
Ghost in the PLC
Designing an Undetectable Programmable Logic

Controller Rootkit via Pin Control Attack

Ali Abbasi1 and Majid Hashemi2

1 Distributed and Embedded Systems Security Group, University of Twente, The
Netherlands,

{a.abbasi}@utwente.nl
2 QuarksLab, France

mhashemi@quarkslab.com

Abstract. Input/Output is the mechanisms through which embedded
systems interact and control the outside world. Particularly when em-
ployed in mission critical systems, the I/O of embedded systems has to
be both reliable and secure. Embedded system’s I/O is controlled by a
pin based approach. In this paper, we investigate the security implica-
tions of embedded system’s pin control. In particular, we show how an
attacker can tamper with the integrity and availability of an embedded
system’s I/O by exploiting cerain pin control operations and the lack of
hardware interrupts associated to them.

Keywords: Pin, SoC, Exploit, Attack, PLC, Rootkit

1 Introduction

Embedded systems are widely used today in a variety of applications, such as
consumer, industrial, automotive, medical, commercial and military. As such,
they are often employed in mission critical systems that have to be both reliable
and secure. In particular, it is important that their I/O (Input/Output) be stable
and secure [1], as this is the way they interact with the outside world.

Digging into their architecture, we know that the I/O interfaces of embedded
systems (e.g., GPIO, SCI, USB, etc.), are usually controlled by a so-called System
on a Chip (SoC), an integrated circuit that combines multiple I/O interfaces.
In turn, the pins in a SoC are managed by a pin controller, a subsystem of
SoC, through which one can configure pin multiplexing or the input or output
mode of pins. One of the most peculiar aspects of a pin controller is that its
behavior is determined by a set of registers: by altering these registers one can
change the behavior of the chip in a dramatic way. This feature is exploitable
by attackers, who can tamper with the integrity or the availability of legitimate
I/O operations, factually changing how an embedded system interacts with the
outside world.



2

Based on these observations, in this paper, we introduce a novel attack tech-
nique against embedded systems, which we call pin control attack. As we will
demonstrate in the paper, the salient features of this new class of attacks are:

First, it is intrinsically stealth. The alteration of the pin configuration does
not generate any interrupt, preventing the OS to react to it. Secondly, it is
entirely different in execution from traditional techniques such as manipulation
of kernel structures or system call hooking, which are typically monitored by anti-
rootkit protection systems. Finally, it is viable. It is possible to build concrete
attack using it.

To demonstrate these points, we first in Section 2 describe the state of the
art in attacks against and defenses for embedded devices. We then discuss the
parameters of an applicable host-based defensive solution for PLCs in Section 3.
In Section 4, we describe a methodology for bypassing two defensive solutions
for embedded devices.

We demonstrate the attack capabilities offered by Pin Control attack, to-
gether with the minimal requirements for carrying out the attack in Section 6.
We argue that the attack capabilities include blocking the communication with
a peripheral, causing physical damage to the peripheral, and manipulating val-
ues read or written by legitimate processes. We show how pin control can be
exploited both with and without the attacker having kernel-level or root access.

To demonstrate the feasibility of our attack technique, in Section 7 we de-
scribe the practical implementation of an attack against a Programmable Logic
Controller (PLC) environment by exploiting the runtime configuration of the
I/O pins used by the PLC to control a physical process. The attack allows one
to reliably take control of the physical process normally managed by the PLC,
while remaining stealth to both the PLC runtime and operators monitoring the
process through a Human Machine Interface, a goal much more challenging than
simply disabling the process control capabilities of the PLC, which would any-
way lead to potentially catastrophic consequences. The attack does not require
modification of the PLC logic (as proposed in other publications [2, 3]) or tra-
ditional kernel tampering or hooking techniques, which are normally monitored
by anti-rootkit tools.

We present two variations of the attack implementation. The first implemen-
tation allows an extremely reliable manipulation of the process at the cost of
requiring root access. The second implementation slightly relaxes the require-
ment of reliable manipulation while allowing the manipulation to be achieved
without root access.

Finally, in Section 8.1 we discuss potential mechanisms to detect/prevent Pin
Configuration exploitation. However, because the pin configuration does happen
legitimately at runtime and the lack of proper interrupt notifications from the
SoC, it seems non-trivial to devise monitoring techniques that are both reliable
and sufficiently light-way to be employed in embedded systems.



3

2 Background

2.1 Attack Techniques

The attack techniques used against embedded devices can be divided into three
categories: (i) firmware modification attacks, (ii) configuration manipulation at-
tacks and (iii) control-flow attacks.

– Firmware modification attacks: in recent years, a number of firmware modifi-
cation attacks against embedded devices have been researched and discussed.
Cui et al. [4] demonstrated how the HP-RFU firmware update protocol can
be exploited to allow adversaries to inject malicious firmware into HP print-
ers. Traynor et al. [5] showed how to recursively compromise embedded de-
vices and use them to create a network of malicious devices by manipulat-
ing their firmware. Wegner [6] demonstrated how to install a backdoor into
Siemens office telephone communication devices by exploiting a vulnerability
in their firmware verification system. Basnight et al. [7] illustrated that it is
feasible to execute arbitrary code in a PLC by exploiting the firmware up-
date feature, and finally, Peck et al. [8] showed how to exploit the Ethernet
module of a PLC by uploading malicious firmware to it.

– Configuration manipulation attacks: these attacks allow an adversary to
modify critical configuration parameters of an embedded device to force
it to misbehave. For example, an anonymous security researcher with the
nickname PT [9] demonstrated how to obtain access to a Private Branch
Exchange (PBX), an embedded device used for telephone systems, by ex-
ploiting a vulnerability in the proprietary authentication protocol used by
one vendor. A special case of configuration manipulation attacks concerns
programmable devices, such as PLCs. PLCs can be programmed to control a
physical process by following the logic specified by the user. In this case, the
attack consists of uploading a malicious logic to alter the manner in which
the process is controlled. Falliere et al. [10] reported that the Stuxnet mal-
ware was used to manipulate the logic of PLCs from a programming station
to subvert part of the uranium enrichment process at Natanz (Iran). In [3, 2],
McLaughlin et al. introduced two techniques for the dynamic generation of
a malicious PLC control logic. To the best of our knowledge, the techniques
proposed by McLaughlin et al. are, for the moment, limited in their practical
applicability and have never been used in real-world attacks.

– Control-flow attacks: in general, this category of attacks consists of manip-
ulating the execution flow of a running process. This is typically achieved
by exploiting a stack/heap overflow or use-after-free vulnerability, which al-
lows for the execution of arbitrary code by an adversary. Jump- and return-
oriented programming (JOP and ROP) are considered to be control-flow at-
tacks. Recent research has illustrated the possibility of control-flow attacks
in embedded devices. For example, Beresford [11] presented multiple proto-
col vulnerabilities in Siemens PLCs that can allow an adversary to perform a
remote code execution attack. Wightman demonstrated that Schneider Elec-



4

tric PLCs are vulnerable to buffer overflow attacks [12, 13]. Heffner [14–16]
presented multiple memory corruption vulnerabilities in home routers.
Although several techniques have been proposed to detect or prevent control-
flow attacks on general IT systems, this class of attacks remains one of
the most dangerous. Effective countermeasures that are simultaneously ap-
plicable in the domain and not circumventable by adversaries have yet to
be developed. For example, Schuster et al. [17] evaluated several detection
techniques for control-flow attacks [18–20] and claimed that attackers can
bypass them using the code sequence within the executable modules of the
target program. Davi et al. [21] introduced several techniques for bypass-
ing detection techniques for control-flow attacks in multiple system security
products [18, 20, 22]. Specifically, they showed not only that adversaries can
find sufficient ROP gadgets within a program’s binary code but also that by
using long loops of NOP gadgets, they can create a long gadget chain and
thereby break detection mechanisms for control-flow attacks.

2.2 Detection Techniques

We distinguish three main categories of techniques that have been proposed
in the literature for host-based detection of attacks in embedded systems: (i)
firmware integrity verification, (ii) memory verification and (iii) control-flow in-
tegrity.

– Firmware integrity verification: verifying the integrity of firmware allows one
to detect or prevent firmware modification attacks. Such verification can be
performed by the host when storing new firmware or at runtime.
Adelstein et al. [23] introduced a firmware-signing method that consists of
a “certifying compiler” for firmware. The compiler allows the firmware to
be verified at runtime by checking certain properties of the execution flow,
memory and stack integrity in the firmware. Zhang et al. [24] introduced
IOCheck, a framework to verify at runtime the integrity of firmware and the
I/O configuration of computer I/O peripherals. After a (assumed trusted)
BIOS boot, IOCheck leverages the System Management Mode of x86 CPU
architectures to perform integrity checks that can be either executed at ran-
dom polling intervals or driven by specific events. Finally, Duflot et al. [25]
introduced NAVIS, a framework for the detection of firmware integrity ma-
nipulation in the memory of a network card by inspecting the memory ac-
cesses performed by the NIC processor against a model of expected behavior
based on the memory layout profile of the adapter. A memory access that is
outside the NIC memory profile is interpreted as an attempt to manipulate
the NIC firmware.

