and then parsed the
code generated by flex to extract the automaton. In order to
implement the GOFA algorithm we used the FAdo library [24]
to convert a CFG into Chomsky Normal Form(CNF) and
then we convert from CNF to a PDA. In order to compute
the intersection we implemented the product construction for
pushdown automata and then directly checked the emptiness
of the resulting language, without converting the PDA back to
CNF, using a dynamic programming algorithm [25]. In order
to convert the inferred models to BEK programs we used the
algorithm described in appendix C.

B. Testbed

Since our focus is on security related applications, in order
to evaluate our SFA learning and GOFA algorithms we looked
for state-of-the-art regular expression filters used in security
applications. We chose filters used by Mod-Security [26]
and PHPIDS [27] web application firewalls. These systems
contain well designed, complex regular expressions rulesets
that attempt to protect against vulnerability classes such as
SQL Injection and XSS, while minimizing the number of false
positives. For our evaluation we chose 15 different regular
expression filters from both systems targetting XSS and SQL
injection vulnerabilities. We chose the filter in a way that
they will cover a number of different sizes when they are
represented as DFAs. Indeed, our testbed contains filters with
sizes ranging from 7 to 179 states. Our sanitizer testbed is
described in detail in section VII-E. Finally, for testing our

GOFA and filter fingerprinting algorithms we also incorporated
two additional WAF implementations, Web Knight and Web
Castelum and Microsoft’s urlscan with a popular set of SQL
Injection rules [28]. For the evaluation of our SFA and DFA
learning algorithms we used an alphabet of 92 ASCII char-
acters. We believe that this is an alphabet size which is very
reasonable for our domain. It contains all printable characters
and in addition some non printable ones. Since many attacks
contain unicode characters we believe that alphabets will only
tend to grow larger as the attack and defense technologies
progress.

C. Evaluation of DFA/SFA Learning algorithms

We first evaluate the performance of our SFA learning algo-
rithm using the L⇤ algorithm as the baseline. We implemented
the algorithms as we described them in the paper using only
an additional optimization both in the DFA and SFA case: we
cached each query result both for membership and equivalence
queries. Therefore, whenever we count a new query we verify
that this query wasn’t asked before. In the case of equivalence
queries, we check that the automaton complies with all the
previous counterexamples before issuing a new equivalence
query.

In table I we present numerical results from our experi-
ments that reveal a significant advantage for our SFA learning
over DFA: it is approximately 15 times faster on the average.
The speedup as the ratio between the DFA and the SFA number
of queries is showin in Figure 6. An interesting observation
here is that the speedup does not seem to be a simple function
of the size of the automaton and it possibly depends on many
aspects of the automaton. An important aspect is the size of the
sink transition in each state of the SFA. Since our algorithm
learns lazily the transitions, if the SFA incorporates many
transitions with large size, then the speedup will be less than
what it would be in SFAs were the sink transition is the only
one with big size.

D. Evaluation of GOFA algorithm

In this section we evaluate the efficiency of our GOFA
algorithm. In our evaluation we used both the DFA and the
SFA algorithms. Since our SFA algorithm uses significantly
more equivalence queries than the L⇤ algorithm, we need to
evaluate whether this additional queries would influence the
accuracy of the GOFA algorithm. Specifically, we would like
to answer the following questions:

1) How good is the model inferred by the GOFA algo-
rithm when no attack string exists in the input CFG?

2) Is the GOFA algorithm able to detect a vulnerability
in the target filter if one exists in the input CFG?

Making an objective evaluation on the effectiveness of the
GOFA algorithm in these two questions is tricky due to the
fact that the performance of the algorithm depends largely on
the input grammar provided by the user. If the grammar is too
expressive then a bypass will be trivially found. On the other
hand if no bypass exists and moreover, the grammar represents
a very small set of strings, then the algorithm is condemned
to make a very inaccurate model of the target filter. Next, we
tackle the problem of evaluating the two questions about the
algorithm separetely.

12

DFA model generation evaluation. Intuitevely, the GOFA
algorithm is efficient in recovering a model for the target filter
if the algorithm is in possesion of the necessary information
in order to recover the filter in the input CFG and is able to do
so. Therefore, in order to evaluate experimentally the accuracy
of our algorithm in producing a correct model for the target
filter independently of the choice of the grammar we used as
input grammar the target filter itself. This choice is justified
as setting as input grammar the target filter itself we have
that a grammar that, intuitively, is a maximal set without any
vulnerability.

In table II we present the numerical results of our exper-
iments over the same set of filters used in the experiments
of Section VII-C. The learning percentage of both DFA and
SFA with simulated equivalence oracle via GOFA is quite high
(close to 90% for both cases). The performance benefit from
our SFA learning is even more dramatic in this case reaching
an average of ⇡ 35 times faster than DFA. The speedup is
also pictorially presented in Figure 7. We also point out the
even though the DFA algorithm checks all transitions of the
automaton explicitily (which is the main source of overhead),
the loss in accuracy between the L⇤ algorithm and our SFA
algorithm is only 2%, for a speedup gain of approximately
x35.

Vulnerability detection evaluation. In evaluating the vul-
nerability detection capabilities of our GOFA algorithm we ran
into the same problem as with the model generation evaluation;
namely, the efficiency of the algorithm depends largely on
the input grammar given by the user. If the grammar is more
expressive than the targeted filter then a bypass can be trivially
found. On the other hand if it is too restrictive maybe no bypass
will exist at all.

For our evaluation we targetted SQL Injection vulnerabil-
ities. In our first experiment we utilized five well known web
application firewalls and used as an input grammar an SQL
grammar from the yaxx project [29]. In this experiment the
input filter was running on live firewall installations rather
than on the extracted rules. We checked whether there were
valid SQL statements that one could pass through the web
application firewalls.

The results of this experiment can be found in table IV. We
found that in all cases a user can craft a valid SQL statement
that will bypass the rules of all five firewalls. For the first
4 products where more complex rules are used the simple
statement “open a” is not flagged as malicious. This statement
allows the execution of statements saved in the database system
before using a “DECLARE CURSOR” statement. Thus, these
attacks could be part of an attack which reexecutes a statement
already in the database in a return oriented programming
manner.

The open statement was flagged malicious by urlscan, in
which case GOFA succesfully detected that and found an
alternative vector, “replace”. We also notice, that using GOFA
with the SFA learning algorithm makes a minimum number
of queries since our SFA algorithm adds new edges to the
automaton only lazily to update the previous models, thus
making GOFA a compelling option to use in practice.

In the second experiment we performed we tested what
will happen if we have a much more constrained grammar

against the composition of two rules targetting SQL Injection
attacks from PHPIDS. In order to achieve that we started with
a small grammar which contains the combination of some
attack vectors and, whenever a vector is identified bypassing
the filter, we remove the vector from the grammar and rerun
it with a smaller grammar until no attack is possible. Here
we would like to find out whether the GOFA algorithm can
operate under restricted grammars that require many updates
on the hypothesis automaton. The succssive vectors we used
as input grammar can be found in full version of the paper.
The results of the experiment can be found in table IV. To
check whether a vulnerability exists in the filter we computed
the symmetric difference between the input grammar and the
targetted filters. We note that this step is the reason we did not
perform the same experiment on live WAF installations, since
we do not have the full specification as a regular expression
and thus cannot check if a bypass exists in an attack grammar.

We notice that in this case as well, GOFA was succesfull
in updating the attack vectors in order to generate new attacks
bypassing the filter. However, in this case the GOFA algorithm
generated as many as 61 states of the filter in the DFA case
and 31 states in the SFA case until a succesfull attack vector
was detected. Against we notice that the speedup of using the
SFA algorithm is huge.

To conclude with the evaluation of the GOFA algorithm,
although as we already discussed in section VI, the GOFA
algorithm is necessarily either incomplete or inefficient in
the worst case, it performs well in practice detecting both
vulnerabilities when they exist and inferring a large part of
the targetted filter when it is not able to detect a vulnerability.

E. Cross Checking HTML Encoder implementations

To demonstrate the wide applicability of our sanitizer
inference algorithms we reconsider the experiment performed
in the original BEK paper [8]. The authors, payed a number of
freelancer developers to develop HTML encoders. Then they
took these HTML encoders, along with some other existing im-
plementations and manually converted them to BEK programs.
Then, using BEK the authors were able to find differences in
the sanitizers and check properties such as idempotence.

Using our learning algorithms we are able to perform a
similar experiment but this time completely automated and in
fact, without any access to source code of the implementation.
For our experiments we used 3 different encoders from the
PHP language, the HTML encoder from the .net AntiXSS
library [30] and then, we also inferred models for the HTML
encoders used by Twitter, Facebook and Microsoft Outlook
email service.

We used our transducer learning algorithms in order to infer
models for each of the sanitizers which we then converted to
BEK programs and checked for equivalence and idempotence
using the BEK infrastrucure. A function f is idempotent if 8x,
f(x) = f(f(x)) or in other words, reapplying the sanitizer to a
string which was already sanitized won’t change the resulting
string. This is a nice property for sanitizers because it means
that we easily reapply sanitization without worrying about
breaking the correct semantics of the input string.

In our algorithm, we used a simple form of symbolic
transducer learning, as sketched in section V-C, where we gen-

13

GRAMMAR DFA LEARNING SFA LEARNING VULNERABILITY

ID STATES ARCS FOUND STATES MEMBERSHIP EQUIVALENCE FOUND STATES MEMBERSHIP EQUIVALENCE SPEEDUP EXISTS FOUND

1 128 175 61 155765 3 31 1856 8 83.56 TRUE union select

load_file(’0\0\0’)
2 111 146 61 155765 3 31 1811 7 85.68 TRUE union select 0 into outfile

’0\0\0’
3 92 120 61 155765 3 31 1793 6 86.58 TRUE union select case when

(select user_name()) then 0

else 1 end

4 43 54 61 155764 3 31 1770 7 87.65 FALSE None
AVG= 85.87

TABLE III. BYPASSES DETECTED BY SUCCESIVELY REDUCING THE ATTACK GRAMMAR SIZE FOR RE RULES PHPIDS 76 & 52 COMPOSED

WAF DFA LEARNING SFA LEARNING VULNERABILITY

Target FOUND STATES MEMBERSHIP EQUIVALENCE FOUND STATES MEMBERSHIP EQUIVALENCE SPEEDUP EXISTS FOUND

PHPIDS 0.7 2 186 1 0 3 1 46.75 TRUE open a
MODSECURITY 2.2.9 1 186 1 0 3 1 46.75 TRUE open a

WEBCASTELLUM 1.8.3 1 94 1 0 3 1 23.75 TRUE open a
WEBKNIGHT 4.2 1 94 1 0 3 1 23.75 TRUE open a

URLSCAN Common Rules 4 1835 2 5 40 2 43.73 TRUE rollback work
AVG= 36.94

TABLE IV. RUNNING THE GOFA ALGORITHM WITH AN SQL GRAMMAR ON COMMON WEB APPLICATIONS FIREWALLS

eralized the most commonly seen output term to all alphabet
members not explicitily checked.

As an alphabet, we used a subset of characters including
standard characters that should be encoded under the HTML
stnadard and moreover, a set of other characters, including
unicode characters, to provide completeness against different
implementations. For the simulation of the equivalence oracle
we produced random strings from a predefined grammar
including all the characters of the alphabet and in addition
many encoded HTML character sequences. The last part is
important for detecting if the encoder is idempotent.

Figure 8 shows the results of our experiment. We found
that most sanitizers are different and only one sanitizer is
idempotent. All the entries of the figure represent the character
or string that the two sanitizers are different or a tick if they are
equal. One exception is the entries labelled with u8249 which
denotes the unicode character with decimal representation
‹. We included the decimal representation in the table
to avoid confusion with the “<” symbol. The idempotent
sanitizer is a version of htmlspecialcharacters func-
tion with a special flag disabled, that instructs the function
not to rencode already encoded html entities. We would like
to point out that although in general html encoders can be
represented by single state transducers, making the encoder
idempotent requires a large amount of lookahead symbols
to detect whether the current character is part of an already
encoded HTML entity.

Another suprising result is that the .net HTML encode
function did not match the one in the MS Outlook email
service. The encoder in the outlook email seems to match an
older encoder of the AntiXSS library which was encoding all
HTML entities in their decimal representations. For example,
this encoder is the only one encoding the semicolon symbol.
On the other hand the .net AntiXSS implementation will
encode unicode characters in their decimal representations but
will skip encoding the semicolon, as did every other sanitizer
that we tested.

At this point, we would like to stress that our results are not

PHP1 PHP2 PHP3 .NET TW FB MS Idempotent
PHP1 3 u8249 & u8429 3 3 ; 7
PHP2 3 u8249 u8294 u8429 u8429 ; 7
PHP3 3 & & & ; 3
.NET 3 u8429 u8429 ; 7
TW 3 3 ; 7
FB 3 ; 7
MS 3 7

Fig. 8. Equivalence Checking of HTML encoder implementations.

conclusive. For example, the fact that we found that the twitter
and facebook encoders are equal does not mean that there is no
string in which the two sanitizers differ. This is fundamental
limitation of all black-box testing algorithms. In fact, even the
results on differences between sanitizers might be incorrect
in principle. However, in this case we can easily verify the
differences and, if necessary, update the corresponding models
for the encoders.

