
Your Scripts in My Page:
What Could Possibly Go
Wrong?

Sebastian Lekies (@slekies) / Ben Stock (@kcotsneb)

Martin Johns (@datenkeller)

Agenda

The Same-Origin Policy

Cross-Site Script Inclusion (XSSI)

Generalizing XSSI
� Dynamic JavaScript files
� Leaking sensitive data from a JS file

Empirical Study
� Methodology
� Results

Conclusion

http://attacker.org/
Browser

HTML

The Same-Origin Policy
http://attacker.org/	

JavaScript

Server

Client

Same-Origin Policy

The	 Same-Origin	 policy	
restricts	 communication	 of	
active	 content	 to	 objects	
that	share	the	same	origin.	
The	 origin	 is,	 hereby,	
defined	by	the	protocol,	the	
port	 and	 the	 host	 used	 to	
retrieve	the	object.	

“

http://gmail.com/	

The Same-Origin Policy for JavaScript

Inclusion of third-party scripts necessary
� Advertisement, jQuery, ...

Same-Origin Policy relaxed for script inclusion

Included code inherits origin of including site
� both work on same global scope

http://attacker.org/
Browser

<script>	
		//	Override	Array	constructor.	
		function	Array()	{	
				//	Steal	data	here.	
		}	
</script>	
	
<script	src="//gmail.com/contact.json”></script>	

JSON aka JavaScript Hijacking (2006)

[
		[
				"ct“,	
				“John	Doe",		
				"foo@gmail.com“	
],	
		[
				"ct“,	
				“Jane	Doe",		
				"bar@gmail.com“	
]	
]	

contacts.json

https://attacker.org	 https://gmail.com	

Cross-Site Script Inclusion (XSSI)

Previous attacks enabled by browser quirks

Idea: find other ways to leak private data
� Are there dynamic JavaScript files?
� If so, do these files contain user data?
� Can this data be leaked in a similar way?

http://vuln.com/
Browser

Methodology

<script	src=“/dynamic.js”></script>	

Detection of dynamic JavaScript files

http://vuln.com	

Methodology

Registered accounts with 150 popular sites

We investigated each site by…
� …seeding the accounts with personalized data
� …thoroughly interacting with the site with our extension
� …manually investigating the dynamic scripts

Empirical Study

Are there JavaScript files that contain user data?

No. of Domains

Total data set 150

Dynamic scripts based on cookies 49

Contained unique identifiers 34

Contained other personal data 15

Contained CSRF or auth tokens 7

http://attacker.org/

Browser

Cross-Site Script Inclusion
http://attacker.org/	

http://vuln.com/	

<script	src="//vuln.com/dynamic.js”></script>	

Cross-Site Script Inclusion
Leaking data stored in global variables

// local variable at top level
var first_name = "John";

// variable missing the "var" keyword
last_name = "Doe";

// global variable
window.user_email = "john@doe.com";

dynamic.js

console.log(first_name); // John
console.log(last_name); // Doe
console.log(user_email); // john@doe.com

attacker.js

Cross-Site Script Inclusion
Leaking data via global functions

function example() {
 var email = ”john@doe.com";

 window.MyLibrary.doSomething(email);
};

example();

dynamic.js

window.MyLibrary = {};
window.MyLibrary.doSomething = function(email) {
 console.log(email);
};

attacker.js

Can data within JavaScript files be leaked across origin?

Empirical Study - Analysis

No. of
Domains

Exploitable

Dynamic scripts based on cookies 49 40

Contained unique identifiers 34 28

Contained other personal data 15 11

Contained CSRF or auth tokens 7 4

DEMO
a.k.a. we are feeling lucky

Empirical Study - Case Studies
XSSI -> CSRF -> XSS -> Facebook post
� A news site hosted a script containing the CSRF token
� The CSRF token enabled us to send profile change requests
�  In the profile page there was a XSS
� A Facebook auth token was stored inside a cookie

Taking over an account at a file hosting service
� Utilized an Ajax driven Web UI
� An authentication token was required for these XHRs
� The token was provided inside a script file

Preventing XSSI Vulnerabilities
Our attacks are not based on browser-quirks
� Hence, they cannot be fixed on a browser level
� It is very difficult to craft a dynamic script not prone to the attack

Prevent script files from being included by a third-party
� Solution 1: Strict referrer checking (error-prone)
� Solution 2: Use secret tokens

Separate JavaScript code from sensitive data
� Create static JS files and load data dynamically at run time
� The data service can be protected via the SOP

XSSI and Content Security Policy
Recap: CSP is a mechanism for preventing XSS
� …by white listing trusted JavaScript
� …requires all inline scripts to be externalized into script includes

Dynamic inline scripts are not prone to XSSI
� Externalizing the script makes it vulnerable to XSSI
� Do not blindly move script to external files

CSP might make XSSI more wide-spread

Conclusion
We investigated the security of dynamic JavaScript files
� Dynamic generation of JS is wide-spread
� Many dynamic JS files include information based on a user’s session
� Data contained inside script files can be accessed across origins

We conducted a study on 150 popular sites
� One third of these sites use dynamic scripts
� 80% of these sites were vulnerable to XSSI
� Consequences range from privacy issues up to full account
compromise

Introducing CSP will likely make the problem worse

Questions?
kittenpics.org
Sebastian Lekies
@slekies

Ben Stock
@kcotsneb

Martin Johns
@datenkeller