– Memory verification: these techniques verify the integrity of executable code
in memory at runtime. The most common technique for memory verification
is attestation, which is used for low-power embedded devices. Attestation is
a challenge-response technique that allows an external application (the ver-
ifier) to verify the integrity of (parts of) the state of a system (the prover)



5

against malicious modifications. Attestation techniques typically require the
availability of dedicated hardware (e.g., a Trusted Platform Module). How-
ever, because of the practical limitations in embedded devices, certain works
have focused on the development of pure software-based attestation tech-
niques.
Seshadri et al. [26] introduced SWATT, a software-based attestation tech-
nique that can remotely verify the runtime memory contents of embedded de-
vices and discover malicious modifications. SWATT uses a challenge-response
protocol to remotely control the memory content of the embedded devices.
LeMay et al. [27] proposed an ad hoc static kernel for smart meters that
can cryptographically sign every new firmware version uploaded to a de-
vice. The signature is sent to the verifier to attest that the current (and
previous) firmwares loaded on the smart meter are legitimate and integer.
Armknecht et al. [28] introduced a framework for evaluating the security
of software-based remote attestation techniques. The authors discussed the
security properties of common basic cryptographic functions, such as pseudo-
random number generators (PRNGs) and hash functions, when used for at-
testation purposes. They also discussed the possibility of leveraging time as
a verification parameter to strengthen the security of an attestation scheme.
In an approach different from that of memory attestation frameworks, Cui
et al. [29] proposed a new host-based deployment mechanism for embedded
devices running operating systems, which they called a Symbiotic Embedded
Machine or symbiote. The mechanism is specifically designed to inject intru-
sion detection functionality into the firmware of such devices and to verify
the integrity of its executable parts. A symbiote is a code structure embedded
in a piece of firmware that can closely co-exist with arbitrary host executa-
bles in a mutually defensive arrangement, sharing computational resources
with its host while simultaneously protecting the host against exploitation
and unauthorized modification. The symbiote is embedded in a randomized
fashion to protect itself from removal, and the execution context of the sym-
biote is separated from that of the operating system to make it more resistant
against adversaries. The authors demonstrated the deployment of a symbiote
in the Cisco IOS firmware, with a low performance penalty and without an
impact on the router’s functionality. Symbiotes cannot continuously monitor
the entire firmware but rather set specific watchpoints and monitor certain
executable locations of the firmware.

– Control-flow integrity: the vast majority of control-flow hijacking attacks
operate by exploiting memory corruption bugs, such as buffer overflows,
to control an indirect control-flow transfer instruction in the vulnerable pro-
gram, most commonly a function pointer or return address. CFI mechanisms
counter control-hijacking attacks by ensuring that the control flow remains
within the control-flow graph (CFG) intended by the programmer.
In the context of CFI approaches for embedded devices, Reeves et al. [30]
introduced a host-based intrusion detection system for embedded devices
that leverages a built-in kernel tracing framework to identify control-flow
anomalies in syscalls. The system is constructed by learning, for each mon-



6

itored syscall, a list of known good source addresses. During detection, the
system checks that when a certain syscall is invoked, the source of the call
is on the safe list. Although its detection capabilities are limited, the ap-
proach also imposes a limited overhead on the system, which makes it suit-
able for being deployed in embedded devices such as those used in power
grids (RTUs, IEDs and PLCs). Other CFI approaches for embedded de-
vices are hardware-assisted. Special hardware modifications to the devices
are needed to support the proposed approaches. The authors motivate the
need for hardware modifications by citing the limited processing capabili-
ties of embedded devices or the lack of features required by existing CFI
approaches (e.g., memory management units or execution rings) in simpler,
low-cost, embedded devices. Abad et al. [31] introduced a hardware-assisted
CFI system for embedded devices. The system employs a dedicated hardware
component to compare the control flow of the embedded device firmware at
runtime to the CFG. The graph is constructed by decompiling the binary
of the application to be protected. However, the method proposed for con-
structing the CFG does not consider indirect control-flow transfers (e.g.,
indirect function calls); therefore, the approach is incomplete and prone to
certain types of control-flow attacks in which the adversary manipulates the
control flow of the target application by changing the values of data memory
areas. For example, the adversary may first spray the heap memory with
shellcode instructions and then overwrite the value of a function pointer to
point to a random heap address, which may contain the shellcode. Francil-
lon et al. [32] proposed a hardware-assisted protection mechanism for AVR
microcontrollers against control-flow attacks. The mechanism consists of sep-
arating the stack into a data stack and a control stack. The control stack
is hardware-protected against unintended or malicious modifications (i.e.,
those not performed by call or ret instructions). Finally, Davis et al. [33]
proposed a hardware-assisted CFI scheme that uses the hardware to confine
indirect calls. This CFI scheme is based on a state model and a per-function
CFI labeling approach. In particular, the CFI policies ensure that function
returns can only transfer control to active call sides (i.e., return landing pads
of currently executing functions). Furthermore, indirect calls are restricted
to target the beginning of a function, and finally, behavioral heuristics are
used to address indirect jumps.

3 Detection Mechanisms Applicable to PLCs

Not all of the defensive techniques described in Section 2.2 are practically ap-
plicable to embedded control devices such as PLCs. We consider three primary
parameters to determine which defensive solutions are, in fact, practical. These
parameters are as follows:

– Designed for embedded devices that run modern operating systems: there is
a group of embedded devices, called low-powered embedded devices, that do
not have an operating system (OS). Devices that run microcontroller-based



7

processors (such as AVR or ATMEL) can be considered as low-powered
embedded devices. However, most of the PLCs have a real OS. Therefore we
only consider approaches that target embedded devices with a real OS.

– No hardware modification: the performance limitations make it difficult to
introduce a complete host-based security mechanism for PLCs. Most of the
solutions described in Section 2 attempt to overcome these limitations by first
considering hardware modifications of the embedded devices, thus making
those solutions less attractive.

– Not dependent to virtualization: majority of embedded processors do not
support virtualization. Therefore, any implementation which is purely based
on virtualization can not be considered as solid solution for embedded sys-
tems.

Based on the parameters, we can identify two host-based detection mecha-
nisms that, unlike most of the techniques described in Section 2.2, possess both
desired qualifications. These host-based detection systems are Autoscopy Jr. [30]
and Doppelganger [29]. For the sake of completeness, we use a third condition,
namely CPU overhead, for applicable host-based detection systems for PLCs.
In embedded devices, high CPU overhead is an important issue for host-based
detection systems. Large CPU overhead makes host-base defenses for embedded
systems less practical since the CPU resources in such systems are very limited.
We consider the same threshold achieved by the authors of Autoscopy Jr. [30]
as an acceptable overall CPU overhead. Considering the CPU overhead limit as
a new condition, leads to the same selected defensive solutions since both satisfy
this new requirement.

These solutions are practically applicable, and because of their practical ap-
proach, they were adopted in the industry immediately upon their introduc-
tion [30, 34]. However, these approaches also exhibit certain weaknesses. Under-
standing these weaknesses assist us in designing better host-based solutions for
embedded devices.

– Autoscopy Jr.: Autoscopy Jr. is a kernel control-flow monitoring system that
searches for control-flow anomalies caused by function hooking in the ker-
nel [30]. Autoscopy Jr. incurs only 5% CPU overhead, which is a significant
achievement for a host-based detection system for embedded devices. Au-
toscopy Jr. specifically searches for kernel attacks in which the malicious
code manipulates a function pointer. When a process calls a function with a
manipulated pointer, the call is diverted to the malicious function instead of
a legitimate one. The malicious function can then decide either to never call
the original function or to call the legitimate function with a manipulated
input. Autoscopy Jr. operates in two phases:

1. Learning phase: In the learning phase, Autoscopy Jr. installs a charac-
ter device driver that allows it to access the kernel memory by invoking
ioctl(). Next, Autoscopy Jr. uses the device driver to monitor direct
and indirect function calls and their corresponding return addresses. Af-
terward, it saves the return addresses of these functions, with certain



8

runtime information (such as function arguments), to a data structure
called the Trusted Location List (TLL). It then uses the TLL during the
detection phase.

2. Detection phase: During the detection phase, Autoscopy Jr. uses the pre-
viously installed device driver to monitor function calls. When a function
that is listed in TLL is called, Autoscopy Jr. verifies the function address
against the TLL entry for the same function. If the function address is
not found in the TLL, it generates an alert.

– Doppelganger: Doppelganger is a host-based intrusion detection solution for
embedded devices. It can detect both kernel- and application-level attacks in
embedded devices. Doppelganger first analyzes the firmware of the embedded
device to detect live code regions therein. Live code regions are executable
parts of the firmware. Once Doppelganger detects the executable area of the
memory, it randomly inserts its symbiotes (watchpoints) into the detected
live code areas. Doppelganger symbiotes contain a CRC32 checksum of the
randomly selected live code regions.

TextLive Code Region 1 Live Code 
Region 2

Symbiote1  
(Checksum of 

Region 1)

Symbiote2  
(Checksum of 

Region 2)

Other Memory 
regions

Symbiote Manager

Breakpoint 1 Breakpoint 2

Firmware

Other Memory 
regions

Fig. 1. Structure of embedded device firmware controlled by Doppelganger

Doppelganger adds its symbiote manager to the beginning of the firmware.
The symbiote manager can be regarded as a debugger that runs the firmware
of the embedded system. The symbiote manager causes Doppelganger to run
in a different context of the OS to make it resistant to attacks against its
runtime. During the firmware execution, every time the symbiote manager
detects a symbiote in memory, it stops the execution process (treating it as a
breakpoint) and compares the current CRC32 checksum of the memory area
with the symbiote checksum. If the checksum does not match, Doppelganger
considers this finding to be evidence of a code modification attack and does
not allow the processor to continue running the code. Figure 1 depicts the
structure of embedded device firmware consisting of a symbiote manager and
symbiotes.



9

Code:

      call  doWriteOperation()

Code Hook

....
Function doWriteOperation()

intended control flow HOOK

Diverted Control Flow
Function 1 

Pointer

MODIFIED 
Pointer

Function 3 
Pointer

Function 4 
Pointer

Function 3 Function 2 Function 1

HOOK

System Call Table

Data Hook

Fig. 2. Typical function hooking

4 Methodology for Evading Defensive Mechanisms

Both Autoscopy Jr. and Doppelganger provide practical host-based intrusion
detection mechanisms for embedded devices with little performance overhead
that can be applied to PLCs. Autoscopy Jr. detects kernel control-flow violations,
and Doppelganger detects code modifications at runtime. However, both the
Autoscopy Jr. and Doppelganger approaches suffer from certain shortcomings.
These shortcomings can be divided into three types, each of which applies to at
least one of the two approaches.