VIII. RELATED WORK

Our work is mainly motivated by recent advances in
the analysis of sanitizers and regular expressions, a line of
work which was initiated with the introduction of symbolic
automata [11], although similar constructions were suggested
much earlier [31]. The BEK language was introduced by
Hooimeijer et al. [8] and the theory behind symbolic finite
state transducers was extended in a follow up paper [15].
Symbolic automata, transducers and the BEK language is a
very active area of research [14], [32]–[35] and we expect that
BEK programs will get more widespread adoption in the near
future. In the inference of symbolic automata and transducers
there are two relevant recent works. Botincan and Babic [36]
used symbolic execution in combination with the Shabaz-Groz
algorithm in order to infer symbolic models of programs as
symbolic lookback transducers. Although the authors claim
that equivalence of symbolic lookback transducers(SLT) is
decidable a paper published recently by Veanes [37] shows
that equivalence of SLTs is in fact undecidable. Moreover,
although [36] implements a symbolic version of Angluin’s
algorithm, in their system the predicates are obtained through

14

symbolic execution, and therefore, there is no need to infer
the predicate guards or infer the correct transitions for each
state. Since their system is using the Shabaz-Groz algorithm,
our improved counterexample processing would provide an
exponentially faster way to handle counterexamples in their
case too.

The second closely related work in the inference of sym-
bolic automata was done by Maller and Mens [22].They
describe an algorithm to infer automata over ordered alpha-
bets which is a specific instantiation of symbolic automata.
However, in order to correctly infer such an automaton the
authors assume that the counterexample given by the equiv-
alence oracle is of minimal length and this assumption is
used in order to distinguish between a wrong transition in the
hypothesis or a hidden state. Unfortunately, verifying that a
counterexample is minimal requires an exponential number of
queries and thus this assumption does not lead to a practical
algorithm for inferring symbolic automata. On the other hand,
our algorithm is more general, as it works for any kind of
predicate guards as long as they are learnable, and moreover
does not assume a minimal length counterexample making the
algorithm practical.

The work on active learning of DFAs was initiated by An-
gluin [19] after a negative result of Gold [38] who showed that
it is NP-Hard to infer the minimal automaton consistent with
a set of samples. After its introduction, Anlguin’s algorithm
was improved and many variatons were introduced; Rivest and
Schapire [20] showed how to improve the query complexity
of the algorithm and introduced the binary search method for
processing counterexamples. Balcazar et al. [39] describe a
general approach to view the different variations of Angluin’s
algorithm.

Shabaz and Groz [12] extended Angluin’s algorithm to
handle Mealy Machines and introduced the counterexamlpe
processing we discussed above. Their approach was then
extended by Khalili and Tacchella [40] to handle non deter-
ministic Mealy Machines. However, as we point out above
mealy machines in general are not expressive enough to model
complex sanitization functions. Moreover, the algorithm by
Khalili and Tacchella uses the Shabaz-Groz counterexample
processing thus it can be improved using our method. Since
Shabaz-Groz is used in many contexts including the reverse en-
gineering of Command and Control servers of botnets [41], we
believe that our improved counterexample processing method
will find many applications. Lately, inference techniques were
developed for more complex classes of automata such as
register automata [42]. These automata are allowed to use a
finite number of registers [43]. Since registers were also used
in some case during the analysis of sanitizer functions [15], and
specifically decoders, we believe that expanding our work to
handle register versions of symbolic automata and transducers
is a very interesting direction for future work.

The implementation of our equivalence oracle is inspired
by the work of Peled et al. [23]. In their work, a similar
equivalence oracle implementation is described for checking
Buichi automata, however, their implentation also utilizes the
Vasileski-Chow algorithm [44], an algorithm for checking
compliance of two automata, given an upper bound on the
size of the black-box automaton. This algorithm however,
has a worst case exponential complexity a fact which makes

it inpractical for real applications. On the other hand, we
demonstrate that our GOFA algorithm is able to infer 90%
of the states of the target filter on average.

The algorithm for initializing the observation table was first
described by Groce et al. [45]. In their paper they describe
the initialization procedure and prove two lemmas regarding
the efficiency of the procedure in the context of their model
checking algorithm. However, the lemma proved just shows
convergence and they are not concerned with the reduction of
equivalence queries as we prove.

There is a large body of work regarding whitebox pro-
gram analysis techniques that aim at validating the security
of sanitizer code. The SANER [4] project uses static and
dynamic analysis to create finite state transducers which are
overapproximations of the sanitizer functions of programs.
Minamide [5] constructs a string analyzer for PHP which
is used to detect vulnerabilities such as cross site scripting.
He also describes a classification of various PHP functions
according to the automaton model needed to describe them.
The Reggae system [6] attempts to generate high coverage test
cases with symbolic execution for systems that use complex
regular expressions. Wasserman and Su [7] utilize Context free
grammars to construct overapproximations of the output of
a web application. Their approach could be used in order
to implement a grammar which can then be used as an
equivalence oracle when applying the cross checking algorithm
for verifying equality between two different implementations.

IX. CONCLUSIONS AND FUTURE WORK

Clearly, we are light of need for robust and complete black-
box analysis algorithms for filter programs. In this paper we
presented a first set of algorithms which could be utilized to
analyze such programs. However, the space for research in this
area is still vast. We believe that our algorithms can be further
tuned in order to achieve an even larger performance increase.
Moreover, more complex automata model which are currently
being used [14], [43] can be also utilized to further reduce the
number of queries required to infer a sanitizer model. Finally,
we point out that totally different models might be necessary
to handle other types of filters programs which are based on
big data analytics or on the analysis of network protocols.
Thus, to conclude we believe that black-box analysis of filters
and sanitizers presents a fruitful research area which deserves
more attention due to both scientific interest and practical
applications.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research
(ONR) through contract N00014-12-1-0166. Any opinions,
findings, conclusions, or recommendations expressed herein
are those of the authors, and do not necessarily reflect those
of the US Government or ONR.

REFERENCES

[1] D. L. Eduardo Vela, “Our favorite xss filters/ids and how to attack
them,” in Black Hat Briefings, 2009.

[2] D. Evteev, “Methods to bypass a web application methods to
bypass a web application firewall.” http://ptsecurity.com/download/
PT-devteev-CC-WAF-ENG.pdf.

15

[3] S. Esser, “Web application firewall bypasses and php exploits
-rss‘09 november 2009.” http://www.suspekt.org/downloads/
RSS09-WebApplicationFirewallBypassesAndPHPExploits.pdf.

[4] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in web applications,” in Security and
Privacy, 2008. SP 2008. IEEE Symposium on, pp. 387–401, IEEE, 2008.

[5] Y. Minamide, “Static approximation of dynamically generated web
pages,” in Proceedings of the 14th international conference on World
Wide Web, pp. 432–441, ACM, 2005.

[6] N. Li, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Reg-
gae: Automated test generation for programs using complex regular
expressions,” in Automated Software Engineering, 2009. ASE’09. 24th
IEEE/ACM International Conference on, pp. 515–519, IEEE, 2009.

[7] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in ACM Sigplan Notices,
vol. 42, pp. 32–41, ACM, 2007.

[8] P. Hooimeijer, P. Saxena, B. Livshits, M. Veanes, and D. Molnar, “Fast
and precise sanitizer analysis with bek,” in In 20th USENIX Security
Symposium, 2011.

[9] D. Bates, A. Barth, and C. Jackson, “Regular expressions considered
harmful in client-side xss filters,” in Proceedings of the 19th interna-
tional conference on World wide web, pp. 91–100, ACM, 2010.

[10] “Programming languages used in most popular websites.”
https://en.wikipedia.org/wiki/Programming languages used in most
popular websites. Accessed: 2015-11-10.

[11] M. Veanes, P. d. Halleux, and N. Tillmann, “Rex: Symbolic regular
expression explorer,” in Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation, ICST ’10,
(Washington, DC, USA), pp. 498–507, IEEE Computer Society, 2010.

[12] M. Shahbaz and R. Groz, “Inferring mealy machines,” in Proceedings
of the 2Nd World Congress on Formal Methods, FM ’09, (Berlin,
Heidelberg), pp. 207–222, Springer-Verlag, 2009.

[13] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the
state: A state-aware black-box web vulnerability scanner.,” in USENIX
Security Symposium, pp. 523–538, 2012.

[14] M. Veanes, T. Mytkowicz, D. Molnar, and B. Livshits, “Data-parallel
string-manipulating programs,” in Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 139–152, ACM, 2015.

[15] N. Bjorner, P. Hooimeijer, B. Livshits, D. Molnar, and M. Veanes,
“Symbolic finite state transducers, algorithms, and applications,” in IN:
PROC. 39TH ACM SYMPOSIUM ON POPL., 2012.

[16] M. Veanes, P. De Halleux, and N. Tillmann, “Rex: Symbolic regular
expression explorer,” in Software Testing, Verification and Validation
(ICST), 2010 Third International Conference on, pp. 498–507, IEEE,
2010.

[17] J. Hopcroft, “An n log n algorithm for minimizing states in a finite
automaton,” tech. rep., DTIC Document, 1971.

[18] M. J. Kearns and U. V. Vazirani, An introduction to computational
learning theory. MIT press, 1994.

[19] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and computation, vol. 75, no. 2, pp. 87–106, 1987.

[20] R. L. Rivest and R. E. Schapire, “Inference of finite automata using
homing sequences,” Information and Computation, vol. 103, no. 2,
pp. 299–347, 1993.

[21] J. E. Hopcroft, Introduction to automata theory, languages, and com-
putation. Pearson Education India, 1979.

[22] O. Maler and I.-E. Mens, “Learning regular languages over large
alphabets,” in Tools and Algorithms for the Construction and Analysis
of Systems, pp. 485–499, Springer, 2014.

[23] D. Peled, M. Y. Vardi, and M. Yannakakis, “Black box checking,” in
Formal Methods for Protocol Engineering and Distributed Systems,
pp. 225–240, Springer, 1999.

[24] “Fado library.” https://pypi.python.org/pypi/FAdo. Accessed: 2015-11-
10.

[25] A. Carayol and M. Hague, “Saturation algorithms for model-checking
pushdown systems,” EPTCS, vol. 151, pp. 1–24, 2014.

[26] “Mod-security.” https://www.modsecurity.org/. Accessed: 2015-11-10.

[27] “Phpids source code.” https://github.com/PHPIDS/PHPIDS. Accessed:
2015-11-10.

[28] “How to configure urlscan 3.0 to mitigate sql injection attacks.” http:
//goo.gl/cmU0ze. Accessed: 2015-11-10.

[29] “Yaxx project.” https://code.google.com/p/yaxx/. Accessed: 2015-11-
10.

[30] “Microsoft antixss library.” https://msdn.microsoft.com/en-us/security/
aa973814.aspx. Accessed: 2015-11-10.

[31] B. W. Watson, “Implementing and using finite automata toolkits,”
Natural Language Engineering, vol. 2, no. 04, pp. 295–302, 1996.

[32] L. D’Antoni and M. Veanes, “Minimization of symbolic automata,” in
ACM SIGPLAN Notices, vol. 49, pp. 541–553, ACM, 2014.

[33] L. DAntoni and M. Veanes, “Equivalence of extended symbolic finite
transducers,” in Computer Aided Verification, pp. 624–639, Springer,
2013.

[34] M. Veanes, “Symbolic string transformations with regular lookahead
and rollback,” in Perspectives of System Informatics, pp. 335–350,
Springer, 2014.

[35] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
“Program boosting: Program synthesis via crowd-sourcing,” in ACM
SIGPLAN Notices, vol. 50, pp. 677–688, ACM, 2015.

[36] M. Botinčan and D. Babić, “Sigma*: symbolic learning of input-output
specifications,” ACM SIGPLAN Notices, vol. 48, no. 1, pp. 443–456,
2013.

[37] L. DAntoni and M. Veanes, “Extended symbolic finite automata and
transducers,” Formal Methods in System Design, July 2015.

[38] E. M. Gold, “Complexity of automaton identification from given data,”
Information and control, vol. 37, no. 3, pp. 302–320, 1978.

[39] J. L. Balcázar, J. Dı́az, R. Gavalda, and O. Watanabe, Algorithms for
learning finite automata from queries: A unified view. Springer, 1997.

[40] A. Khalili and A. Tacchella, “Learning nondeterministic mealy ma-
chines,” in Proceedings of the 12th International Conference on Gram-
matical Inference, ICGI 2014, Kyoto, Japan, September 17-19, 2014.,
pp. 109–123, 2014.

[41] C. Y. Cho, D. Babic, E. C. R. Shin, and D. Song, “Inference and
analysis of formal models of botnet command and control protocols,”
in Proceedings of the 17th ACM Conference on Computer and Com-
munications Security, CCS 2010, Chicago, Illinois, USA, October 4-8,
2010, pp. 426–439, 2010.