– Static referencing: Both Autoscopy Jr. and Doppelganger use static refer-
ences to verify the execution flow or the integrity of an executable code
region. Static referencing is comparable to signature-based approaches. If an
attacker avoids the explicitly defined references, he can evade detection.
The static references in Autoscopy Jr. are the entries of the TLL. In Dop-
pelganger, the static references are the symbiotes. None of these references
can be modified during runtime. Autoscopy Jr. requires an additional learn-
ing phase to add more entries to the TLL, and Doppelganger requires the
recreation of the firmware to insert additional symbiotes. These requirements
limit the capabilities of both Doppelganger and Autoscopy Jr.: if an attacker
inserts malicious code into locations that are not considered among the static
references, then this malicious code can not be detected.

– Function hooking: In general, there are two types of function hooks: code
hooks and data hooks [35, 36]. Both types of hooks are illustrated in Fig-
ure 2. In code hooking, an attacker can divert function calls by modifying
executable parts of the kernel, such as the .text section. If the attacker wishes
to hook the function call doWriteOperation(), as illustrated in Figure 2,
he modifies the executable instructions that call doWriteOperation() to
instead call its hook.
In data hooking, the attacker does not manipulate executable instructions;
instead, he modifies the function pointers in the System Call Table (or other



10

similar tables, such as the System Service Dispatch Table) to call their hooks.
The System Call Table consists of pointers to system call functions. If an
attacker modifies a function pointer and that function is then called by a
process, the OS calls the hook function instead of the original function.

Unfortunately, Autoscopy Jr. detects only data hooks and is unable to pre-
vent code hooking attacks. Moreover, because Autoscopy Jr.’s approach to
detecting data hooking is not complete, an attacker can define his own ver-
sions of functions and call them separately. Autoscopy Jr. does not generate
alerts for such unknown function calls since they are not functions that are
listed in the TLL.

– Dynamic memory: Doppelganger sets its watchpoints prior to execution in
the static executable parts of the firmware to be protected. We can compare
the Doppelganger detection mechanism to code hooking detection mecha-
nisms. Code hooking detection mechanisms search for modifications in the
static parts of a kernel or application. This is a very similar approach to
that of Doppelganger. Since it monitors only the static executable parts of
the memory, Doppelganger is vulnerable to dynamic memory modification
attacks (e.g., heap overflows). Doppelganger cannot detect any attack origi-
nating from dynamic memory.

The authors of Doppelganger claim that in their future research, it might be
possible to verify the integrity of dynamic memory. Although verifying the
integrity of dynamic memory might be possible, we argue that the detection
mechanism they propose cannot be extended to dynamic memory since it
is based on static information (the CRC checksum of the memory area).
Therefore, it is not a straightforward extension to also monitor the content
of dynamic memory.

Using a Loadable Kernel Module (LKM) is one of the methods an attacker
can use to gain access to the kernel space to install a rootkit. The kernel
uses vmalloc() to allocate LKMs into the heap area of the memory, which is
dynamic memory. This type of allocation makes the executable instructions
of a rootkit completely invisible to Doppelganger because it is not searching
in dynamic memory.

Doppelganger, in its current implementation, can be bypassed when an at-
tacker inserts malicious code into a part of the memory that contains dy-
namic contents. We call these parts of the memory dynamic content memory.

Dynamic content memory regions are memory regions that are statically
allocated but whose contents can change dynamically. As a result, Doppel-
ganger cannot create a checksum of these memory regions. An example of
dynamic content memory is Thread-Local Storage (TLS). At the beginning
of the execution of a process, the OS allocates a fixed chunk of memory for
the TLS, but the TLS contents is used as dynamic content memory for tem-
porary variables and data during the process. If an attacker inserts malicious
code into the TLS and executes it from the TLS, Doppelganger will not be
able to detect this malicious code execution because of the dynamic nature
of the TLS.



11

One might assume that a combination of Autoscopy Jr. and Doppelganger
could provide sufficient protection to detect both data hooking and code hooking.
However, we have found that it is still possible to craft an attack that will go
unnoticed even when both approaches are used in combination.

5 Pin Control in Embedded Systems

In an embedded SoC, pins are bases that are connected to the silicon chip. Each
pin individually and within the group is controlled by a specific electrical logic
with a particular physical address called a register. For example, ”Output En-
abled” logic means that the pin is an output pin and ”Input Enabled” logic
means that the pin is an input pin. In modern embedded systems these logic
registers are connected to ”register maps” within a SoC and can be referenced
by the operating system (OS). These ”Register maps” are a mere translation of
physical register addresses in the SoC to referenceable virtual addresses in the
OS. The concept of controlling these mapped registers with software is called
Pin Control. Pin Control mainly consists of two subsystems namely Pin Multi-
plexing and Pin Configuration. Pin Multiplexing allows using a pin for different
purposes by means of an electrical switch that changes the pin connection from
one peripheral controller to another. Pin configuration is a process in which the
OS or an application must prepare the I/O pins before using it. These two con-
cepts are widely used in embedded systems and are part of the fundamental
design within software and hardware architecture of both modern SoCs and OS
kernels.

5.1 Pin Multiplexing

Embedded SoCs usually employ hundreds of pins connected to the electrical cir-
cuit. Some of these pins have a single defined purpose. For example, some only
provide electricity or a clock signal. Since different equipment vendors with di-
verse I/O requirements will use these SoCs, the SoC manufacturer produces its
SoCs to use a certain physical pin for multiple mutually exclusive functionalities,
depending on the application [37]. The concept of redefining the functionality
of the pin is called Pin Multiplexing and is one of the necessary specifications
of the SoC design [38, 39]. For example the SoC in Figure 3 has multiplex pins
for JTAG/SPI, SPI/GPIO, MMC/GPIO and I2C/GPIO. In Figure 3 each mul-
tiplex pins, gives a vendor options to choose between those two functionalities.
Regarding the interaction of the Pin Multiplexing with OS, it is recommended
by SoC vendors to only multiplex the pins during the startup since there is no
interrupt for multiplexing. However the user still can multiplex a pin at runtime
and there is no limitation on that.

5.2 Pin Configuration

Embedded SoC I/Os (e.g. ARM, MIPS or PowerPC) are controlled with a pin
based approach and must be configured otherwise these can not function prop-



12

Pin

GPIO

SDIO/MMC

Multiplex

SPI

Power

I2C

JTAG

PinPinPinPinPinPinPin

SoC Package

Multiplex 
Pin

S
w

itch

CPU Controlled 
 Switch

MMCGPIO

I2C JTAG

S
o

C

SoC Down View

SoC Side View

SPI
JTAG  

Controller

Inside SoC

Connection to 
Peripheral:1 2

3

Fig. 3. Part 1 shows an SoC from the Side view. Part 2 shows the design of multiple
multiplex pins with different I/O peripheral. Part 3 shows how SoCs peripherals are
located inside a SoC and how one multiplex pin is connected to two peripheral.

erly. The configuration can be divided to two groups: Configuration at boot-time
and configuration at runtime.

– Pin Configuration at boot-time: the boot-time configurations can be divided
to two groups. Safety/filtering related configuration and functionality related
configuration.Safety/filtering configuration is configured since pins in the
circuit board might receive a fluctuating electrical current that can cause
damage to the circuit board or make the I/O readings inaccurate. This type
of configurations regulate such fluctuation. Therefore, the OS or boot-loader
usually enables them during the system boot time. The other group of pin
configuration at system boot is pin functionality configuration. Before the
applications use the pins, the OS must prepare the pin I/Os at boot time.
Wiping all previously written configuration data on pin registers can be an
instance of such configurations. During boot time, the kernel writes to all I/O
configuration related registers with nulls (zero) to make them ready for the
next configuration stages (e.g. run-time configuration). Once the previous
settings are wiped out from the pin registers, the kernel will configure them
with its preferred I/O configuration settings.

– Pin Configuration at run-time: once the system boots up, the I/O can be
configured by applications or drivers that use it. For instance, the I/O pins
in a Programmable Logic Controller (PLC) that are used for reading and
writing values must be configured. PLC must configure the pins that are
used for reading values into input mode and pins that are used for con-
trolling/writing values to output mode. Depending on the device and the
scenario they are used in, pins can be reconfigured from one to hundreds of
times during runtime.

Similar to Pin Multiplexing, there is no interrupt for Pin Configuration.



13

5.3 How the OS configures pins

In what follows we assume that the embedded system runs a modern operating
system (either RTOS or Unix Based OS) with a MMU (Memory Management
Unit). The Pin Configuration process starts by initializing the multiplexing fea-
tures of the pins. Pin Multiplexing is usually done by the boot-loader. The boot-
loader first maps the I/O multiplexing registers to virtual addresses and writes
the configuration details to these addresses. In some cases in which the kernel
does the multiplexing, it just receives a pointer from the boot-loader containing
the memory address at which configuration details for pin multiplexing are lo-
cated. During kernel startup, the configuration registers related to multiplexing
are mapped and the configuration details are be applied. Eventually, the kernel
removes the configuration details from the kernel memory space.

Once the initial multiplexing setup is finished, the start-up configuration of
the pins initiates. Once again, the configuration starts by mapping the physical
address of registers related to pin configuration at run-time to virtual addresses.
However, this time a device driver performs the task. After mapping, the driver
will write appropriate configuration detail to those virtual addresses that even-
tually get mapped to the physical configuration registers in the SoC.

5.4 Security concerns regarding Pin Control

The Pin Control process raises two security concerns: (1) one can multiplex
a pin or reconfigure it at runtime while another process is using it and (2)
the lack of interrupt and interrupt handlers for both Pin Multiplexing and Pin
Configuration. If the multiplexing or configuration of a pin changes, neither the
driver nor the application will notice it and will continue their tasks.