[42] F. Howar, B. Steffen, B. Jonsson, and S. Cassel, “Inferring canonical
register automata,” in Verification, Model Checking, and Abstract Inter-
pretation, pp. 251–266, Springer, 2012.

[43] S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen, “A succinct
canonical register automaton model,” Journal of Logical and Algebraic
Methods in Programming, vol. 84, no. 1, pp. 54–66, 2015.

[44] T. S. Chow, “Testing software design modeled by finite-state machines,”
IEEE transactions on software engineering, no. 3, pp. 178–187, 1978.

[45] A. Groce, D. Peled, and M. Yannakakis, “Adaptive model checking,”
in Tools and Algorithms for the Construction and Analysis of Systems,
pp. 357–370, Springer, 2002.

[46] “Xss cheat sheet.” https://www.owasp.org/index.php/XSS Filter
Evasion Cheat Sheet. Accessed: 2016-01-10.

[47] L. Pitt and M. K. Warmuth, “The minimum consistent dfa problem
cannot be approximated within any polynomial,” Journal of the ACM
(JACM), vol. 40, no. 1, pp. 95–142, 1993.

[48] “Bek guide.” http://www.rise4fun.com/Bek/tutorial/guide2. Accessed:
2015-11-10.

[49] Y. Freund and R. E. Schapire, “Large margin classification using the
perceptron algorithm,” Mach. Learn., vol. 37, pp. 277–296, Dec. 1999.

APPENDIX

A. Comparison of GOFA algorith with random testing

Regarding the usefulness of GOFA algorithm as a security
auditing method it is important to consider it in comparison
to random testing/fuzzing. Currently, most tools in the black-
box testing domain, such as web vulnerability scanners, work

16

by fuzzing the target filter with various attack strings until a
bypass is found or the set of attack strings is exhausted.

We argue that our GOFA algorithm is superior to fuzzing
for two reasons:

1) The number of queries of the GOFA algorithm is
independent of the size of the grammar. On the
other hand, when producing random strings from a
grammar in order to test a filter a very large number
of strings has to be produced. Moreover, testing for
modern vulnerabilities such as XSS is very complex,
since there is a large number of variations that one
should consider(cf. [46]).

2) Random testing produces no information on the struc-
ture of the filter if no attack is found. Consider the
case where one produces a large number of candidate
attack strings, but no bypass is found. Then, the audi-
tor is left with no additional information for the filter,
other than it rejected the set of strings that was tested.
One approach would be to try to infer the structure of
an automaton from that set of strings. Unfortunately,
inferring the minimal automaton which is consistent
with a set of strings is NP-Hard to approximate even
within any polynomial factor [47]. On the other hand,
as we demonstrate our GOFA algorithm is able to
recover on average 90% of the states of the target
filter in cases where no attack exists and an expressive
enough grammar is given as input.

B. Approximating a Complete Equivalence Oracle

Although the GOFA algorithm is a suitable equivalence
oracle implementation in the case the goal is to audit a target
filter, in some cases one would like to recover a complete
model of the target filter/sanitizer. In such cases, finding a
bypass is not enough. Since we only assume black-box access
to the target filter, in order for this problem to be even solvable
we have to assume an upper bound on the size of the target
filter. In this case, The Vasilevskii-Chow(VC) algorithm [44]
exists for checking compliance between a DFA and a target
automaton given black-box access to the second.

However, if the DFA at hand has n states and the upper
bound given is m then the VC algorithm is exponential
in m � n. Moreover, the algorithm suffers from the same
limitations in the alphabet size as DFA learning algorithms
since every possible transition of the black-box automaton
must be checked. Creating a symbolic version of the VC
algorithm may be possible however, we will again only get
probabilistic guarantees on the correctness of our equivalence
oracle.

Another option is to construct a context free grammar
describing the input protocol under which the sanitizer should
operate and then use random sampling from that grammar
to test whether the hypothesis and the target programs are
complying. For example, when we test HTML Encoders we
might want to construct a grammar with a number of different
character sequences such as encoded HTML entities or special
characters and test the behavior of the encoder under these
strings. We employ this approach in our experiments.Finally,
static analysis techniques [7] can be used to generate a CFG
describing the output of another implementation of the same

program name(input){

return iter(c in input)[registers]

{cases}end{cases};

}

Fig. 9. General structure of a BEK program.

sanitizer or filter and then cross check the generated CFG with
the target sanitizer using our fingerprint algorithm.

C. Converting Transducers to BEK Programs

In this section we will describe our algorithm to convert
finite state transducers into BEK programs. The assumptions
we have is that the transducers given to our algorithm are
single-valued transducers with bounded lookahead and domain
⌃

⇤. Due to lack of space, we won’t describe here the full
specification of the BEK language. We urge the interested
reader to refer to the original BEK paper [8] as well as to
the online tutorial [48].

Figure 9 presents the general template of a BEK program.
In a nutshell the BEK language allows one to define an
iterator over the input string. In addition, a predefined number
of registers taking integer values can be used. Inside the
iterator loop an outer switch-case statement is placed, with
guards defined by the programmer. Inside each case loop the
programmer is allowed to place an if-then-else statement with
an arbitrary number of else-if statements and a final else
statement. In order to produce an output symbol the yield

statement is used, which can also produce multiple output
symbols. After the main iteration over the input is over, a BEK
program can have a final series of case statements which will
be evaluated over the register variables defined on the program
after exiting the input iteration. We call these statements the
end part of the iterator.

The overall construction is straightforward in the case the
transducer is determinstic: We define a register s which at
each point of the computation holds the current state of the
transducer. The outer case loop of the program checks the
state number while, an internal if-then-else chain matches the
current input character and afterwards, sets the next state and
yields the corresponding symbol of the transition, if any.

Unfortunately, when a bounded lookahead is present a
more complicated situtation arises, because the BEK language
cannot process more than one input characters at each iteration.
Thus, the program needs to manually store a buffer and keep
track of all the alternative states the transducer might be in
until a lookahead is matched or discarded.

In fact, as we demonstrate in appendix E, this complexity
can easily lead to errors in BEK programs. Indeed, we found
a problem in an HTML decoder program which was given
as an example in the BEK tutorial. The problem occured
because the BEK program was not taking into account all
possibilities when a lookahead string was partially matched
and then discarded.

The overall structure of a BEK program with lookahead
transitions is similar with the basic structure. However, we add

17

additional guards in all states that can be part of a lookahead
transition as follows:

Consider each path starting in a final state qsrc and ending
in a final state qdst through a path of non final states, while
consuming an input string r, |r| = k and generating an output
o. In other words this path is a lookahead transition which
consumes the input string r and produces the string o. Then
we perform the following:

1) For each prefix of r, ri for all i < k compute the set
of states Si which are accesible from state qsrc with
the string ri. Since the transducer is single-valued
this set contains exactly one final state. The set Si

of accesible states can be easily computed using a
BFS search. Moreover, let oi be the output of the
transducer on string ri from state qsrc. We save for
each prefix i the triple (ri, oi, Si).

2) Let si be the non final state reached by ri if the suffix
following ri is the remaining symbols of r. Then,
for every state s 2 Si add inside the case statement
containing the guards of si the guards of each s 2 S
ordered in a way such that the unique final state in
Si is checked last.

3) In the end part of the iterator, add for each prefix i
a case guard asserting that if the computation ended
in state si then the program must yield the string oi.
These statements handle the case where the input is
finished while processing a lookahead transition.

As soon as we add these additional guards for every lookahead
transition the BEK program is completed.

D. Decision trees as SFA

Although are main focus in developing a learning algorithm
for SFAs lies in the inference of regular expression filters,
SFAs is a very general computation model which allow us to
represent various data structures. In figure 10 we show the
representation of a decision tree over the real numbers, as a
SFA. The predicate family here is the set of linear inequalities
of one variable over the real numbers. If we restrict the
alphabet ⌃ to an, infinite, subset of the real numbers such
that maxw2⌃ |w| = R and moreover, there is a margin � for
every predicate guard 3, then, predicate guards of size k will be
O(kR2/�2

)-learnable [49] and thus the overall decision tree
can be efficiently inferred using our algorithm.

E. Bug in BEK HTML Decoder Example

While developing and debugging our implementation we
found a bug in an example implementation of a simplified
HTML decoder in the online BEK tutorial. The program in
question is the program named decode from the second part
of the BEK tutorial [48]. We won’t present the whole program
here due to space constraints, but the problem occurs in the
following case:

case (s == 1) : //memorized &

if (c == ’&’) { yield (’&’); }

else if (c == ’l’) { s := 2; }

3A margin � for a linear inequality
P

i ai�i � ✓ means that, for all ~� 2 ⌃
|
P

i ai�i + ✓| > �

q0

q1q2

q3 q4

x � �1x < �1

x < �2 x � �2

true

true true

Fig. 10. SFA model for a decision tree over the reals.

else if (c == ’g’) { s := 3; }

else { yield (’&’,c); s := 0; }

Here, as the comments suggests, the transducer has already
processed the letter “&” and checks if any of the letter “l”
or “t” follows which would complete the html entities “<”
or “>”. In the opposite case that no match with these two
characters is found, the memorized symbol is being added to
the output along with the current symbol. Unfortunately, if the
new character is also part of an HTML entity, for example “&”,
then the program will fail to start scanning for the next symbols
of the entity, rather it will just output the same character
and return to initial state. Therefore, the program will fail to
correctly decode sequences such as “&<”.

We detected this bug during the development of our
lookahead learning algorithm and our conversion algorithm to
BEK programs. Specifically, we coded an HTML decoder like
the decode BEK program and used the equivalence checking
function of BEK in order to check whether the inferred BEK
programs we were producing were correct. At some point,
we detected the bug we described as a counterexample to the
equivalence of the two implementations.

We believe that this bug demonstrates the complexity of
writing sanitizers that make heavy use of lookahead transitions
in BEK. One should implement a large number of nested
if-then-else statements, like we describe in our conversion
algorithm in section VII-E. We believe that the BEK language
could become much simpler with the introduction of a string
compare function to allow the programmers to easily handle
lookaheads. This may require extra work on the backend of
the BEK compiler, however we believe that this is a feasible
task, that will greatly simplify the language.

F. Proofs of Theorems and Lemmas

Proof: (of Theorem 1) We need to show that the algorithm
does progress towards the discovery of a correct hypothesis.
Recall that the algorithm starts with an SOT that is closed and
reduced. Each time the algorithm has an SOT that satisfies
these properties an equivalence query is issued resulting either
in termination or in a counterexample. Processing the coun-
terexample will require O(logm + n) membership queries.
The counterexample will either make the SOT not closed
(in which case a new state is introduced) or it will lead to
the introduction of an element si0b in ⇤. A pair of access

18

strings (s, s0) will be called completed if it holds that the
guard predicate � in the transition (s,�, s0) of the hypothesis
is logically equivalent to the predicate � that is in the transition
between states qs and qs0 in the target SFA. We will show that
for the new element si0b that is added in ⇤ it holds that it
corresponds to an s0 for which (si0 , s

0
) is not yet completed.

For the sake of contradiction suppose the opposite is true, i.e.,
that si0b ⌘ s0 mod W [{d} for some s0 for which (s, s0)
is completed. It follows that the the transition (qsi0 ,�, qs0)
found in the Hypothesis SFA is correct and it will hold that
�(b) and also si0b ⌘ s0 mod W [{d}. In turn this means that
si0b ⌘ s0 mod W and as a result si0+1 ⌘ s0 mod W . Because
the hypothesis SFA is reduced we obtain s0 = si0+1 which is
a contradiction since si0b 6⌘ si0+1 mod W [{d}. It follows
that si0b ⌘ sj mod W [{d} for some j, j 6= i0 + 1 and the
pair (si0 , sj) is not yet completed. We conclude that (b, sj) is
a counterexample w.r.t. (R,�, s) where R was the input to the
guardgen() algorithm for the construction of the guard of state
si0 in the hypothesis and � is the predicate guard of the state
qsi0 in the target automaton. Indeed, (�, si0+1) is in the output
of guardgen() and it holds that �(b) = 1, while �i0+1(b) = 0

as j 6= i0+1 and �j(b) = 1. Using the above, the equivalence
queries that result in closed SOT tables cannot exceed nt(k).
On the other hand, if an equivalence query results in an SOT
that is not closed this results in the introduction of a new
state; no membership queries will be needed in this case as
the row si0b is already determined with respect to W [{d}.
The statement of the theorem follows.