For example, assume that an application uses a particular peripheral con-
troller connected to a pin with a particular multiplexing setup. At one point
another application (second application) changes the multiplexing setup of the
pin used by the first application. Once the pin is multiplexed, the physical con-
nection to the first peripheral controller gets disconnected. However, since there
is no interrupt at hardware level, the OS will assume that the first peripheral
controller is still available. Thus, the OS will continue to carry out the write and
read operations requested by the application without any error. A similar prob-
lem exists in Pin Configuration at runtime. If a pin (e.g. GPIO) that is in set
in Output mode gets reconfigured in Input mode by a second application, since
there is no interrupt to alert the OS about the change in pin configuration, the
driver or kernel will assume that the pin is still in the output mode and attempt
the write operation without reporting any error. The processor then ignores the
write operation (since the pin is in input mode) but will not give any feedback
to the OS that the write operation was ignored.

6 Pin Control Attacks

In this section, we describe a new type of attack that targets PLCs based on
the methodology described in Section 4. A pin control attack basically consists



14

of misusing the pin control functionalities of the embedded system at runtime.
An attacker can either block communications with peripherals, cause physical
damage to them or manipulate values read or written to/from a peripheral by a
legitimate process.

To block the communications with a peripheral, an attacker can just change
the multiplexing features of a pin and physically terminate the connection. So
while an application is interacting with a peripheral, an attacker modifies the
multiplexing registers of the SoC and activates the second peripheral thus phys-
ically disconnecting the first peripheral.

To cause physical damage, an attacker can use a combination of Pin Con-
figuration and Pin Multiplexing. For example, a pin which can be multiplexed
between an MMC (memory controller) and a PWM (Pulse-width modulation)
controller can be targeted to cause physical damage. If the pin is multiplexed
to be used as an MMC controller, an attacker can multiplex the pin to connect
it to a PWM controller and modify the PWM controller to push a significant
pulsing electrical current toward the memory controller causing the memory to
burn. An alternative option would be writing to Configuration and Multiplexing
registers consecutively. Some of the Pin Configuration and Multiplexing registers
are either located in NVRAM or EEPROM. Both of these memories have finite
write cycle life, usually between 100 to 100K. Once the write operation life cycle
of such memories ends, the SoC will be useless since it will not be any more a
non-volatile memory. An attacker can just write to this memories consecutively.
With this technique one can brick any existing embedded SoC within a day.

However, the ultimate use of a pin control is to manipulate read or write
operations to a peripheral. This attack can have significant consequences, since
it can be used to alter the way an embedded system interacts (and possibly
controls) the outside world. This can be done by misusing Pin Configuration.
Therefore, we call this particular kind of attack a Pin Configuration attack. In a
Pin Configuration attack, the attacker will change the mode of pins from input
to output and vice versa to control what a legitimate process writes or reads from
the pin. Because a Pin Configuration attack is the most complex variant of Pin
Control attacks, we show its viability by providing a practical implementation
in Section 7.

Finally the novelty of our attack lies in the fact that to manipulate the
physical process we do not modify the PLC logic instructions or firmware [3, 2, 7,
11, 4]. Instead, we target the interaction between the firmware and the PLC I/O.
This can be achieved without leveraging traditional function hooking techniques
and by placing the entire malicious code in dynamic memory (in rootkit version
of the attack), thus circumventing detection mechanisms such as Autoscopy Jr.
and Doppelganger. Additionally, the attack causes the PLC firmware to assume
that it is interacting effectively with the I/O while, in reality, the connection
between the I/O and the PLC process is being manipulated.



15

6.1 Threat Model

For pin control attack we consider three requirements which the attacker must
satisfy. These three requirements are the followings:

– PLC runtime privilege: we can envision an attacker with an equal privilege
as the PLC runtime process which gives her the possibility to modify the pin
configuration registers. Since the PLC runtime can modify such configuration
registers, having equal privilege means that an attacker can also modify those
registers. In recent years, multiple research has shown that the PLCs from
multiple vendors such as Siemens [40], [11], ABB [41], Schneider Electric [42],
[12], Rockwell Automation [43], and WAGO [44] are vulnerable to system-
level code execution via the memory corruption vulnerabilities. Therefore,
we can argue that getting equal privilege as PLC runtime is not a farreaching
assumption.

– Knowledge of the physical process: we also assume that the attacker is aware
of the physical process on the plant. Attacking critical infrastructure is usu-
ally carried out by state-sponsored attackers and usually such actors study
their targets before launching their attack. For example, as reported [45] in
Stuxnet [10] case, the attackers were very well aware of the physical process
in their target plant. Therefore, we can assume that it is feasible for other
state-sponsored attackers to study their target physical process and be aware
of it.

– Knowledge of mapping between I/O pins and the logic: we assume that the
attacker is aware of the mapping between the I/O pins and the logic. The
PLC logic might use various inputs and outputs to control its process; thus,
the attacker must know which input or output must be modified to affect the
process as desired. The mapping between I/O pins and logic is already avail-
able in the PLC logic and therefore, an attacker can access to it within the
PLC without any limitation. Additionally, the works presented by McLaugh-
lin et al. [3], [2] can be used to discover the mapping between the different
I/O variables and the physical world. Thus we can argue that it is reasonable
to assume the attacker can be aware of the mapping between I/O pins and
the logic.

7 A pin control attack in practice

In this section we describe the practical implementation of an attack against a
Programmable Logic Controller (PLC) environment by exploiting the configu-
ration of the I/O pins used by the PLC to control a physical process.

PLCs play a significant role in the industry since they control and monitor
industrial processes in critical infrastructures [46]. For this reason, the success-
ful exploitation of a PLC can affect the physical world and, as a result, can
have serious consequences for the safety of equipment and human life [1]. For
example, an adversary may manipulate the value of tank pressure sensors in a
pressure sensitive boiler thus leading to the explosion of the boiler, or, similarly



16

to Stuxnet, change the frequency of variable speed drives of centrifuges in a
uranium enrichment facility, leading to damage of the centrifuge cascades. Con-
sequently, one of the main objectives when attacking a PLC is to manipulate the
physical process by intercepting the signals received from sensors and altering
the ones sent to the actuators controlled by the PLC in such a way that the PLC
has no way to tell that his communication with the I/O is being manipulated.
This can be achieved by pin control exploitation without leveraging traditional
function hooking or kernel data structure modification techniques [47].

Generally speaking, an attacker can manipulate the PLC read and write
operations to its I/Os by leveraging the configuration of pins as follows:

1. For write operations: if the PLC software is attempting to write a value to
an I/O pin that is configured as output, the attacker reconfigures the I/O
pin as input. The write operation will not succeed, but the PLC software
will be unaware of this.

2. For read operations: if the PLC software is attempting to read a value from
an I/O pin that is configured as input, the attacker can reconfigure the I/O
pin as output and write the value that he wishes to feed to the PLC software
in the reconfigured pin.

We implement this strategy in two variants of the attack. In the first variant
we assume the attacker has root access to the PLC. In the second variant we
assume the attacker the same access level of the PLC software.

However, before discussing the technical implementation of the attack, we
discuss in more details how a PLC generally works, and how the specific envi-
ronment in which we built our attack is set up.

7.1 PLC operations

The main component of a PLC firmware is a software called the runtime. The
runtime interprets or executes process control code known as the logic. The
logic is a compiled form of the PLC’s programming language, such as function
blocks or ladder logic. Ladder logic and function block diagrams are graphical
programming languages that describe the control process. A plant operator pro-
grams the logic and can change it when required. The logic is therefore dynamic
code, whereas the runtime is static code.

The purpose of a PLC is to control field equipment (i.e., sensors and actua-
tors). To do so, the PLC runtime interacts with its I/O. The first requirement
for I/O interaction is to map the physical I/O addresses (including pin config-
uration registers) into memory. As described earlier the drivers, kernel or PLC
runtime map the I/O memory ranges. Additionally, at the beginning of logic
execution, the PLC runtime must configure the processor registers related to
pin configuration in order to set the appropriate mode (e.g., input or output) of
each I/O according to the logic.

After pin configuration, the PLC runtime executes the instructions in the
logic in a loop (the so-called program scan). In a typical scenario, the PLC



17

Read Inputs

Logic 
Program

Update 
Outputs

Logic Variable Table 
(VT)

Runtime

Inputs

Outputs

Physical I/O

Read/Write I/O

Inputs from 
I/O

 Set Points

Outputs to I/O

Read/Write 
VT

Fig. 4. Overview of PLC runtime operation, the PLC logic and its interaction with the
I/O

runtime prepares for executing the logic at every loop by scanning its inputs
(e.g., the I/O channels defined as inputs in the logic) and storing the value
of each input in the variable table. The variable table is a virtual table that
contains all the variables needed by the logic: setpoints, counters, timers, inputs
and outputs. During the execution, the instructions in the logic manipulate only
values in the variable table: every change in the I/O is ignored until the next
program scan. At the end of the program scan, the PLC runtime writes output
variables to the related part of the mapped memory that eventually is written
to the physical I/O by the kernel. Figure 4 depicts the PLC runtime operation,
the execution of the logic, and its interaction with the I/O.

A PLC typically comprises separate digital and analog inputs and outputs.
Because PLCs are digital systems, they cannot control analog input and output
without additional hardware components. Digital-to-Analog Converters (DACs)
for analog outputs and Analog-to-Digital Converters (ADCs) for analog inputs
form part of the analog interface of a PLC. These components read or write
analog values by converting them to or from digital outputs or inputs to allow
the PLC to interact with its analog interfaces. The DACs and ADCs are not
separate components of the PLC but rather an integral part of the PLC circuit
board. One can argue that the basis of I/O interaction in PLCs is digital. Analog
control is simply a conversion of digital signals into analog signals or analog
signals into digital signals.