Proof: (of Theorem 2) First of all observe that there is at
least one index j⇤ 2 {0, . . . , |z0| � 1} with the property that
�j⇤ 6= �j⇤+1. Indeed if the negation of this statement holds it
will contradict with the statement that �0 6= �|z0|. Let J ⇤ be the
set of all such indices. The proof of the theorem is by induction
using the previous observation as basis. Suppose that the given
range [jleft, jright] satisfies the property that it intersects with
J ⇤. We will prove that the next range selected by the binary
search process as described above preserves the property and it
also intersects with J ⇤. Suppose that j is the middle point of
[jleft, jright] and �j = �0. The search process selects [j, jright]
as the next range. Suppose for the sake of contradiction that
[j, jright] has no intersection with J ⇤; this implies �jright = �0.
In case jright = |z0| this leads immediately to a contradiction.
On the other hand, if jright < |z0| this means that at a previous
stage jright + 1 was a middle point and the binary search
process decided to choose the left sub-range. By definition
this implies that �jright+1 6= �0. As a result, since �jright = �0
we obtain that jright 2 J ⇤ which is again a contradiction. For
the second case, suppose that �j 6= �0 and thus the search
process selects [jleft, j� 1] as the next range. Suppose, for the
sake of contradiction that [jleft, j� 1] has no intersection with
J ⇤. In case jleft = 0 then �j�1 = �0 and since �j 6= �0 we
have that j�1 2 J ⇤ hence a contradiction. On the other hand,
if jleft > 0 this means that at a previous stage of the binary
search process, jleft was a middle point and a decision to go
right was made. In turn this implies that �jleft = �0. However
by assumption �j 6= �0 and thus there must be an index in
[jleft, j � 1] that belongs to J ⇤, a contradiction.

Proof: (Sketch) (of Theorem 3) The algorithm starts with
the empty string as the sole access string and attempts to
close the observation table by issuing transduction queries.
Eventually the table will become closed, possibly with the

addition of certain lookahead transitions in the list L with the
respective columns in the observation table. Now it is easy to
notice that the SG counterexample processing method will add
a distinguishing suffix if the counterexample is due to a hidden
state while the prefix-closed queries will detect and process
any undiscovered lookahead transition, thus the algorithm will
eventually terminate with a correct hypothesis.

Regarding the complexity of the algorithm, notice that the
algorithm will issue a prefix-closed query only in order to fill
certain entries in the observation table. Therefore, it suffices to
bound the size of the rows and columns of the table. The rows
of the table remain the same as in the Shabaz-Groz algorithm
and therefore, we have at most (|⌃| + 1)n rows. The table
is initialized with |⌃| columns corresponding to each symbol
of the alphabet. A column is added either when we process
a counterexample due to a hidden state or an undiscovered
lookahead transition. We distinguish between the two cases:

– In case the counterexample is due to a hidden state,
then at most m columns are added. Since there are at
most n counterexamples due to hidden states the total
number of columns added can be at most mn.

– In case the counterexample is due to an undiscovered
lookahead transition, we notice that the length of the
path can be at most n, since we have a bounded
lookahead, and therefore at most n columns will be
added. Thus, since there is a total of k lookahead
transitions at most kn columns will be added.

We notice that each prefix-closed membership query can be
implemented with at most n+max{n,m} membership queries,
since the longest column is of length max{n,m} and the
longest row is of length n. Finally, since a counterexample will
be either due to a hidden state or an undiscovered lookahead
transition it follows that we can have at most n+k equivalence
queries.

19

SFADiff: Automated Evasion Attacks and Fingerprinting

Using Black-box Differential Automata Learning

George Argyros

Columbia University

argyros@cs.columbia.edu

Ioannis Stais

University of Athens

i.stais@di.uoa.gr

Suman Jana

Columbia University

suman@cs.columbia.edu

Angelos D. Keromytis

Columbia University

angelos@cs.columbia.edu

Aggelos Kiayias

University of Edinburgh

Aggelos.Kiayias@ed.ac.uk

ABSTRACT
Finding di↵erences between programs with similar function-
ality is an important security problem as such di↵erences can
be used for fingerprinting or creating evasion attacks against
security software like Web Application Firewalls (WAFs)
which are designed to detect malicious inputs to web ap-
plications. In this paper, we present SFADiff, a black-box
di↵erential testing framework based on Symbolic Finite Au-
tomata (SFA) learning. SFADiff can automatically find
di↵erences between a set of programs with comparable func-
tionality. Unlike existing di↵erential testing techniques, in-
stead of searching for each di↵erence individually, SFADiff
infers SFA models of the target programs using black-box
queries and systematically enumerates the di↵erences be-
tween the inferred SFA models. All di↵erences between the
inferred models are checked against the corresponding pro-
grams. Any di↵erence between the models, that does not
result in a di↵erence between the corresponding programs,
is used as a counterexample for further refinement of the in-
ferred models. SFADiff’s model-based approach, unlike ex-
isting di↵erential testing tools, also support fully automated
root cause analysis in a domain-independent manner.

We evaluate SFADiff in three di↵erent settings for find-
ing discrepancies between: (i) three TCP implementations,
(ii) four WAFs, and (iii) HTML/JavaScript parsing imple-
mentations in WAFs and web browsers. Our results demon-
strate that SFADiff is able to identify and enumerate the
di↵erences systematically and e�ciently in all these settings.
We show that SFADiff is able to find di↵erences not only
between di↵erent WAFs but also between di↵erent versions
of the same WAF. SFADiff is also able to discover three
previously-unknown di↵erences between the HTML/Java-
Script parsers of two popular WAFs (PHPIDS 0.7 and Ex-
pose 2.4.0) and the corresponding parsers of Google Chrome,
Firefox, Safari, and Internet Explorer. We confirm that all
these di↵erences can be used to evade the WAFs and launch
successful cross-site scripting attacks.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria
c� 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

1. INTRODUCTION
Software developers often create di↵erent programs with

similar functionality for various reasons like supporting dif-
ferent target platforms, resolving conflicting licenses, accom-
modating di↵erent hardware constraints and exploring di-
verse performance trade-o↵s. However, these programs often
su↵er from subtle discrepancies that cause them to produce
di↵erent outputs for the same input due to either implemen-
tation bugs or vagueness of the underlying specifications.
Besides hurting interoperability of the a↵ected programs,
these di↵erences can also have serious security implications.
An attacker can leverage these di↵erences for fingerprint-
ing: That is, to identify the exact version of a program
running on a remote server. As di↵erent programs su↵er
from di↵erent vulnerabilities, such fingerprinting informa-
tion is very useful to an attacker for choosing specific attack
vectors. Besides fingerprinting, the behavioral discrepancies
can also be used to launch evasion attacks against security
software that detects potentially malicious input to a target
program. In such cases, the security software must faithfully
replicate the relevant parts of the input parsing logic of the
target software in order to minimize false negatives. Any
discrepancy between the input parsing logic of the security
software and that of the target program can be used by an
attacker to evade detection while still successfully delivering
the malicious inputs. For example, Web Application Fire-
walls (WAFs) detect potentially malicious input to web ap-
plications such as cross-site scripting (XSS) attack vectors.
Therefore, a WAF must parse HTML/JavaScript code in the
same way as web browsers do. Any inconsistency between
these two parsers can lead to an evasion attack against the
WAF. However, making the WAF HTML/JavaScript pars-
ing logic similar to that of the web browsers is an extremely
challenging and errorprone task as most web browsers do
not strictly follow the HTML standard.
For the reasons mentioned above, automated detection

of the di↵erences between a set of test programs providing
similar functionality is a crucial component of security test-
ing. Di↵erential testing is a way for automatically finding
such di↵erences by generating a large number of inputs (ei-
ther through black-box fuzzing or white-box techniques like
symbolic execution) and comparing the outputs of the test
programs against each other for each input. However, exist-
ing di↵erential testing systems have several drawbacks that
prevent them from scaling to real-world systems with large
input space (e.g., WAFs, web browsers, and network pro-

Learning	
algorithm	

Difference	
analysis		

Check	if	the	
differences	are	real	

Counterexamples:	
refuted	differences	Bootstrapping	through	

ini<aliza<on	

Program1	 Program2	 Program	n	

SFA	2	SFA	1	 SFA	n	…

…

Stop	if		
no	difference	

Figure 1: SFADiff archtitecture

tocol implementations). White-box techniques do not scale
to such large systems mostly due to the overhead and com-
plexity of the analysis process. Black-box fuzzing techniques
try to brute-force through the vast input space without any
form of guidance and therefore often fails to focus on the
relevant parts of the input space.

In this paper, we present SFADiff, a black-box di↵eren-
tial testing framework based on Symbolic Finite Automata
(SFA) learning for automatically finding di↵erences between
comparable programs. Unlike existing di↵erential testing
techniques, instead of searching for each di↵erence individ-
ually, SFADiff infers SFA models by querying the target
programs in a black-box manner and checks for di↵erences
in the inferred models. SFADiff also verifies whether the
candidate di↵erences found from the inferred models indeed
result in di↵erences in the test programs. If a di↵erence de-
rived from the inferred models do not result in a di↵erence
in the actual programs, the corresponding input is reused as
a counterexample to further refine the model.

Comparing two models in order to obtain counterexam-
ples also provides a way to implement an equivalence oracle
which checks the correctness of an inferred model and con-
stitutes an essential component of the learning algorithm. In
practice, simulating such an oracle is a challenging and com-
putationally expensive task (cf. section 3). Nevertheless,
our di↵erential testing framework provides an e�cient and
elegant way to simulate an equivalence oracle by comparing
the inferred models, thus the term “di↵erential automata
learning”.

Figure 1 shows an overview of SFADiff architecture. SFAD-
iff has several benefits over the existing approaches: (i) it
explores the di↵erences between similar programs in a sys-
tematic way and generalizes from the observations through
SFA models; (ii) it can find and enumerate di↵erences be-
tween SFA models e�ciently; (iii) it can perform root cause
analysis e�ciently in a domain-independent manner by us-
ing the inferred models; and (iv) it also supports e�cient
bootstrapping mechanisms for incremental SFA learning for
programs that only di↵er slightly (e.g., two versions of the
same program).

We evaluated SFADiff in three di↵erent settings for find-
ing di↵erences between multiple TCP implementations, be-
tween di↵erent WAFs, and between the HTML/JavaScript
parsers of WAFs and Web browsers. SFADiff was able to

Figure 2: Types of queries that a learning algorithm
can perform in our learning model.

enumerate a large number of di↵erences between the TCP
implementations in Linux, FreeBSD, and Mac OSX. In the
WAF setting, SFADiff found multiple di↵erences between
di↵erent WAFs as well as between di↵erent versions of the
sameWAF. Finally, SFADiff found three previously-unknown
HTML/JavaScript parsing di↵erences between two popular
WAFs (PHPIDS 0.7 and Expose 2.4.0) and several major
browsers like Google Chrome, Safari, Firefox, and Internet
Explorer. Our experiments confirmed that all of these di↵er-
ences can be leveraged to launch successful cross-site script-
ing attacks while evading the vulnerable WAFs.
In summary, our main contributions are as follows:
• In section 4, we describe the design and implemen-

tation of SFADiff, the first di↵erential testing frame-
work based on automata learning techniques. We show
that our framework can be used to perform several se-
curity critical tasks automatically such as finding eva-
sion attacks, generating fingerprints, and identifying
the root causes of the observed di↵erences in a domain-
independent manner.

• In section 3, we provide an e�cient algorithm to boot-
strap the SFA learning process from an initial model
that allows for e�cient incremental inference of similar
programs.

• In section 5, we evaluate SFADiff on eleven appli-
cations from three di↵erent domains and show that
it is able to find a large number of di↵erences in all
domains, including three previously-unknown evasion
attacks against two popular WAFs, Expose and PH-
PIDS.

2. PRELIMINARIES

2.1 Definitions
A deterministic finite automaton (DFA) M over an al-

phabet ⌃ with set of states Q is specified by a transition
function � : Q ⇥ ⌃ ! Q. The subset F ✓ Q is called the
set of accepting states. The language accepted by the au-
tomaton is denoted by L(M) and contains all those strings
in ⌃⇤ that, when parsed by the automaton starting from
the initial state q

0

2 Q, lead to a state in F . Each DFA M
induces a corresponding graph G

M

= (V,E) where V = Q
and (q

i

, q
j

) 2 E if and only if �(q
i

,↵) = q
j

for some a 2 ⌃.
We also denote an edge (q

i

, q
j

) 2 E as q
i

! q
j

. We write

q
i

⇤! q
j

to denote that there exists a path in G
M

between q
i

and q
j

. We say that a path is simple if it does not contain
any loops.

For a given automaton M , string w 2 ⌃⇤ and state q 2
Q we denote by M

q

[w] the state that is reached when the
automaton parses the string w, starting from state q. When
the subscript is omitted the initial state q

0

is assumed. We
also define the function l : Q ! {0, 1} such that l(q) = 1 if
and only if q 2 F . It follows that L(M) = {w | l(M

q0 [w]) =
1}. We denote by ✏ the empty string. For two strings s

1

,s
2

and a set of strings W , we say that s
1

⌘ s
2

mod W if, for
every w 2 W it holds that l(M [s

1

· w]) = l(M [s
2

· w]). A
predicate family P is a set of predicates. The following sets
of strings defined for an automaton M play a fundamental
role in learning algorithms:
• Access strings. We say that a string s access a state q

if M [s] = q. The set of access strings for an automaton
M is a set A such that, for each state q in M there exists
s 2 A such that s access q.

• Distinguishing strings. The set of distinguishing strings
is a set of strings D for which it holds that for each pair
of states q, q0 it holds that there is some d 2 D such that
l(M

q

[d]) 6= l(M
q

0 [d]).
Symbolic Finite Automata. Symbolic finite automata
(SFA) are finite state machines that decide an input string
by performing state transitions controlled by predicate mem-
bership. A DFA is a special case of an SFA where the pred-
icate family is restricted to the forms “x = a” for a 2 ⌃.
We will adopt the following definition that has been used to
formally describe this class of machines [5] :

Definition 1. A symbolic finite automaton (SFA) is a tuple
(Q, q

0

, F,P,�), where Q is a finite set of states, q
0

2 Q
the initial state, F ✓ Q is the set of final states, P is a
predicate family and � ✓ Q ⇥ P ⇥ Q is the move relation.
For each state q, we define the guard predicate set as follows
guard(q) := {� : 9p 2 Q, (q,�, p) 2 �}.

Extension to programs with non-binary output. Due
to space constraints, we describe our algorithms for the case
of programs with binary output. Nevertheless, to model
programs with general output, SFAs can be replaced with
symbolic finite state transducers (SFTs) [30], and the corre-
sponding learning algorithms for transducers [5] can be used.
All of our algorithms can be easily extended to transducers.

2.2 Learning Model
The learning algorithms used in this paper work in an

active learning model called exact learning from member-
ship and equivalence queries. Contrary to the traditional
supervised machine learning setting, where the models are
trained on a given dataset, active learning algorithms are
able to query the target machine with any input of their
choice and obtain the correct label for that input from the
target. Specifically, in our learning model, we assume that
a learner, who is trying to learn an unknown automaton M ,
has access to an oracle answering two types of queries: (i)
membership queries through which the learner can submit a
string s and obtain whether s 2 L(M) or not and (ii) equiva-
lence queries through which the learner can submit a model
H and obtain whether L(H) = L(M). Figure 2 shows a
pictorial presentation of these queries.

2.3 SFA Learning Algorithm
For learning SFAs, we use the ASKK algorithm proposed

q
0

q
1

q
2

q
3

x =<

x 6=<

x = a

x 6= a

x =>

x 6=> true

aaaaaS W ✏ a> >

✏ 0 0 0
< 0 1 0
<a 0 0 1
<a> 1 0 0

Figure 3: A Symbolic Finite Automaton (SFA) for
the regular expression .*<a>.* and the correspond-
ing entries for the S,W sets from the observation
table.
by Argyros et al. [5]. We present a brief overview of the al-
gorithm below and encourage the interested readers to check
[5] for more details. At a high level, the algorithm attempts
to reconstruct the set of access and distinguishing strings
for the target automaton, from which it is able to recover a
correct model of the target machine. The transitions of the
SFA are generated using a mechanism called the guardgen()
algorithm that, given a sample set of transitions as input,
generates a set of predicate guards for the SFA model.
The main data structure utilized by the algorithm is the

special observation table SOT = (S,W,⇤, T), where S and
W are, possibly incomplete, sets of access and distinguishing
strings for the target automaton, ⇤ ✓ S ·⌃ is a set of sample
transitions and T is a table with rows over S[⇤ and columns
in W . Given a row s and column w, the table is populated
with T (s, w) = l(M [sw]). Figure 3 shows a simple SFA
along with the observation table entries for the S and W
sets.
The algorithm initializes the table with S = W = {✏} and

a set of sample transitions ⇤ (a single symbol su�ces). The
SOT is called closed if for every ↵ 2 ⇤, there exists s 2 S
such that ↵ ⌘ s mod W . Once all entries in the table are
populated using membership queries, the table is checked for
closedness. If there exists an ↵ 2 ⇤ such that the closedness
condition is not satisfied, then ↵ is accessing a previously
undiscovered state in the target automaton. Thus, we move
↵ into the set S, fill the new entries in the table, and check
again for closedness. Eventually, this process will produce a
closed SOT if the target language is regular.
Updating models. Given a closed SOT , the learning algo-
rithm constructs an SFA model. This model is then tested
for equivalence with the target automaton. In the abstract
learning model this is achieved using a single equivalence
query, however, in practice, various testing methods are
utilized to simulate an equivalence query. If the learned
model is not equivalent to the target machine, the equiv-
alence query returns a counterexample input s that causes
the model to produce di↵erent output than the target ma-
chine. The learning algorithm uses the counterexample to
refine the generated model by either adding a missing state
or correcting an invalid transition.

3. BOOTSTRAPPING SFA LEARNING
Motivation. Consider a user that has invested a signifi-
cant time budget to infer an SFA model for a specific ver-
sion of a program. When a new version of the program is
released, one can expect it to be, in many aspects, similar
with the previous version. In such settings, the ability to

incrementally learn the SFA model for the new version can
be a very useful feature. The learning process will become
significantly faster if SFADiff can somehow utilize the old
model for learning the new model. In this section, we pro-
vide an e�cient algorithm in order to bootstrap the SFA
learning algorithm by initializing it with an existing model.
Our method ensures that, if the system we are trying to in-
fer is the same as the model used for initializing the learning
algorithm, only a single equivalence query will be made by
the learning algorithm in order to verify the equivalence of
the model with the system. Since simulating equivalence
queries is usually the most expensive part in learning, being
able to save equivalence queries provide a significant overall
optimization in the learning process.

Notice that, most popular algorithms for simulating equiv-
alence queries are intractable for large alphabets. For ex-
ample, consider the case of Chow’s W-method [12], that is
used by popular automata inference frameworks like Learn-
Lib [24] for simulating equivalence queries. The W-method
accepts as input a model automaton M with m states and
an upper bound n on the number of states of the target
automaton. The W-method compiles a set of test cases to
verify that, if the target automaton has at most n states,
then it is equivalent to the model automaton. Unfortu-
nately, in order to verify equivalence, the W-method per-
forms O(n2m|⌃|n�m+1) membership queries to the target
system. The exponential term in the alphabet size makes
the method prohibitive for usage in models with large al-
phabets (e.g. all printable characters or even larger sets if
we include Unicode symbols).
Our algorithm. Given an initial SFA model Minit we boot-
strap the ASKK algorithm by creating a special observation
table SOT = (S,W,⇤, T) with the S,W,⇤ sets initialized
from Minit, as described below, while the entries of the table
are filled using membership queries to the target automa-
ton. This technique allows us to build a correct model if the
initial model and the target system are equivalent. If the
two systems are not equivalent but similar, i.e. they share
certain access and distinguishing strings, then our initial-
ization algorithm will recover those without performing any
equivalence queries. We will now describe how to initialize
each component of the special observation table.

3.1 Initializing the SOT
Initializing S. Initializing S corresponds to the recovery of
all access strings ofMinit. This is a straightforward procedure
using a DFS search in the graph induced by Minit. The
procedure starts with an empty access string for the initial
state of the automaton. Every time we exercise a transition
(q

s

,�, q
t

), we check if an access string for q
t

is already in
S. If no access string exists for q

t

then, we select a witness
↵ 2 � from the predicate guard of the transition and we
assign the access string s

qs↵ for state q
t

where s
qs 2 S is an

access string for q
s

. Once all states are covered, we return
the set of access strings.
Initializing W . Initializing the W set corresponds to the
creation of a set of distinguishing strings for Minit. Algo-
rithms for creating distinguishing sets for DFAs date back to
the development of Chow’s W-method [12]. Adapting these
algorithms in the SFA setting is straightforward by adapt-
ing the SFA minimization algorithms developed recently by
D’Antoni and Veanes [14]. We note that these algorithms
are the most e�cient known algorithms for SFA minimiza-

tion and the adaptation for generating a set of distinguish-
ing strings will produce a set of distinguishing strings of size
n� 1 for an SFA with n states.
Initializing ⇤. In order to correctly initialize the ⇤ com-
ponent of the SOT , we have to provide, for every state q of
Minit a set of sample transitions that, when given as input
into the guardgen() algorithm will produce the correct set
of predicate guards for q.
The predicate guards used by the SFA learning algorithm

in [5] are simply sets of symbols from the alphabet. Given a
set of sample transitions for a state q, the guardgen() algo-
rithm from [5] works as follows: All transitions for symbols
from state q already in the ⇤ set are grouped into predi-
cate guards based on the target of the transition which is
determined as in the original L⇤ algorithm [6]. The transi-
tions for symbols which are not part of the ⇤ set are merged
into the predicate guard with the largest size, i.e. the tran-
sition containing most symbols. The intuition behind this
algorithm is that in most parsers, only a small numbers of
symbols is advancing the automaton towards an accepting
state, while most other symbols are grouped together in a
single transition leading to a rejecting state.
Therefore, given a state q in Minit, in order to construct a

sample set of transitions that will result in producing the cor-
rect predicate guards with the aforementioned guardgen()
algorithm, we proceed as follows: Let {�

1

,�
2

, . . . ,�
k

} be
the set of predicate guards for the state q such that i <
j =) |�

i

| � |�
j

|. Moreover, let s
q

be the access string for
q and T = [

i2{2,...,k}�i

. Then, for each ↵ 2 T , we add the
string s

q

↵ in ⇤. This will ensure that the predicate guards
for �

2

, . . . ,�
k

will be produced correctly by the guardgen()
algorithm. Finally, we have to ensure that enough sample
transitions from �

1

are added in ⇤ in order for �
1

to get
all implicit transitions which are not part of ⇤. To achieve
that, we select l

2

= |�
2

|+1 elements ↵
j

2 �
1

, j 2 {1, . . . , l
2

}
and add the strings s

q

↵
j

in ⇤. This operation ensures that
if the transitions of the target automaton are the same as
in Minit, they will be generated correctly by the guardgen()
algorithm. Repeating this procedure for all states of Minit

completes the initialization of the ⇤ set.

4. DIFFERENTIAL SFA LEARNING

4.1 Basic Algorithm
The main idea behind our di↵erential testing algorithm is

to leverage automata learning in order to infer SFA-based
models for the test programs and then compare the result-
ing models for equivalence as shown in Figure 1. As men-
tioned above, this technique has a number of advantages
such as being able to generalize from comparing individual
input/output pairs and build models for the programs that
are examined.
Algorithm 1 provides the basic algorithmic framework for

di↵erential testing using automata learning. The algorithm
takes two program implementations as input. The first func-
tion calls, to the GetInitialModel function, are responsible
for bootstrapping the models for the two programs. In our
case this function is implemented using the observation ta-
ble initialization algorithm described in Section 3. The ini-
tialized models are then checked for di↵erences using the
RCADiff function call. The internals of this function are
described in detail in Section 4.2. This function is respon-
sible for categorizing the di↵erences in the two models and

Algorithm 1 Di↵erential SFA Testing Algorithm

Require: P
1

, P
2

are two programs
function GetDifferences(P

1

, P
2

)
M

1

 GetInitialModel(P
1

)
M

2

 GetInitialModel(P
2

)
while true do

S RCADi↵(M
1

,M
2

)
if S = ; then

return ;
end if
modelUpdated False
for s 2 S do

if P
1

(s) 6= M
1

(s) then
M

1

 UpdateModel(M
1

, s)
modelUpdated True

end if
if P

2

(s) 6= M
2

(s) then
M

2

 UpdateModel(M
2

, s)
modelUpdated True

end if
end for
if modelUpdated = False then

return S
end if

end while
end function

return a sample set of inputs covering all categories that
can cause the two programs to produce di↵erent outputs.
The algorithm stops if the two models are equivalent. Oth-
erwise, RCADiff returns a set of inputs that cause the two
SFA models to produce di↵erent output.

However, since these di↵erences are obtained by compar-
ing the program models and not the actual programs, they
might contain false positives resulting from inaccurate mod-
els. To detect such cases, we verify all di↵erences obtained
from the RCADiff call using the actual test programs. If any
input is found not to produce a di↵erence in the implemen-
tations, then that input is used as a counterexample in order
to refine the model through the UpdateModel call. Finally,
when a set of di↵erences in the two models is verified to
contain only true positives, the algorithm returns the set of
corresponding inputs back to the user.

The astute reader may notice that, if no candidate dif-
ferences are found between the two models, the algorithm
terminates. For this reason, model initialization plays a sig-
nificant role in our algorithm, since the initialized models
should be expressive enough in order to provide candidate
di↵erences. It is interesting to point out that the candidate
di↵erences do not have to be real di↵erences.