7.2 Environment setup

Target device and runtime To mimic a PLC environment we choose two
platforms. First a complex set of I/O modules in a Raspberry Pi 1 model B. We
used a Raspberry Pi, because of the similarity in CPU architecture, available
memory, and CPU power to a real PLC. The Raspberry Pi 1 uses a Broadcom
BCM2835 single-core processor with a clock speed of 700 MHz. The Raspberry



18

Fig. 5. Terget Raspberry Pi 1 running Codesys runtime, connected to multiple I/O
interfaces

Pi includes 32 general-purpose I/O pins, which represent the PLC’s digital I/Os.
These digital I/Os can also control analog devices by means of various electrical
communication buses (e.g., SPI, I2C, and Serial) available for the Raspberry Pi
with external hardware such as ADC or DAC circuit boards.

For the second target platform we use Wago 750-8202 with a 8-Channel
Digital Input/Output Module 24 V DC (WAGO 750-1506).

For PLC runtime, we use the Codesys platform (both Codesys and e!Cockpit).
Codesys is a PLC runtime that can execute ladder logic or function block lan-
guages on proprietary hardware and provides support for industrial protocols
such as Modbus and DNP3. Currently, more than 260 PLC vendors use Codesys
as the runtime software for their PLCs [44]. Figure ?? depicts our first target
platform connected to multiple analog and digital I/Os via ADC and DAC con-
trollers. Figure ?? depicts our second target platform (a real industrial PLC)
connected to a digital I/O controlling an LED.

The logic and the physical process for the Raspberry Pi
We use pins 22 and 24 of the Raspberry Pi (and ) to control our physical

process. In our logic, we declare pin 22 as the output pin and pin 24 as the input
pin. In the physical layout, our output pin is connected to an LED and our input



19

Fig. 6. Wago 750-8202 Test Platform running Codesys runtime (e!Cockpit variant)

pin is connected to a button. The electrical current becomes disconnected when
the button is pressed and is reconnected when the button is released. From the
perspective of the runtime, if no one is pressing the button, the input pin has a
value of True, whereas if someone is pressing the button, the pin has a value
of False.

The pseudo-code for the logic that controls these two I/Os is illustrated in
Algorithm 1. According to our logic, the LED turns on or off every five seconds.
If someone is pressing the button, the LED simply maintains its most recent
state until the button is released, at which time the LED begins again to turn
on and off every five seconds.

The logic and the physical process for the Wago 750-8202 PLC
We use pins 0 of the Wago PLC to control our physical process. In our logic,

we declare pin 0 of the 750-1506 digital I/O module as the output pin. In the
physical layout, our output pin is connected to an LED.

From the perspective of the runtime, the runtime change the state of the pin
0 True, for 100 times of PLC scan cycle and switch it back to False.

The described logic is illustrated in Figure 7. According to our logic, the LED
turns on or off every 1 seconds (our Scan cycle).

Interaction between the virtual I/O registers and the runtime To un-
derstand how the Codesys runtime interacts with the pins, we briefly describe
how virtual I/O registers operate in a BCM2835 processor (the one used in the
Raspberry Pi 1).



20

input : State of In.24
output: State of Out.22

Main Logic;
while True do

read input;
while input True do

switch state(output, five seconds);
//states are High or Low.

end
if input False then

hold the state of the output;
else

go to first while;
end

end
Algorithm 1: Logic for our representative physical process in a —Raspberry
Pi 1

Fig. 7. Logic for our representative physical process for Wago 750-8202 Test Platform

The virtual I/O registers are simply I/O address ranges in the processor
memory that perform different types of I/O operations. The operation types, the
memory sizes, and the physical addresses of the three virtual I/O registers related
to read, write, and I/O configuration operations in the BCM2835 processor are
summarized in Table 1.

The three virtual I/O registers that are used in our logic are as follows:

1. Input/Output Mode register: this register sets pins to input or output mode.
Each pin in this register has three bits of space. The first bit of each pin’s
bit space defines whether the pin is used for input or output. If the first bit
for a pin is set to 0, the pin is an input pin. If the first bit is set to 1, the pin
is an output pin. The Codesys runtime cannot change the value of a pin in



21

Table 1. I/O memory map in the BCM2835 processor

Operation Size of each pin
in the register

Address of
Pin 0

Address of
Pins 22 and 24

Input/Output
Mode register

3 bits 0x20200000 0x20200002

SET register 1 bit 0x2020001C 0x2020001C

READ register 1 bit 0x20200034 0x20200034

input mode; it can only read from it. Even if Codesys writes a value to an
input-mode-enabled pin, the operation has no physical effect and is ignored
by the processor. However, the Codesys runtime can change the value of a
pin when the pin is in output mode. The input/output mode address range
begins at offset 0x2020000 and ends at address 0x20200002. For pin 22, bits
6 to 8 of address 0x20200002 are used.

2. SET register: if a pin is declared as an output pin in the Input/Output Mode
register, then every write operation related to this pin in the SET register
address can immediately set the pin to high or low. High means that the
Raspberry Pi directs an electrical current to the pin, and low means that
the electrical current is disconnected from the pin. Every pin in this register
has a 1-bit space. Assuming that pin 22 is in output mode, setting a value of
“0” or “1” in bit 21 (bit 0 for pin 1, bit 21 for pin 22) of this register causes
pin 22 to be set high or low (turning the LED on or off), respectively. The
physical address for this I/O register is 0x2020001C.

3. READ register: the Codesys runtime can read the values of the pins from
the READ register. Every pin in this register has a 1-bit space. The values in
the READ register have a direct relation with the values in the SET register.
For example, if the Codesys runtime writes a value of “1” to the SET register
associated with pin 22 when this pin is configured as output mode, then the
READ register value for the corresponding pin is updated to “1” as well.

We illustrate how the Codesys runtime interacts with virtual I/O registers by
describing a write operation for pin 22 (see Figure 8). Read operations follow a
similar procedure. During the startup of the Codesys runtime, the OS maps the
addresses of the I/Os into the Codesys Thread Local Storage (TLS). Once the
I/Os are mapped, the mapped I/O addresses are recorded in the page table and
in a cache that is called the Translation Lookaside Buffer (TLB). The page table
is a structure in which the OS maintains the list of mapped physical addresses
and their corresponding virtual addresses for the process. The page table can
become so large that searching it can be time consuming for the OS. To avoid
this scenario, the OS also uses a cache for the page table, the TLB.

After our logic is uploaded to the Raspberry Pi, the Codesys runtime eval-
uates the I/O configuration specified in the logic to determine which pins are
designated as input or output. Pins 22 and 24 are designated as output and input
respectively. Because pin 22 is declared as an output pin in our logic, Codesys



22

Read Inputs 
(Pin 24)

Logic 
Program

Update 
Outputs 
(Pin 22)

Logic
Variable Table

 (VT)

Runtime

Inputs from 
I/O

 Set Points

Output to I/O 
(Pin 22 = True)

Read/Write 
VT

1

Where is 
0x20200002 and 

0x2020001C?

Mapped I/O at Thread Local Storage (TLS)

0xB6FCD01A 000  000   100 000 000...000 000
Input/Output Mode 

Register

0xB6FCD034SET Register 0    0  0  0  0  0.....00    1    0..0     0

P
in

 2
2

P
in

 2
0

P
in

 22

P
in

 0

Register Name Address Value

P
in

 31

Mapped physical 
Addresses

0xB6FCD01A 0x20200002

...... .......

Page Table

0xB6FCD034 0x2020001C

0xB6FCD01A

0xB6FCD034

3Text

3Mapped I/O at Thread Local Storage

Address Value

0xB6FCD01A

0xB6FCD034

...........

...........

TLS

23
Write Output value

Set Bit 7 to 9 == 100 at 
0xB6FCD01A

Set bit 21 == 1 at 
0xB6FCD034

Fig. 8. A search for the address of pin 22 and a write operation to it

performs a write operation in the Input/Output Mode register and set bits 6
to 8 of offset 0x20200002 to 100. To execute this write operation, the Codesys
runtime asks for the virtual address of 0x20200002. The OS looks up the virtual
address of 0x20200002 (mapped address of 0x20200002) in the TLB and page
table. In our environment, this address was located as expected in the TLS mem-
ory area of the Codesys runtime with value 0xB6FCD01A. Once Codesys has
retrieved the virtual address, it writes to it and continues operations. Codesys
then assumes that the I/O configuration sequence was successful and that the
I/O pins are ready to use.

The Codesys runtime then begins to execute the logic. When the logic up-
dates the value for pin 22 to “1” (high) to turn on the LED, the Codesys runtime
writes a value of “1” to bit number 21 of the address 0x2020001C in the SET
register. However, Codesys needs to know the virtual address of 0x2020001C.
Therefore, the Codesys runtime looks in the TLB and page table for the mapped
address of 0x2020001C. In our case, the address was located at 0xB6FCD034.
Once the OS has found the virtual address, a value of “1” is written to the regis-
ter and a success result is returned to the calling function. The Codesys runtime
then updates the I/O state in the SCADA or Human Machine Interface (HMI)
software and reports that pin 22 is high (the LED is on).

7.3 Attack implementation with root access

To be able to accurately tamper the control flow set in the logic we must be
able to intercept each read and write operation of the Codesys runtime. How-
ever, if we were to use conventional function hooking techniques (e.g hooking
the Codesys functions responsible for reporting the I/O status) or modifying
the integrity of the code in the PLC (e.g. modifying the codes of the runtime
or kernel data structure), most control flow and code integrity security mecha-
nisms would be able to detect and block our attempts. Therefore, we leverage



23

the processor debug registers for interception. Debug registers were introduced
to assist developers in analyzing their software, and all new processors with var-
ious different architectures (ARM, Intel, and MIPS) have such registers. These
registers allow setting hardware breakpoints to specific memory addresses. Once
an address that is in a debug register is accessed by a process, the processor
interrupt handler is called and customized code can be executed.