4.2 Difference Analysis
Assume that we found and verified a number of inputs

that cause the two programs under test to produce di↵erent
outputs. One fundamental question is whether we can clas-
sify these inputs in certain equivalence classes based on the
cause of the deviant behavior. We will now describe how
we can use the inferred SFAs in order to compute such a
classification. Ideally, we would like to assign in two inputs
that cause a di↵erence the same root cause if they follow
the same execution paths in the target programs. Since the
program source is unavailable, we trace the execution path
of the inputs in the respective SFA models.
RCADi↵ algorithm. Given two SFAs M

1

and M
2

, it is

Algorithm 2 Di↵erence Categorization Algorithm

Require: M
1

,M
2

are two SFA Models
function RCADiff(M

1

,M
2

)
M

prod

 ProductSFA(M
1

,M
2

)
S ;
for (q

i

, q
j

) 2 Q
prod

| l(q
i

) 6= l(q
j

) do
S S [SimplePaths(M

prod

, (q
i

, q
j

))
end for
return Path2Input(S)

end function

straightforward to compute their intersection by adapting
the classic DFA intersection algorithm [28]. Let M

prod

=
(Q

1

⇥ Q
2

, (q
0

, q
0

), {(q
i

, q
j

) : q
i

2 F
1

^ q
j

2 F
2

},P,�) be
the, minimal, product automaton of M

1

,M
2

. Notice ini-
tially, that the reason a di↵erence is observed in the output
after processing an input in both SFAs is that the labels of
the states reached in the two machines are di↵erent. This
motivates our definition of points of exposure.

Definition 2. Let M
prod

be the intersection SFA of M
1

,M
2

as defined above. We define the set {(q
i

, q
j

)|(q
i

, q
j

) 2 Q
prod

^
q
i

2 Q
1

^q
j

2 Q
2

^l(q
1

) 6= l(q
2

)} to be the points of exposure
for the di↵erences between M

1

,M
2

.

Intuitively, the points of exposure are the reasons the dif-
ferences in the programs are observed through the output of
programs. The path to a point of exposure encodes two dif-
ferent execution paths in machines M

1

and M
2

respectively
which, under the same input, end up in states producing
di↵erent output. Thus, we say that any simple path to a
point of exposure is a root cause of a di↵erence.

Definition 3. Let M
1

,M
2

be two SFAs and M
prod

be the
intersection of M

1

,M
2

. Let Q
p

✓ Q
prod

be the points of
exposure for M

prod

. We say that the set of simple paths

S = {q
0

⇤! q
p

|q
p

2 Q
p

} is the set of root causes for the
di↵erences between M

1

and M
2

.

Equipped with the set of paths our classification algorithm
works as follows: Given two inputs causing a di↵erence, we
first reduce the path followed by each input into a simple
path, i.e. we remove all loops from the path. For example,
an input following the path q

0

! q
4

! q
5

! q
4

! q
10

will
be reduced to the path q

0

! q
4

! q
10

. Afterwards, we
classify the two inputs in the same root cause if the simple
paths followed by the inputs are the same.
Algorithm 2 shows the pseudocode for the RCADiff algo-

rithm. The algorithm works by collecting all the distinct
root causes from the product automaton using the the Sim-
plePaths function call. This function accepts an SFA and
a target state and returns all simple paths from the ini-
tial state to the target state using a BFS search. After-
wards, each path is converted into a sample input through
the function Path2Input. This function works by selecting,
for each edge q

i

! q
j

in the path, a symbol ↵ 2 ⌃ such that
(q

i

,�, q
j

) 2 � ^ �(↵) = 1. Finally, these symbols are con-
catenated in order to form an input that exercise the given
path in the SFA.

4.3 Differentiating Program Sets
In this section, we describe how our original di↵erential

testing framework can be generalized into a GetSetDiffer-

ences algorithm which works as follows: Instead of get-
ting two programs as input, the GetSetDifferences algo-
rithm receives two sets of programs I

1

= {P
1

, . . . , P
n

} and

I
2

= {P
1

, . . . , P
m

}. Assume that the output of each pro-
gram is a bit b 2 {0, 1}. The goal of the algorithm is to find
a set of inputs S such that, the following condition holds:

9b 8P
1

2 I
1

, P
1

(s) = b ^ 8P
2

2 I
2

, P
2

(s) = 1� b

While conceptually simple, this extension provides a num-
ber of nice applications. For example, consider the problem
of finding di↵erences between the HTML/JavaScript parsers
of browsers and those of WAFs. While finding such di↵er-
ences between a single browser and a WAF will provide us
with an evasion attack against the WAF, the GetSetDif-

ferences algorithm allows us to answer more sophisticated
questions such as: (i) Is there an evasion attack that will
bypass multiple di↵erent WAFs? and (ii) Is there an eva-
sion attack that will work across di↵erent browsers? Also,
as we describe in Section 4.4, this extension allows us to pro-
duce succinct fingerprints for distinguishing between multi-
ple similar programs.
GetSetDi↵erences Algorithm. We extend our basic Get-
Differences algorithm as follows: First, instead of initial-
izing two program models as before, we initialize the SFA
models for all programs in both sets accordingly. Similarly,
when we verify the candidate di↵erences obtained from the
inferred models, all programs in both sets should be checked.
Besides these changes, the skeleton of the GetDi↵erences al-
gorithm remains the same.

The most crucial and time-consuming part of our exten-
sion is the extension to the RCADiff functionality in order to
detect di↵erences between two sets of models. Recall that
RCADi↵ utilizes the product construction and then finds
the simple paths leading to the points of exposure. Given
two sets of models, we compute the intersection between all
the models in the two sets. Afterwards, we set the points
of exposure as follows. Let q = (q

0

, . . . , q
m+n

) be a state
in the product automaton. Furthermore, assume that state
q
i

corresponds to automata M
i

from one of the input sets
I
1

, I
2

. Then, q is a point of exposure if

8M
i

2 I
1

,M
j

2 I
2

=) l(q
i

) 6= l(q
j

)

With this new definition of the points of exposure, the mod-
ified RCADiff algorithm proceeds as in the original case to
find all simple paths in the product automaton that lead to
the points of exposure.
One potential downside of this algorithm is that, its com-

plexity increases exponentially as we add more models in
the sets. For example, computing the intersection of m DFA
with n states each, requires time O(nm) while, in general,
the problem is PSPACE-complete [21]. That being said, we
stress that the number of programs we have to check in prac-
tice will likely be small and many additional heuristics can
be used to reduce the complexity of the intersection compu-
tation.

4.4 Program Fingerprints
Formally, the fingerprinting problem can be described as

follows: given a set I of m di↵erent programs and black-box
access to a server T which runs a program P

T

2 I, how
can one find out which program is running in the server T
by simply querying the program in a black-box manner, i.e.
find P 2 I such that P = P

T

.
In this section, we present two di↵erent fingerprinting al-

gorithms that provide di↵erent trade-o↵s between computa-
tional and query complexity. Both these algorithms build

Algorithm 3 Fingerprint Tree Building Algorithm

Require: I is a set of Programs

function BuildFingerprintTree(I)
if |I| = 1 then

root.data P 2 I
return root

end if
P
i

, P
j

 I
s GetDi↵erences(P

i

, P
j

)
root.data s
root.left BuildFingerprintTree(I \ P

i

)
root.right BuildFingerprintTree(I \ P

j

)
return root

end function

a binary tree called fingerprint tree that stores strings that
can distinguish between any two programs in I. Given a
fingerprinting tree, our first algorithm requires |I| queries
to the target program. If the user is willing to perform ex-
tra o↵-line computation, our second algorithm demonstrates
how the number of queries can be brought down to logm.
Basic fingerprinting algorithm. The BuildFingerprint-
Tree algorithm (shown in Algorithm 3) constructs a binary
tree that we call a fingerprint tree where each internal node
is labeled by a string and each leaf by a program identi-
fier. In order to build the fingerprint tree recursively, we
start with the set of all programs I, choose any two arbi-
trary programs P

i

, P
j

from I, and use the di↵erential testing
framework to find di↵erences between these programs. We
label the current node with the di↵erences, remove P

i

and
P
j

from I, and call BuildFingerprintTree recursively until
a single program is left in I. If I has only one program, we
label the leaf node with the program and return.
Given a fingerprint tree, we solve the fingerprinting prob-

lem as follows: Initially, we start at the root node and query
the target program with a string from the set that labels
the root node of the tree. If the string is accepted (resp.
rejected), we recursively repeat the process along the left
subtree (resp. right subtree), until we reach a leaf node that
identifies the target program.
Time/query complexity. For the following we assume an
input set of programs I of size |I| = m. Our algorithm has
to find di↵erences between all

�
m

2

�
di↵erent program pairs.

The fingerprint tree resulting from the algorithm will be a
full binary of height m. Assuming that the complexity of the
di↵erential testing algorithm is D, we get that the overall
time complexity of the algorithm is O(2m�1 +

�
m

2

�
D). Fi-

nally, the query complexity of the algorithm is |I|-1 queries,
since each query will discard one candidate program from
the list.
Reducing queries using shallow fingerprint trees. No-
tice that, in the previous algorithm, we need m queries to
the target program in order to find the correct program be-
cause we discard only one program at each step. We can cut
down the number of queries by shallower fingerprint trees
at the cost of higher o↵-line computational complexity for
building such trees.
Consider the following modification in the BuildFinger-

printTree algorithm: First, we partition I into k subsets
I
1

, . . . I
k

of size m/k each. Next, we call BuildFinger-

printTree algorithm with the set I
S

= {I
1

, . . . , I
k

} as input
programs and replace the call to GetDifferences with Get-

SetDifferences. This algorithm will generate a full binary
tree of height k that can distinguish between the programs
in the di↵erent subsets of I. We can recursively apply the
same algorithm on each of the leafs of the resulting finger-
printing tree, further splitting the subsets of I until each
leaf contains a single program.
Time/query complexity. It is evident that the algorithm
will eventually terminate since each subset is successively
portioned into smaller sets. Let us assume that D

set

(k) the
complexity of the GetSetDifferences algorithm when the
input program sets are of size k (see section 4.3 for a com-
plexity analysis of D

set

(k)). The number of queries required
for fingerprinting an application with this algorithm will be
equal to the height of the resulting fingerprint tree. Note
that each subset is of size m/k and to distinguish between
the k subsets using our basic algorithm we need k�1 queries.
Therefore we get the equation T (m) = T (m/k) + (k � 1)
describing the query complexity of the algorithm. Solving
the equation we get that T (m) = (k � 1) log

k

m which is
the query complexity for a given k. When k = 2 we will
need logm queries to identify the target program. Since
each program provides one bit of information per query (ac-
cept/reject), a straightforward decision tree argument [13]
provides a matching lower bound on the query complexity
of the problem.
Regarding the time complexity of the problem, we notice

that, at the i-th recursive call to the modified BuildFin-

gerprintTree algorithm, we will have an input set of size
m/ki since the initial set is repeatedly partitioned into k
subsets. the overall time complexity of building the tree isP

logk m

i=1

(2m/k

i
+

�
m/k

i

2

�
D

set

(m/ki)). We omit further de-
tails here as the complexity analysis is a straightforward
adaptation of the original analysis.

5. EVALUATION

5.1 Initialization evaluation
Our first goal is to evaluate the e�ciency of our observa-

tion table initialization algorithm as a method to reduce the
number of equivalence queries while inferring similar mod-
els. The experimental setup is motivated by our assumptions
that the initialization model and the target model would
be similar. For that purpose, we utilized 9 regular expres-
sion filters from two di↵erent versions of ModSecurity (ver-
sions 3.0.0 and 2.2.7) and PHPIDSWAFs (versions 0.7.0 and
0.6.3). The filters in the newer versions of the systems have
been refined to either patch evasions or possibly to reduce
false positive rate.
For our first experiment we used an alphabet of 92 sym-

bols, the same one used in our next experiments, which con-
tains most printable ASCII characters. Since, in this experi-
ment, we would like to measure the reduction o↵ered by our
initialization algorithm in terms of equivalence queries, we
simulated a complete equivalence oracle by comparing each
inferred model with the target regular expression.
Results. Table 1 shows the results of our experiments.
First, notice that in most cases the updated filters contain
more states than their previous versions. This is expected,
since most of the times the filters are patched to cover ad-
ditional attacks, which requires the addition of more states
for covering these extra cases. We can see that, in general,
our algorithm o↵ers a massive reduction of approximately
50⇥ in the number of equivalence queries utilized in order

Figure 4: State machine inferred by SFADiff for
Mac OSX TCP implementation. The TCP flags that
are set for the input packets are abbreviated as fol-
lows: SYN(S), ACK(A), FIN(F), PSH(P), URG(U),
and RST(R).

to infer a correct model. This comes with a trade-o↵ since
the number of membership queries are increased by a factor
of 1.15⇥, on average. However, equivalence queries are usu-
ally orders of magnitude slower than membership queries.
Therefore, the initialization algorithm results in significant
overall performance gain. We notice that 2/3 cases where
we observed a large increase (more than 1.2⇥) in member-
ship queries (filters PHPIDS 50 & PHPIDS 56) are filters for
which states were removed in the new version of the system.
This is expected since, in that case, SFADiff makes redun-
dant queries for an entry in the observation table that does
not correspond to an access string. Another possible reason
for an increase in the number of the membership queries is
the chance that the distinguishing set obtained by the SFA
learning algorithm is smaller than the one obtained by the
initialization algorithm which is always of size n � 1 where
n is the number of states in a filter. Exploring ways to ob-
tain a distinguishing set of minimum size is an interesting
direction in order to further develop our initialization algo-
rithm. Nevertheless, in all cases, the new versions of the
filters were similar in structure with the older versions and
thus, our initialization algorithm was able to reconstruct a
large part of the filter and massively reduce the number of
equivalence queries required to obtain the correct model.

5.2 TCP state machines
For our experiments with TCP state machines, we run a

simple TCP server on the test machine while the learning
algorithm runs as a client on another machine in the same
LAN. Because the TCP protocol will, possibly, emit output
for each packet sent, the ASKK algorithm is not suited for
this case. Thus, we used the algorithm from [5] for learn-
ing deterministic transducers in order to infer models of the
TCP state machines.
Alphabet. For this set of experiments, we focus on the
e↵ect of TCP flags on the TCP protocol state transitions.
More specifically, we select an alphabet with 11 symbols
including 6 TCP flags: SYN(S), ACK(A), FIN(F), PSH(P),
URG(U), and RST(R) along with all possible combinations
of these flags with the ACK flag, i.e., SA, FA, PA, UA, and
RA.
Membership queries. Once our learning algorithm for-

Without Init With Init Learned Init Filter States Member Equiv
IDS Rules Member Equiv Member Equiv States States Di↵ Overhead Speedup

MODSEC 973323 2367 97 2400 2 25 25 0 1.01 48.50
MODSEC 973324 768 55 892 19 15 12 3 1.16 2.89
MODSEC 973330 887 62 941 21 15 12 3 1.06 2.95

PHPIDS 22 17195 252 17330 105 70 45 25 1.01 2.40
PHPIDS 27 144759 2618 149159 437 66 59 7 1.03 5.99
PHPIDS 40 11119 337 11152 68 35 25 10 1.00 4.96
PHPIDS 41 6635 318 8535 137 25 21 4 1.29 2.32
PHPIDS 50 6206 255 9829 1 25 27 -2 1.58 255.00
PHPIDS 56 38768 840 46732 7 60 62 -2 1.21 120.00

Avg= 537.11⇥ Avg= 88.56⇥ Avg= 1.15⇥ Avg= 49.45⇥

Table 1: The performance (no. of equivalence and membership queries) of the SFA learning algorithm with
and without initialization for di↵erent rules from two WAFs (ModSecurity OWASP CRS and PHPIDS).

OS States Queries
OSX Yosemite (version 14.5.0) 7 858
Debian Linux (Kernel v3.2.0) 9 1100
FreeBSD 10.3 9 1100

Table 2: Results for di↵erent TCP implementations:
Number of states in each model and number of mem-
bership queries required to infer the model.
Input Linux OSX FreeBSD
S, S SA, RA SA, RA, RA SA
S, A, F SA, A, FA SA SA
S, RA, A SA, R SA, R SA

Table 3: Some example fingerprinting packet se-
quences found by SFADiff across di↵erent TCP im-
plementations. The TCP flags that are set for the
input packets are abbreviated as follows: SYN(S),
ACK(A), FIN(F), and RST(R).

mulates a membership query, our client implementation cre-
ates a sequence of TCP packets corresponding to the sym-
bols and sends them to the server.

Our server module is a simple python script which works
as follows: The script is listening for new connections on a
predefined port. Once a connection is established our server
module makes a single recv call and then actively close the
connection. In addition, for each di↵erent membership query
we spawn a new server process on a di↵erent port to ensure
that packets belonging to di↵erent membership queries will
not be mixed together.

The learning algorithm handles the sequence and acknowl-
edgement numbers in the outgoing TCP packets in the fol-
lowing way: a random sequence number is used as long as no
SYN packet is part of a membership query; otherwise, after
sending a SYN packet we set the sequence and acknowledge-
ment numbers of the following packets in manner consistent
with the TCP protocol specification. In case the learning
algorithm receives a RST packet during the execution of a
membership query, we also reset the state of the sequence
numbers, i.e. we start sending random sequence numbers
again until the next SYN packet is send.

After sending each packet from a membership query, the
learning algorithm waits for the response for each packet us-
ing a time window. If the learning algorithm receives any re-
transmitted packets during that time, it ignores those pack-
ets. We detect re-transmitted packets by checking for du-
plicate sequence/acknowledgement numbers. Ignoring the

re-transmitted packets is crucial for the convergence of the
learning algorithm as it helps us avoid any non-determinism
caused by the timing of the packets.
Initialization. As TCP membership queries usually out-
puts more information in terms of packets than one bit, our
algorithm worked e�ciently for the TCP implementations
even without any initialization. Therefore, for the TCP ex-
periments, we start the learning algorithm without any ini-
tial model.
Results. We used SFADiff in order to infer models for the
TCP implementations of three di↵erent operating systems:
Debian Linux, Mac OSX and FreeBSD. The inferred models
contain all state transitions that are necessary to capture a
full TCP session. Figure 4 shows the inferred state machine
for Mac OSX. States in green color are part of a normal
TCP session while states in red color are reached when an
invalid TCP packet sequence is sent by the client. The path
q
0

! q
1

! q
3

is where the TCP three-way handshake takes
place and it is leading to state q

3

where the connection is es-
tablished, while the path q

3

! q
6

! q
0

close the connection
and returns to the initial state (q

0

). Table 2 shows that the
inferred model for Mac OSX contain fewer states than the
respective FreeBSD and Linux models. Manual inspection
of the models revealed that these additional states are due
to di↵erent handling of invalid TCP packet sequences. Fi-
nally, in Table 3, we present some sample di↵erences found
by SFADiff. Note that, even though the state machines
of Linux and FreeBSD contain the same number of states,
they are not equivalent, as we can see in Table 3, since the
two implementations produce di↵erent outputs for all three
inputs.

5.3 Web Application Firewalls and Browsers
In this setting, we perform two sets of experiments: (i)

we use SFADiff to explore di↵erences in HTML/JavaScript
signatures used by di↵erent WAFs for detecting XSS attacks;
and (ii) we use SFADiff to find di↵erences in the JavaScript
parsing implementation of the browsers and the WAFs that
can be exploited to launch XSS attacks while bypassing the
WAFs.
For these tests, we configure the WAFs to run as a server

and the learning algorithm executes as a client on the same
machine. The browser instance is also running on the same
machine. The learning algorithm communicates with the
browser instance through WebSockets. The learning algo-

Web	browser	 WAF	

SFADiff	
HTTP		

request/	
response	

Web	Sockets	

M
em

bership	queries	

M
em

bership	queries	

Ini>alize	SFA	for		
Web	Browser	&	WAF	

Figure 5: The setup for SFADiff finding di↵er-
ences between the HTML/JavaScript parsing in
Web browsers and WAFs.

True%/%False%

Membership%%
query%

DOM%Element%
Insert%string%in%a%DOM%

element%

Trigger%Events%

JS%Variable%

Check%%
JS%variable%

Payload%manipulates%%
JS%variable%

Web%browser%

Figure 6: The implementation of membership
queries for Web browsers.

rithm can test whether an HTML page with some JavaScript
code is correctly parsed by the browser and if the embedded
JavaScript is executed or not by exchanging messages with
the browser instance. The overall setup is shown in Figure 5.
Alphabet. We used an alphabet of 92 symbols containing
most printable ASCII characters. This allows us to encode
a wide range of Javscript attack vectors.
Membership queries to the browser. In order to allow
the learning algorithm to drive the browser, we make the
browser connect to a web server controlled by the learning
algorithm. Next, the learning algorithm sends a message to
the browser over WebSockets with the HTML/JavaScript
content corresponding to a membership query as the mes-
sage’s payload. Upon receiving such a message, the browser
sets the query payload as the innerHTML of a DOM element
and waits for the DOM element to be loaded. The user’s
browser dispatches a number of events (such as “click”) on
the DOM element and examines if the provided string led
to JavaScript execution. These events are necessary for trig-
gering the JavaScript execution in certain payloads. In order
to examine if the JavaScript execution was successful, the
browser monitors for any change in the value of a JavaScript
variable located in the page. The payload, when executed,
changes the variable value in order to notify that the exe-
cution was successful. Furthermore, in order to cover more
cases of JavaScript execution, the user’s browser also moni-
tors for any JavaScript errors that indicate JavaScript exe-
cution. After testing the provided string, the user’s browser
sends back a response message containing a boolean value
that indicates the result. The results of the membership
queries are cached by the learning algorithm in order to be
reused in the future. The details of our implementation of
membership queries for the browsers is shown in Figure 3.
Membership queries to the WAF. SFADiff sends an
HTTP request to the WAFs containing the corresponding
HTML/JavaScript string as payload to perform a member-
ship request, TheWAF analyzes the request, decides whether

to allow/block the payload, and communicates the decision
back to SFADiff. SFADiff caches the results of the mem-
bership queries in order to be reused in the future.
Equivalence queries. We perform equivalence queries in
two ways: first, whenever an equivalence query is sent ei-
ther to the browser or to a WAF, we check that the model
complies to the answers of all membership queries made so
far. This ensures that simple model errors will be corrected
before we perform more expensive operations such as cross-
checking the two models against each other. Afterwards,
we proceed to collect candidate di↵erences and verify them
against the actual test programs as described in Section 4.
Initialization. We initialize the observation tables for both
the browser and the WAF using a small subset of filters that
come bundled with PHPIDS and ModSecurity, two open-
source WAFs in our test set. However, in the case of the
browser we slightly modify the filters in order to execute
our JavaScript function call if they are successfully parsed
by the browser.
Fingerprinting WAFs. In order to evaluate the e�ciency
of our fingerprint generation algorithm we selected 4 di↵er-
ent WAFs. Furthermore, To demonstrate the ability of our
system to generate fine-grained fingerprints we also include
4 di↵erent versions of PHPIDS in our test set. As an ad-
ditional way to avoid blowup in the fingerprint tree size we
employ the following optimization: Whenever a fingerprint
is found for a pair of firewalls, we check whether this finger-
print is able to distinguish any other firewalls in the set and
thus further reduce the remaining possibilities. This simple
heuristic significantly reduces the size of the tree: Our basic
algorithm creates a full binary tree of height 8 while this
heuristic reduced the size of the tree to just 4 levels.
Figure 5.3 presents the results of our experiment. The re-

sulting fingerprinting tree also provides hints on how restric-
tive each firewall is compared to the others. An interesting
observation is that we see the di↵erent versions of PHPIDS
to be increasingly restrictive in newer versions, by rejecting
more of the generated fingerprint strings. This is natural
since newer versions are usually patching vulnerabilities in
the older filters. Finally, we would like to point out that
some of the fingerprints are also suggesting potential vulner-
abilities in some filters. For example, the top level string,
union select from, is accepted by all versions of PHPIDS up
to 0.6.5, while being rejected by all other filters. This may
raise suspicion since this string can be easily extended into
a full SQL injection attack.
Evading WAFs through browser parser inference.
For our last experiment we considered the setting of evaluat-
ing the robustness of WAFs against evasion attacks. Recall,
that, in the context of XSS attacks, WAFs are attempting to
reimplement the parsing logic of a browser in order to detect
inputs that will trigger JavaScript execution. Thus, find-
ing discrepancies between the browser parser and the WAF
parser allows us to e↵ectively construct XSS attacks that
will bypass the WAF. In order to accomplish that, we used
the setup described previously. However, instead of cross-
checking the WAFs against each other, we cross-checked
WAFs against the web browser in order to detect inputs
which are successfully executing JavaScript in the browser,
however they are not considered malicious by the WAF.
Table 4 shows the result of a sample execution of our sys-

tem in the setting of detecting evasions. The execution time
of our algorithm was about 6 minutes, in which 53 states

qp
0

qp
1

qp
2

x 2 {=}

x 62 {=}

x 2 \w

x 62 \w
true

Figure 7: PHPIDS 0.7 parser (simplified version).

qc
0

qc
1

qc
2

qc
3

x 2 {=} x 2 {;,-,!}

x 2 \w

x 2 \w

x 62 {;,-,!} [\w

x 62 \w truex 62 {=}

Figure 8: Google Chrome parser (simplified ver-
sion).

were discovered in the browser parser and 36 states in PH-
PIDS. Our system converged fast into a vulnerability after
improving the generated SFA models using the cached mem-
bership queries. This optimization was very important in
order to correct invalid transitions generated by the learn-
ing algorithm in the inferred models. The number of invalid
attacks that were attempted was 4. Each failed attack led
to the refinement of the SFA models and the generation
of new candidate di↵erences. At some point the vector “<p
onclick=-a()></p>”was reported as a di↵erence by SFAD-
iff.