Unfortunately, for PLCs running a modern OS with a memory management
unit, setting debug registers requires root access. This can be achieved either
by leveraging default passwords, through a control-flow attack against the PLC
runtime, or through a firmware modification attack [4, 7, 8, 5]. Regarding default
passwords, several reported vulnerabilities suggest that some PLCs provide shell
access with default root passwords [48, 49]. An attacker could just log in to these
devices using the default password and execute the attack. Using a control-flow
attack, the attacker can gain access at the same level as the PLC process. As
described earlier, previous research has revealed that various PLCs run their
runtime as the root user by default [11, 44]. In case that the PLC runtime is
vulnerable to control-flow attack but is not running as root, the attacker needs
a privilege escalation vulnerability to gain root access to the PLC. Finally, by
installing rogue firmware into the PLC, the attacker can infect every binary in
the PLC. This can give the attacker complete leverage over the PLC operating
system.

We also assume that the attacker knows the physical process (by the mean
of reading the logic exist in the PLC) and is aware of the mapping between the
I/O pins and the logic. The PLC logic might use various inputs and outputs to
control its process; thus, the attacker must know which input or output must be
modified to affect the process as desired. The work presented by McLaughlin et
al. [3, 2] can be used to discover the mapping between the different I/O variables
and the physical world.

As the first stage of our attack, we set the mapped I/O addresses to the de-
bug register and intercept every write or read operation of the Codesys runtime.
When the PLC runtime wants to read from or write to the I/O pins, the proces-
sor halts the process and calls the attacker hardware-based interrupt handler.
The handler performs the I/O manipulation by exploiting the pin configuration
functionality as discussed earlier. Figure 9 depicts this process.

For our experiment, we implemented the attack in an LKM (Loadable Kernel
Module). LKMs have access to kernel space, even if this is not a requirement.
Once the module is loaded, it checks the CPU information of the machine and
matches it against a hard-coded list of CPUs and their I/O memory ranges.
As mentioned above, the I/O addresses of the BCM2835 processor begin at
0x20200000. Using this information, the LKM looks in the OS page table for
a process ID and a virtual address that are mapped to the physical address
0x20200000. Because target pins are known in advance (in our case, pin 22), the
correct register address for the SET, READ, and Input/Output Mode registers
can be easily calculated.



24

1. Put I/O Address 
into Debug 

register

Manipulate Read

2. Intercept Read 
Operation from I/O

3. Set Pin to 
Output Mode 

4. Write Desired 
Value to Output 

 read(I/O, Pin)

Pin Control Attack actions

    PLC runtime actions

read() continue....

1. Put I/O Address 
into Debug 

register

Manipulate Write

2. Intercept Write 
Operation to I/O

3. Set Pin to Input 
(write-ignore)

 write(I/O, Pin)

write() continue...

Fig. 9. Steps of the Pin Control for read and write manipulation

To manipulate write operations, the LKM inserts the virtual address from the
SET register associated with pin 22 (0xB6FCD034) into the BCM2835 proces-
sor’s debug register and installs its custom interrupt handler. When the Codesys
runtime requests a write operation to pin 22 (for example, let us assume that
it writes a value of 0 into the SET register to turn off the LED), our custom
exception handler is called. The exception handler changes the state of pin 22
from output mode to input mode by writing the values of “000” to bits 6 to 8
of the Input/Output Mode register in 0xB6FCD01A. After changing the state
of pin 22, the processor allows the Codesys runtime to execute its command.
Codesys attempts to write the desired value and returns a success result, even if
the value is not set in the register as the pin’s mode has been switched to input.
At this point, our LKM has full control over the Codesys I/O operations and
can freely decide whether to allow an I/O state change.

To manipulate read operstions on pin 24 the rootkit inserts the virtual ad-
dress from the READ register associated with pin 24 into the debug register and
installs its custom exception handler. Once Codesys accesses the virtual address
from the READ register to read the value from the pin, the exception handler
executes. The exception handler first sets pin 24 as an output pin by writing
the values “100” to the related bits of the Input/Output Mode register and then
writes the desired value for pin 24 into the SET register. The LKM then returns



25

control to the Codesys runtime, which will read the value written in the I/O
register by the exception handler instead of the real value.

With this technique we were able to successfully alter the physical process
described in Section 7.2. We modified the process by allowing the PLC to turn
on and off the LED on pin 22 only every ten seconds instead of every five.
Additionally, the read manipulation made the button in our physical layout
ineffective. We could hold the last state of the LED by giving fake read input
values to the runtime and make the runtime assume that someone pressed the
electrical button while it was not the case.

Embedded devices typically have limited resources for the operations they
execute. This is the case for PLCs as well. While in general performance overhead
is not an issue for the attacker, it can be when a PLC controls processes that are
time critical. If in such processes the performance overhead causes significant
delay in the I/O speed, it can uncover the attack. For this reason we evalu-
ated the performance overhead imposed by this attack on our selected hardware
(Raspberry Pi model 1 B). Regarding CPU overhead, based on our evaluation,
n rootkit based pin control attack on average incurs 5% CPU overhead for the
manipulation of write operations and 23% CPU overhead for the manipulation
of read operations. Read operation manipulation imposes a higher CPU load for
two reasons. First, the PLC runtime environment reads the values from the I/O
multiple times per second, thereby significantly increasing the CPU overhead,
whereas for write operations, the number of I/O write operations depends only
on the logic (in our case, every five seconds). Second, read manipulation requires
two instructions (setting the pin to output mode and writing to it), whereas write
manipulation requires only one instruction (setting the pin to input mode). Fig-
ure 10 depicts the CPU overhead incurred by the manipulation of read and write
operations in a rootkit based pin control tack. The additional CPU overhead is
not an important concern for the attacker, but it creates anomalies in the power
consumption of the victimized device.

To understand the impact of an rootkit based pin control attack on control
operations, we evaluated the I/O speed fluctuations in our selected setup (Rasp-
berry Pi with Codesys runtime running our sample logic). Figure 11 depicts
the fluctuation of the I/O speed with and without our rootkit implementation.
On average the speed where our hardware could write to the I/O (without our
rootkit) was 3.97 milliseconds. When the rootkit manipulates the I/O (intercept
the I/O write operation and write the same value), the average speed of the I/O
increased to 4.01 milliseconds.

The difference in I/O speed with and without rootkit is insignificant. Addi-
tionally, in a normal state (no rootkit operating), the I/O speed has a similar
fluctuation to when our rootkit is executing a pin control attack.

7.4 Attack implementation without root access

The previous implementation of the attack allows to precisely tamper the control
flow set in the logic. However such precision comes at the cost of the high privilege
requirements and the non-negligible performance overhead due to the usage of



26

Time (seconds)
0 20 40 60 80 100 120

C
P

U
 O

ve
rh

ea
d

0

5

10

15

20

25

30

Rootkit manipulates Write operations with I/O Attack
Rootkit manipulates Read operations with I/O Attack

Fig. 10. CPU overhead in rootkit based Pin Control attack

Time
-25 -24.95 -24.9 -24.85 -24.8 -24.75 -24.7 -24.65

S
p

ee
d

 (
se

co
n

d
s)

#10-3

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

With Rootkit
No Rootkit

Fig. 11. I/O speed with and without rootkit

debug registers (which causes the call of hardware interrupt handlers of the
SoC). By relaxing a bit our precise I/O modification requirement, we can create
a second implementation of the attack which has better performance and does
not require root/kernel access, while still being able to manipulate the physical
process as desired.



27

Inputs

Outputs

Physical I/O Pin

The Malicious Code

Exported 
Kernel Object 
File System

device driver

/dev/mem

Logic

PLC 
Runtime

Read the I/O 
Output every 4 

millisecond

Read the I/O 
Input

every 4 
millitsecond

Starting Time Calculation 
Loop

Read 
Manipulate

Write 
Manipulate

Reconfigure the 
I/O Pins

Fig. 12. Overview of pin configuration attack without root access using exported kernel
objects, /dev/mem and a legitimate device driver call

The requirement for this second implementation is that the attacker has the
same access privileges as the PLC runtime. This is achievable for example by
exploiting a memory corruption vulnerability that allows code execution, such
as a buffer overflow [43, 13, 11, 49]. A remote code execution vulnerability of such
kind is known to be affecting the Codesys runtime [50]. Also, similarly to our
previous implementation, we assume that our application already has access to
the logic (since the logic will be inside the PLC) and knows the I/O mapping of
the process.

The new implementation consists of an application written in C that can be
converted and used by exploiting the vulnerability mentioned above. The appli-
cation can use /dev/mem, sysfs, or a legitimate driver call to access and configure
the pins. In our target platform the Codesys runtime uses the /dev/mem for I/O
access, therefore, our attack code use the same I/O interface.

Figure 12 depicts the steps our application takes to execute the attack. The
application first checks whether the processor I/O configuration addresses are
mapped in the PLC runtime. The list of all mapped addresses is system wide
available in various locations for any user space application (e.g. via /proc/modules,
or /proc/$pid/maps). If at any extraordinary circumstance the physical I/O ad-
dresses are not mapped, our application can map the I/O base address of our
target platform at 0x20200000.

For manipulating write operations, the application needs to know a reference
starting time. This is the relative time where the PLC runtime writes to the
pin. While the application knows the logic and is aware that every five seconds
there is a write operation to pin 22, it does not know at what second the last
write operation happened. This can be easily found by monitoring the value of
pin 22. Once the application intercepts the correct reference starting time, for
every write operation in the logic it will carry out two tasks. First, right before
the reference starting time (which is when the PLC runtime will start writing



28

its desired original value to the I/O) the application reconfigures the pin to
input mode. The Codesys runtime then attempts to write to the pin. However,
the write operation will be ineffective, since the pin mode is set to input. Our
application then switches the pin mode to output and writes the desired value
to it.

For manipulating read operations, the application changes the state of the
pin from input to output and writes it constantly with the desired value.

With this implementation we could successfully manipulate the process. The
LED would turn on and off every ten seconds instead of five. Additionally, we
could completely control input pin 24 and make its value 0 or 1 whenever we
wanted, while the Codesys runtime was reading our desired value.