We were able to detect the same vulnerability using all
major browsers and furthermore, the same problem was
found to a↵ect the continuation of PHPIDS, the Expose
WAF. Finally, we point out that our algorithm also found
three more variations of the same attack vector, using the
characters “!”, and “;”.
Evasion analysis. Figures 7 and 8 shows simplified mod-
els of the parser implemented by the WAF and the browser
respectively. These models contain a minimal number of
states in order to demonstrate the aforementioned evasion
attack. Notice that, intuitively, the cause for the vulnera-
bility is the fact that from state qp

1

the parser of PHPIDS
will return to the initial state with any non alphanumeric
input, while the Google Chrome parser has the choice to
first transition to qc

2

and then to an accepting state qc
3

using
any alphanumeric character. For example, with an input
“=!a” the product automaton will reach the point of expo-
sure (qp

0

, qc
3

). Furthermore, using our root cause analysis,
all di↵erent evasions we detected are grouped under a single
root cause. This is intuitively correct, since a patch, which
adds the missing state in the PHPIDS parser will address
all evasion attacks at once.

5.4 Comparison with black-box fuzzing
To the best of our knowledge there is no publicly avail-

able black-box system which is capable of performing black-
box di↵erential testing like SFADiff. A straightforward ap-
proach would be to use a black-box fuzzer (e.g. the PEACH
fuzzing platform [1]) and send each input generated by the
fuzzer to both programs. Afterwards, the outputs from both
programs are compared to detect any di↵erences. Note that,
like SFADiff, fuzzers also start with some initial inputs
(seeds) which they subsequently mutate in order to gener-

union select from

case(

‘>

PHPIDS 0.7

Blocks

Expose 2.8.4

Permits

Blocks

select if(a

ModSecurity 3.0.0

Blocks

WebCastellum 1.8.4

Permits

Permits

Blocks

) when 1 then

PHPIDS 0.6.5

Blocks

” background=a

union distinct (select

PHPIDS 0.6.3

Blocks

PHPIDS 0.5.0
Permits

Blocks

case(

PHPIDS 0.6.4

Blocks

PHPIDS 0.4
Permits

Permits

Permits

Permits

Figure 9: Fingerprint tree for di↵erent web applica-
tion firewalls.
ate more inputs for the target program. We argue that our
approach is more e↵ective in discovering di↵erences for two
reasons:
Adaptive input generation. Fuzzers incorporate a num-
ber of di↵erent strategies in order to mutate previous inputs
and generate new ones. For example, PEACH supports more
than 20 di↵erent strategies for mutating an input. However,
assuming that a new input does not cause a di↵erence, no
further information is extracted from it; the next inputs are
unrelated to the previous ones. On the contrary, each in-
put submitted by SFADiff to the target program provides
more information about the structure of the program and its
output determines the next input that will be tested. For ex-
ample, in the execution shown in table 4, SFADiff utilized
the initialization model and detected the additional state in
Chrome’s parser (cf. figures 7, 8). Notice that, the addi-
tional state in Chrome’s parser was not part of the model
used for initialization. This allowed SFADiff to quickly
discover an evasion attack after a few refinements in the
generated models. Each refinement discarded a number of
candidate di↵erences and drove the generation of new inputs
based on the output of previous ones.
Root cause analysis. In the presence of a large number
of di↵erences, black-box fuzzers are unable to categorize the
di↵erences without some form of white-box access to the
program (e.g. crash dumps). On the other hand, as demon-
strated in the evasion analysis paragraph of section 5.3, our
root cause analysis algorithm provides a meaningful catego-
rization of the di↵erences based on the execution path they

Attributes Browser Model WAF Model

Membership 6672 4241
Cached Membership 448 780

Equivalence 0 3
Cached Equivalence 40 106

Learned States 53 36
Cross-Check Times 4 4

Provided Browser Model (<(p|div|form|input) onclick=a()>)
(</(p|div|form|input)>)

Vulnerability Discovered <p onclick=;a()></p>

Execution Time 382.12 seconds

Table 4: A sample execution that found an evasion
attack for PHPIDS 0.7 and Google Chrome on MAC
OSX.
follow in the generated models.

6. RELATED WORK
Fingerprinting. Nmap [17] is a popular tool for OS fin-
gerprinting that include mechanisms for fingerprinting of
di↵erent TCP implementations among other things. How-
ever, unlike SFADiff, the signatures of di↵erent protocols
in nmap are manually crated and tested. Similarly, in the
WAF setting, Henrqiue et al. manually found several finger-
prints for distinguishing popular WAFs.

Massicotte et al. [22] quantified the amount of signature
overlap assuming direct white-box access to the signature
database of the analyzed programs. They checked for dupli-
cation and intersection across di↵erent signatures. However,
unlike our approach here, their analysis did not involve any
learning mechanism.
Automated fingerprint generation. Caballero et al.
[10] designed and evaluated an automated fingerprinting sys-
tem for DNS implementations using simple machine learn-
ing classifiers like decision trees. They used targeted fuzzing
to find di↵erences between individual protocols. However,
Richardson et al. [25] showed that such techniques do not
tend to perform as good as the hand-crafted signatures for
OS fingerprinting in realistic setting. Unlike these passive
learning-based techniques, we use active learning along with
automata inference for systematically finding and catego-
rizing the di↵erences. Moreover, unlike SFADiff, none of
these techniques are capable of performing automated root
cause analysis in a domain-independent way.

Shu et al. [27] explored the problem of automatically fin-
gerprinting TCP implementations. However, instead of find-
ing new di↵erences, they reused the handcrafted Nmap sig-
nature set [17] to create parameterized extended finite state
machine (PEFSM) models of these signatures for e�cient
fingerprinting. By contrast, our technique learns the model
of the TCP implementations without depending on any hand-
crafted signatures. SFADiff is able to find such di↵erences
automatically, including multiple previously-unknown dif-
ferences between TCP implementations.

Brumley et al. [9] describes how to find deviations in pro-

grams using symbolic execution that can be used for finger-
printing. However, such approaches su↵er from the funda-
mental scalability challenges inherent in symbolic execution
and thus cannot be readily applied in large scale software
such as web browsers.
Di↵erential testing. Di↵erential testing is a way of test-
ing a program without any manually crafted specifications
by comparing its outputs to those of other comparable pro-
grams for the same set of inputs [23]. Di↵erential testing has
been used successfully for testing a diverse set of systems
including C compilers [32], Java virtual machine implemen-
tations [11], SSL/TLS implementations [8], mobile applica-
tions for privacy leaks [20], PDF malware detectors [31],
and space flight software [18]. However, unlike us, all these
projects simply try to find individual di↵erences in an ad hoc
manner rather than inferring models of the tested programs
and exploring the di↵erences systematically.
Automata inference. The L⇤ algorithm for learning de-
terministic finite state automata from membership and equiv-
alence queries was described by Angluin [4] and many vari-
ations and optimizations were developed in the following
years. Balcazzar et al. [6] provide an overview of di↵erent
algorithms under a unified notation. Initializing the L⇤ algo-
rithm was originally described by Groce et al. [19]. Symbolic
finite automata were introduced by Veanes et al. [29] as an
e�cient way to explore regular expression constraints, while
algorithms for SFA minimization were developed recently
by D’Antoni and Veanes [14]. The ASKK algorithm for in-
ferring SFAs was developed recently by Argyros et al. [5].
When access to the source code is provided Botinčan and
Babić [7] developed an algorithm for inferring SFT models
of programs using symbolic execution. The L⇤ algorithm
and variations has being used extensively for inferring mod-
els of protocols such as the TLS protocol [26], security pro-
tocols of EMV bank cards [2] and electronic passport pro-
tocols [3]. While some of these works note that di↵erences
in the models could be used for the purpose of fingerprint-
ing, no systematic approach to develop and enumerate such
fingerprints was described.
Fiterau-Brostean et al. [15, 16] used automata learning to

infer TCP state machines and then used a model checker
in order to check compliance with a manually created TCP
specification. While similar in nature, our approach di↵ers
in the sense that our di↵erential testing framework does not
require a manual specification in order to check for discrep-
ancies between two implementations.

ACKNOWLEDGMENTS
The first and fourth authors were supported by the O�ce of
Naval Research (ONR) through contract N00014-12-1-0166.
Any opinions, findings, conclusions, or recommendations ex-
pressed herein are those of the authors, and do not necessar-
ily reflect those of the US Government or ONR. Second and
fifth authors were supported by H2020 Project Panoramix
653497 and ERC project CODAMODA, # 259152.

References
[1] Peach fuzzer. http://www.peachfuzzer.com/. (Ac-

cessed on 08/10/2016).

[2] F. Aarts, J. D. Ruiter, and E. Poll. Formal models
of bank cards for free. In Software Testing, Verifica-

tion and Validation Workshops (ICSTW), IEEE Inter-
national Conference on, 2013.

[3] F. Aarts, J. Schmaltz, and F. Vaandrager. Inference
and abstraction of the biometric passport. In Leverag-
ing Applications of Formal Methods, Verification, and
Validation. 2010.

[4] D. Angluin. Learning regular sets from queries
and counterexamples. Information and computation,
75(2):87–106, 1987.

[5] G. Argyros, I. Stais, A. Keromytis, and A. Kiayias.
Back in black: Towards formal, black-box analysis of
sanitizers and filters. In Security and privacy (S&P),
2016 IEEE symposium on, 2016.

[6] J. Balcázar, J. Dı́az, R. Gavalda, and O. Watanabe.
Algorithms for learning finite automata from queries:
A unified view. Springer, 1997.

[7] M. Botinčan and D. Babić. Sigma*: Symbolic Learning
of Input-Output Specifications. In POPL, 2013.

[8] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and
V. Shmatikov. Using frankencerts for automated ad-
versarial testing of certificate validation in SSL/TLS
implementations. In Security and privacy (S&P), 2016
IEEE symposium on, 2014.

[9] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and
D. Song. Towards automatic discovery of deviations in
binary implementations with applications to error de-
tection and fingerprint generation. In USENIX Security
Symposium (USENIX Security), 2007.

[10] J. Caballero, S. Venkataraman, P. Poosankam,
M. Kang, D. Song, and A. Blum. FiG: Automatic fin-
gerprint generation. Department of Electrical and Com-
puting Engineering, page 27, 2007.

[11] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. Coverage-
directed di↵erential testing of JVM implementations.
In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 85–99. ACM, 2016.

[12] T. Chow. Testing software design modeled by finite-
state machines. IEEE transactions on software engi-
neering, (3):178–187, 1978.

[13] T. H. Cormen. Introduction to algorithms. MIT press,
2009.

[14] L. D’Antoni and M. Veanes. Minimization of sym-
bolic automata. In ACM SIGPLAN Notices, volume 49,
pages 541–553. ACM, 2014.

[15] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager.
Learning fragments of the TCP network protocol. In
Formal Methods for Industrial Critical Systems. 2014.

[16] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager.
Combining model learning and model checking to ana-
lyze TCP implementations. In International Conference
on Computer-Aided Verification (CAV). 2016.

[17] Fyodor. Remote OS detection via TCP/IP fingerprint-
ing (2nd generation).

[18] A. Groce, G. Holzmann, and R. Joshi. Randomized
di↵erential testing as a prelude to formal verification.
In International Conference on Software Engineering
(ICSE), 2007.

[19] A. Groce, D. Peled, and M. Yannakakis. Adaptive
model checking. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 357–370. 2002.

[20] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Ma-
ganis, and T. Kohno. Privacy oracle: a system for find-
ing application leaks with black box di↵erential testing.
In CCS, 2008.

[21] D. Kozen. Lower bounds for natural proof systems. In
FOCS, 1977.

[22] F. Massicotte and Y. Labiche. An analysis of signature
overlaps in Intrusion Detection Systems. In IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), 2011.

[23] W. McKeeman. Di↵erential testing for software. Digital
Technical Journal, 10(1), 1998.

[24] H. Ra↵elt, B. Ste↵en, and T. Berg. Learnlib: A library
for automata learning and experimentation. In Pro-
ceedings of the 10th international workshop on Formal
methods for industrial critical systems (FMICS), 2005.

[25] D. Richardson, S. Gribble, and T. Kohno. The limits of
automatic OS fingerprint generation. In ACM workshop
on Artificial intelligence and security (AISec), 2010.

[26] J. D. Ruiter and E. Poll. Protocol state fuzzing of
TLS implementations. In USENIX Security Symposium
(USENIX Security), 2015.

[27] G. Shu and D. Lee. Network Protocol System
Fingerprinting-A Formal Approach. In IEEE Con-
ference on Computer Communications (INFOCOM),
2006.

[28] M. Sipser. Introduction to the Theory of Computation,
volume 2. Thomson Course Technology Boston, 2006.

[29] M. Veanes, P. D. Halleux, and N. Tillmann. Rex: Sym-
bolic regular expression explorer. In International Con-
ference on Software Testing, Verification and Valida-
tion (ICST), 2010.

[30] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and
N. Bjorner. Symbolic finite state transducers: Algo-
rithms and applications. ACM SIGPLAN Notices, 47,
2012.

[31] W. Xu, Y. Qi, and D. Evans. Automatically evading
classifiers a case study on PDF malware classifiers. In
Proceedings of the 2016 Network and Distributed Sys-
tems Symposium (NDSS), 2016.

[32] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In PLDI, 2011.