This implementation is significantly more lightweight than our previous one,
and only causes two percent CPU overhead without any differences between read
and write operations.

There is however a small chance that a race condition happens during read
manipulation. For example, assume that we have a sensor connected to an input
enabled pin in the PLC. If this sensor updates the value of the pin right after our
application does and the PLC runtime reads the value right after this happen,
the actual value will be reported instead of the attacker’s intended value. In our
tests, however this race condition never happened.

8 Discussions

As discussed in Section 6, the I/O attack cannot be detected by Autoscopy Jr.
or Doppelganger. We verified this claim by testing the I/O attack against the
current implementation of Autoscopy Jr. Unfortunately, the authors of Doppel-
ganger were unable to provide us with their implementation for our test. Au-
toscopy Jr. does not detect this attack because no data hooking is performed in
an I/O attack. We argue that Doppelganger is also unable to detect I/O attack
because no modification of the static parts of the memory (e.g., code hooking)
is performed in such an attack; instead, as described in Section 7, the entirety of
the malicious code is loaded into the dynamic memory, which is not monitored
by Doppelganger.

There are several characteristics of pin control attack that should be consid-
ered regarding their practical implementation. Therefore, in this section, we first
discuss about why it is hard to detect pin control attack and then consider the
hardware knowledge required in the rootkit version of the attack.

8.1 Detection of Pin Control Attack

While the pin control attack we implemented was stealth to the Codesys runtime,
one might believe that it is relatively simple to devise countermeasures that could
detect and possibly block pin control attacks. In this section we enumerate five
of these possible countermeasures and discuss their effectiveness and practical
applicability to embedded systems.



29

1. Monitoring the mapping of pin configuration registers: an attacker needs to
use the virtual addresses of the pin configuration registers to write to them.
To do so, the attacker needs to either map the physical registers by herself
or use already mapped addresses. In the first case, one could monitor the
mapping of pin configuration registers by hooking critical mapping functions
such as mmap() or ioctl(). However, an attacker could implement her own
version of mmap() or ioctl(), thus bypassing the monitoring point. Addition-
ally, in an embedded device that is already using the target I/O, an attacker
can use the pin register address already mapped by the application or kernel.

2. Monitoring the change of pin configuration registers: one may detect our
attack by monitoring the frequency at which pin configuration registers are
changed. This may be challenging for two reasons. First, since changes in
configuration registers do not generate interrupts, an attacker could be able
to bypass monitoring mechanisms. For example, in order to avoid perfor-
mance overhead, the value of configuration changes which must be checked
in a loop, could be monitored with a certain frequency (e.g., every second).
This would give the attacker a window of opportunity to modify the con-
figuration within the checking window. Second, since pins get re-configured
legitimately, it may be difficult to tell with reliable accuracy whether a se-
quence of of changes is legitimate or not.

3. Monitoring the use of debug registers: one could argue that the usage of
debug registers in our first implementation of the attack is something that
can be easily detected. For example, by monitoring the processor debug
registers one could detect the point in our first attack implementation in
which we set a breakpoint to the access of the I/O registers. However, in
our experiments we noticed that constantly monitoring all processor debug
registers (i.e., with a loop) can cause a non-negligible CPU overhead. This
makes this approach not very attractive for embedded systems, which are
always resource constrained.

4. Monitoring performance overhead : because of the performance overhead im-
posed by our first implementation of the attack, we could employ approaches
based on monitoring the power consumption of embedded systems, such as
those proposed in [51] to detect the attack. However, how our second imple-
mentation demonstrates, other approaches can impose a significantly smaller
CPU overhead, which would probably go unnoticed. In addition, other pin
control attacks presented in Section 6 just require a single configuration or
multiplexing operation, with practically no CPU overhead.

5. Using a trusted execution environment : The reliable solution to prevent all
pin control attacks would be running a micro kernel in a trusted zones (e.g.
an ARM TrustZone) within the kernel and verifying the write operations to
the pin configuration registers with a dynamic key. However, as confirmed by
the Linux Kernel Pin Control Subsystem group, using an ARM TrustZone
for I/O operations would cause a significant performance overhead.



30

8.2 Hardware Knowledge

In Section 7, we used the physical addresses of the I/O pins to find their mapped
virtual addresses. Moreover, in our rootkit implementation, we had knowledge
of all physical I/O register addresses. However, this is not the case for all types
of processors. For example, certain PLC processors are proprietary. In this case,
an attacker needs to perform the additional step of determining the physical
addresses of the I/O pins of his interest. However, this necessity does not stop
state-sponsored attackers. Detecting the I/O addresses that are used in either
drivers or applications is straightforward. Unix-based operating systems provide
I/O address ranges in /proc/modules for kernel drivers or in /proc/$pid/maps
(where $pid is the PLC runtime process ID) for applications for I/O mapping.
Nevertheless, detecting the I/O register addresses is a complicated task. Again,
attackers who wish to target PLCs to attack critical infrastructures will in-
vestigate their targets sufficiently to determine this information. One solution
for obtaining this I/O register information is to first decompile the available
PLC logic within the PLC memory and search for I/O read/write operations
and then monitor the read/write operations involving the mapped addresses re-
trieved from the OS (e.g., /proc/modules or /proc/$pid/maps). An attacker can
begin looking for the I/O input/output mode registers by monitoring the PLC
runtime environment when it is starting up. Additionally, from the decompiled
logic, the attacker can be aware of the timing of the cycle of read and write op-
erations in a specified I/O memory range. By monitoring read/write operations
in that memory area (e.g., using debug registers), the attacker can identify the
I/O read/write registers.

9 Related Work

Various research works have addressed attacks against embedded systems. For
example, a significant stream of work has explored the manipulation of em-
bedded systems’ firmware [4, 5, 7, 8]. Another relevant stream of work, instead,
has explored memory corruption vulnerabilities in embedded systems [11, 13, 52].
However, to the best of our knowledge, we could not find other approaches dis-
cussing the security implications of the pin control system in embedded devices.

Part of our work bears some similarities with System Management Mode
(SMM) rootkits [53–55] for X86 architectures. These rootkits tap the system
I/O, similarly to what we did in our Pin Configuration attack. However, while
the goals is similar, the way to reach the goal is different. For example, the mod-
ification of system I/O in SMM causes interrupts which need to be suppressed
by SMM rootkits, typically by attacking kernel interrupt handlers. In our case,
this operation is not needed due to the lack of interrupts for pin multiplexing
and configuration.

Among the works focusing on protecting embedded systems, a stream of
research focuses on firmware verification [23–25]. Another stream of research
focuses on detecting kernel level attacks by monitoring syscall/function hooking
techniques and kernel data structure manipulation [56–58, 29, 30].



31

None of the existing detection mechanisms monitor I/O memory ranges and
specifically I/O configuration registers.

10 Conclusions and Future Work

In this paper, we first looked into the current state of host-based detection tech-
niques for embedded devices, with a particular focus on Programmable Logic
Controllers. We found that current practical host-based intrusion detection tech-
niques for embedded devices suffer from three major shortcomings. First, they
completely ignore the control of dynamic memory when verifying memory con-
tents. Second, they do not apply effective practical control-flow measures due to
performance limitations. Finally, they mostly rely on static references to protect
embedded devices. In the second part, we have proposed a new type of attack
that leverages these weaknesses, and we have shown that it can be used by ad-
versaries to manipulate the physical process in a way that the PLC runtime and
the SCADA applications are unaware of the manipulation. This makes the at-
tack interesting and relevant since current detection techniques are not effective
against this new type of attack (Pin Control Attack) or any type of attack that
exploits the weaknesses discussed in the Section 4.

We now plan to investigate in more detail the opportunities offered by the
monitoring techniques we briefly sketched in Section 8.1. In particular, we will
focus on the protection of dynamic memory and improving control-flow integrity
in embedded devices. We believe that in any attack against embedded devices,
control-flow integrity and dynamic memory verification measures will pose a no-
table hindrance to attackers, significantly reducing their success rate.

Acknowledgement We are immensely grateful to Prof. Sandro Etalle (Ein-
hoven University of Technology), Dr. Emmanuele Zambon (Security Matters
B.V), Prof. Thorsten Holz (Ruhr University Bochum), Marina Krotofil (Honey-
well International, Inc.) and Jafar Haadi Jafarian (University of North Carolina
at Charlotte) for their insights on the manuscript. We would also like to show
our gratitude to the Linus Walleij, lead developer of the Linux kernel Pin Con-
trol Subsystem for discussion on the attack against PLCs and sharing his pearls
of wisdom with us.

References

1. P. Koopman, “Embedded system security,” Computer, vol. 37, no. 7, pp. 95–97,
2004.

2. S. McLaughlin and P. McDaniel, “SABOT: Specification-based payload generation
for programmable logic controllers,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security, ser. CCS ’12. New York, NY, USA:
ACM, 2012, pp. 439–449.

3. S. E. McLaughlin, “On dynamic malware payloads aimed at programmable logic
controllers,” in HotSec, 2011.



32

4. A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications attack: A case
study of embedded exploitation,” in NDSS, 2013.

5. P. Traynor, K. Butler, W. Enck, P. McDaniel, and K. Borders, “Malnets: Large-
scale malicious networks via compromised wireless access points,” Security and
Communication Networks, vol. 3, no. 2-3, pp. 102–113, 2010.

6. S. Wegner, “Security-analysis of a telephone-firmware with focus on
backdoors,” Bachelor’s thesis, Ruhr-Universität Bochum, 2008. [On-
line]. Available: https://git.fabrik17.de/mrgitlab/embedded-multimedia/raw/
437afd92da4b438f95fa3efad28564a9d0baffbd/Dokumentation/ thesis template.
pdf

7. Z. Basnight, J. Butts, J. L. Jr., and T. Dube, “Firmware modification attacks on
programmable logic controllers,” International Journal of Critical Infrastructure
Protection, vol. 6, no. 2, pp. 76 – 84, 2013.

8. D. Peck and D. Peterson, “Leveraging ethernet card vulnerabilities in field devices,”
in SCADA Security Scientific Symposium, 2009, pp. 1–19.

9. pt, “Oops, I hacked my PBX. Why auditing proprietary protocols matters,” 28th
Chaos Communication Congress, 2011.

10. N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper,
Symantec Corp., Security Response, vol. 5, 2011.

11. D. Beresford, “Exploiting Siemens Simatic S7 PLCs,” in Black Hat USA, 2011.
12. ICS-CERT, “Schneider electric modicon quantum vulnerabilities (up-

date b),” 2014. [Online]. Available: https://ics-cert.us-cert.gov/alerts/
ICS-ALERT-12-020-03B

13. R. Wightman, “Project basecamp at s4,” SCADA Security Scientific Sympo-
sium, 2012. [Online]. Available: https://www.digitalbond.com/tools/basecamp/
schneider-modicon-quantum/

14. Rapid7, “Linksys wrt120n tmunblock stack buffer overflow,” 2014.
[Online]. Available: http://www.rapid7.com/db/modules/auxiliary/admin/http/
linksys tmunblock admin reset bof

15. ——, “D-link hnap request remote buffer overflow,” 2014. [Online]. Available:
http://www.rapid7.com/db/modules/exploit/linux/http/dlink hnap bof

16. O. S. V. D. (OSVDB), “D-link dir-605l wireless n300 cloud router captcha
data http request parsing remote buffer overflow,” 2012. [Online]. Available:
http://www.osvdb.org/86824

17. F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and
T. Holz, “Evaluating the effectiveness of current anti-ROP defenses,” in Research
in Attacks, Intrusions and Defenses, A. Stavrou, H. Bos, and G. Portokalidis, Eds.
Springer, 2014, pp. 88–108.

18. V. Pappas, “kBouncer: Efficient and transparent ROP mitigation,” 2012. [Online].
Available: http://www.cs.columbia.edu/∼vpappas/papers/kbouncer.pdf

19. Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “ROPecker: A generic and
practical approach for defending against ROP attacks,” in Symposium on Network
and Distributed System Security (NDSS), 2014.

20. I. Fratrić, “ROPGuard: Runtime prevention of return-oriented programming
attacks,” 2012. [Online]. Available: http://www.ieee.hr/ download/repository/
Ivan Fratric.pdf

21. L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose, “Stitching the gadgets: On
the ineffectiveness of coarse-grained control-flow integrity protection,” in USENIX
Security Symposium, 2014.

22. Microsoft Corporation, “Enhanced mitigation experience toolkit,” 2014. [Online].
Available: https://www.microsoft.com/emet



33

23. F. Adelstein, M. Stillerman, and D. Kozen, “Malicious code detection for open
firmware,” in 18th Annual Computer Security Applications Conference, 2002. Pro-
ceedings, 2002, pp. 403–412.

24. F. Zhang, H. Wang, K. Leach, and A. Stavrou, “A framework to secure peripherals
at runtime,” in Computer Security-ESORICS 2014, M. Kuty lowski and J. Vaidya,
Eds. Springer, 2014, pp. 219–238.

25. L. Duflot, Y.-A. Perez, and B. Morin, “What if you cant trust your network card?”
in Recent Advances in Intrusion Detection. Springer, 2011, pp. 378–397.

26. A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT: SoftWare-based
attestation for embedded devices,” in 2004 IEEE Symposium on Security and Pri-
vacy. Proceedings, May 2004, pp. 272–282.

27. M. LeMay and C. Gunter, “Cumulative attestation kernels for embedded systems,”
IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 744–760, June 2012.

28. F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann, “A security
framework for the analysis and design of software attestation,” in Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security,
ser. CCS ’13, S. Merz and J. Pang, Eds. New York, NY, USA: ACM, 2013, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/2508859.2516650

29. A. Cui and S. J. Stolfo, “Defending embedded systems with software symbiotes,”
in Recent Advances in Intrusion Detectio: 14th International Symposiumn, R. Som-
mer, D. Balzarotti, and G. Maier, Eds. Springer, 2011, pp. 358–377.

30. J. Reeves, A. Ramaswamy, M. Locasto, S. Bratus, and S. Smith, “Intrusion de-
tection for resource-constrained embedded control systems in the power grid,”
International Journal of Critical Infrastructure Protection, vol. 5, no. 2, pp. 74–83,
2012.

31. F. Abad, J. van der Woude, Y. Lu, S. Bak, M. Caccamo, L. Sha, R. Mancuso, and
S. Mohan, “On-chip control flow integrity check for real time embedded systems,”
in 2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks,
and Applications (CPSNA), Aug 2013, pp. 26–31.

32. A. Francillon, D. Perito, and C. Castelluccia, “Defending embedded systems
against control flow attacks,” in Proceedings of the First ACM Workshop on Se-
cure Execution of Untrusted Code, ser. SecuCode ’09. New York, NY, USA: ACM,
2009, pp. 19–26.

33. L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-grained control-
flow integrity: Towards efficient protection of embedded systems against software
exploitation,” in Proceedings of the 51st Annual Design Automation Conference,
ser. DAC ’14. New York, NY, USA: ACM, 2014, pp. 133:1–133:6.

34. A. Cui, “Red ballon security.” [Online]. Available: http://www.redballoonsecurity.
com

35. Z. Liang, H. Yin, and D. Song, “HookFinder: Identifying and understanding
malware hooking behaviors,” in Proceeding of the 15th Annual Network and
Distributed System Security Symposium (NDSS’08), 2008. [Online]. Available:
http://bitblaze.cs.berkeley.edu/papers/hookfinder ndss08.pdf

36. S. Vogl, R. Gawlik, B. Garmany, T. Kittel, J. Pfoh, C. Eckert, and T. Holz, “Dy-
namic hooks: hiding control flow changes within non-control data,” in Proceedings
of the 23rd USENIX conference on Security Symposium. USENIX Association,
2014, pp. 813–828.

37. Kernel.org, “Pin control subsystem in linux.” [Online]. Available: https:
//www.kernel.org/doc/Documentation/pinctrl.txt



34

38. P. Ghosh, P. S. Hira, and S. Garg, “A method to make soc verification indepen-
dent of pin multiplexing change,” in Computer Communication and Informatics
(ICCCI), 2013 International Conference on. IEEE, 2013, pp. 1–6.

39. L. Walleij, “Pin control subsystem overview,” in Embedded Linux Conference, 2012.
40. R. Spenneberg, M. Brüggemann, and H. Schwartke, “Plc-blaster: A worm living

solely in the plc,” Black Hat Asia, 2016.
41. ICS-CERT, “Abb ac500 plc webserver codesys vulnerability,” 2013. [Online].

Available: https://ics-cert.us-cert.gov/advisories/ICSA-12-320-01
42. ——, “Schneider electric modicon m340 buffer overflow vulnerability,” 2015.

[Online]. Available: https://ics-cert.us-cert.gov/advisories/ICSA-15-351-01
43. ——, “Rockwell automation micrologix 1100 plc overflow vulnerability,” 2016.

[Online]. Available: https://ics-cert.us-cert.gov/advisories/ICSA-16-026-02
44. DigitalBond, “3S CoDeSys, Project Basecamp,” 2012. [Online]. Available:

http://www.digitalbond.com/tools/basecamp/3s-codesys/
45. R. Langner, “To kill a centrifuge: A technical analysis of what stuxnets

creators tried to achieve,” Online: http://www. langner. com/en/wp-
content/uploads/2013/11/To-kill-a-centrifuge. pdf, 2013.

46. V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in SCADA
networks,” Computers & Security, vol. 25, no. 7, pp. 498–506, 2006.

47. A. Baliga, V. Ganapathy, and L. Iftode, “Detecting kernel-level rootkits using data
structure invariants,” Dependable and Secure Computing, IEEE Transactions on,
vol. 8, no. 5, pp. 670–684, Sept 2011.

48. DigitalBond, “WAGO IPC 758/870, Project Basecamp,” 2015. [Online]. Available:
http://www.digitalbond.com/tools/basecamp/wago-ipc-758870/

49. D. Beresford and A. Abbasi, “Project IRUS: multifaceted approach to attacking
and defending ICS,” in SCADA Security Scientific Symposium(S4), 2013.

50. K. R. Wrightman, “Vulnerability Inheritance in PLCs,” 2015.
51. C. A. Gonzalez and A. Hinton, “Detecting malicious software execution in pro-

grammable logic controllers using power fingerprinting,” in Critical Infrastructure
Protection VIII. Springer, 2014, pp. 15–27.

52. L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Return-oriented pro-
gramming without returns on arm,” Technical Report HGI-TR-2010-002, Ruhr-
University Bochum, Tech. Rep., 2010.

53. S. Sparks, S. Embleton, and C. C. Zou, “A chipset level network backdoor: bypass-
ing host-based firewall & ids,” in Proceedings of the 4th International Symposium
on Information, Computer, and Communications Security. ACM, 2009, pp. 125–
134.

54. S. Embleton, S. Sparks, and C. C. Zou, “Smm rootkit: a new breed of os in-
dependent malware,” Security and Communication Networks, vol. 6, no. 12, pp.
1590–1605, 2013.

55. J. Schiffman and D. Kaplan, “The smm rootkit revisited: Fun with usb,” in Avail-
ability, Reliability and Security (ARES), 2014 Ninth International Conference on,
Sept 2014, pp. 279–286.

56. Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel rootkits with
lightweight hook protection,” in Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, ser. CCS ’09. New York, NY, USA: ACM,
2009, pp. 545–554.

57. V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-
pointer integrity,” in USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 2014.



35

58. Y. Kinebuchi, S. Butt, V. Ganapathy, L. Iftode, and T. Nakajima, “Monitoring
integrity using limited local memory,” Information Forensics and Security, IEEE
Transactions on, vol. 8, no. 7, pp. 1230–1242, July 2013.


