

Commix: Commix:
Detecting & Exploiting Command Injection Flaws.Detecting & Exploiting Command Injection Flaws.

Anastasios Stasinopoulos {stasinopoulos@unipi.gr}Anastasios Stasinopoulos {stasinopoulos@unipi.gr}
Christoforos Ntantogian {dadoyan@unipi.gr}Christoforos Ntantogian {dadoyan@unipi.gr}
Christos Xenakis {xenakis@unipi.gr}Christos Xenakis {xenakis@unipi.gr}

Whoami?

Anastasios Stasinopoulos (@ancst)

● Ph.D candidate at University of Piraeus → Department of
Digital Systems.

● Member of the Systems Security Laboratory (@ssl_unipi)

● Builder & Breaker.

https://twitter.com/ancst
https://twitter.com/SSL_Unipi/

Introduction.Introduction.

Introduction.

● According to the OWASP, “command injection is an attack in
which the goal, is the execution of arbitrary commands on the
host operating system through a vulnerable application.”

● ...is also referred as “shell injection”, “shell command
injection”, “OS injection”, “OS command injection” etc.

● This attack is possible when an application passes unsafe user
supplied data (i.e forms, cookies, HTTP headers etc) to a system
shell.

● The attacker-supplied OS commands are usually executed with
the same privileges of the vulnerable application.

https://www.owasp.org/index.php/Command_Injection

Are command Are command
injections still alive?injections still alive?

Where may command injections exist?

1. Web Applications (i.e IBM, Sophos, Symantec, LanDesk, Cacti, SquirrelMail, .…)

2. ADSL SOHO routers (i.e D-Link, TP-Link, Linksys,)

3. IP Cameras (i.e TP-Link, D-Link, Vivotek, Zero-IP, ...)

4. Network Printers (i.e Xerox, ...)

5. IP PBX Applications (i.e Asterisk PBX, FreePBX, ...)

6. Raspberry PI based Web Applications

7. Arduino based Web Applications

● Command injection attacks are OS-independent …

● can occur in Windows, Linux, Unix etc.

● … as well as programming language-independent

● may occur in applications written in various programming
languages → C, C++, C#, JAVA, PHP, Perl, Python, Ruby etc.

● … or web-based applications written in Web Application
Frameworks → ASP.NET, CGI, Python Django, Ruby on Rails etc.

Why are command injections still alive?

What causes command What causes command
injection flaws?injection flaws?

...?addr = 127.0.0.1

Separator
Payload

What causes command injection flaws?

GET parameter

 ; ls

The main reason that an application is vulnerable to command injection
attacks, is due to incorrect or complete lack of input data validation.

Analysis of command Analysis of command
injection attacks.injection attacks.

Analysis of command injection attacks.

 1. Results-based command injections.

● The vulnerable application outputs the results of the injected
command.

● The attacker can directly infer if the command injection
succeeded or not.

● Injection results are visible.

 2. Blind command injections.

● The vulnerable application does not output the results of the
injected command.

● Even if the attacker injects an arbitrary command, the results
will not be shown in the screen.

● Injection results are not visible.

Results-based Results-based
command injections.command injections.

Example #1 : “normal.php”.

Example #1 : “normal.php” exploitation.

Blind command Blind command
injections.injections.

Example #2 : “blind.php”.

Example #2 : “blind.php” exploitation.

Time-based technique.

Is based on time delays → The attacker can presume the result of the
injected command.

1. Decides if the application is vulnerable to time-based blind command
injection or not.

2. Determines the length of the output of the injected command.

3. Exports char-by-char the output of the injected command, using a
chain of OS commands (i.e “cut”, “head”, “od” and “tr”).

File-based technique.

Basic Idea : If we are not able to see the results of the execution of an
injected command….

● ...we can write them to a file, which is accessible by us!

What If, web server's root directory is not writable/accessible?

● We can use the temp directories, (“/tmp/” or “/var/tmp/”) to store a
file with the output of the injected command!

● Limitation: Usually, we cannot read files located in these temp
directories through the web application.

● To bypass this limitation, apply the time-based technique to read
the contents of the text file!

● ...is also referred as “tempfile-based technique”.

Commix tool.Commix tool.

General information.

● Commix (a short for command injection exploiter) is a software tool
aiming at facilitating web developers, penetration testers and
security researchers to test web applications with the view to find
bugs, errors or vulnerabilities related to command injection attacks.

● https://github.com/stasinopoulos/commix

● Follow @commixproject.

● Written in Python programming language.

● Python version 2.6.x or 2.7.x is required.

● Cross-platform application

● Linux

● Mac OS X

● Windows (experimental)

● Free Open Source Software.

https://github.com/stasinopoulos/commix
https://twitter.com/commixproject

Installation.

Download commix by cloning the Git repository:

Commix comes packaged on the official repositories of the following
Linux distributions. Use the package manager to install it!

● ArchAssault

● BlackArch

Commix also comes as a plugin, on the following penetration testing
frameworks:

● The Penetration Testers Framework (PTF)

● PentestBox

● Weakerthan

● CTF-Tools

https://archassault.org/
http://blackarch.org/
https://github.com/trustedsec/ptf
http://pentestbox.com/
http://www.weaknetlabs.com/
https://github.com/zardus/ctf-tools

Supported exploitation Supported exploitation
techniques.techniques.

Supported exploitation techniques.

1. Results-based command injections
● 1.1. The classic results-based technique.

● Based on the execution results output.

● 1.2. The dynamic code evaluation technique.
● Based on the eval()'s execution results output.

● Also supports:
● preg_replace() injections via “/e” modifier.
● usort() injections.
● assert() injections.
● str_replace() injections.
● preg_match() injections.

2. Blind command injections

● 2.1. The time-based technique (Blind)
● Based on time delays → Output is inferred char-by-char.

● 2.2. The file-based technique (Semiblind)
● Based on the execution results output, in a random name

text file in “/var/www/”, “/var/www/html/”etc.

● 2.2.1 The tempfile-based technique (Semiblind)
● Based on time delays → Output is inferred char-by-char

from a random named text file in “/tmp/” or “/var/tmp/”
directory.

Supported exploitation techniques.

Overview of the Overview of the
architecture.architecture.

Input
Separators

Output

NO

NO

YES

YES

Vulnerable?

Exploitation
Procedure?

 Classic Eval-based Time-based File-based

ATTACK VECTOR GENERATOR

EXPLOITATION

COMMIX

VULNERABILITY DETECTION

Modules

Architecture overview.

Divided into three main modules:

ATTACK VECTOR GENERATOR
Generates a set of command
injection attack vectors, using the
serparators list (i.e ;,&,|,%0a etc).

VULNERABILITY DETECTION
Performs the command injections
to the target, using the generated
set of attack vectors.

EXPLOITATION
Attempts exploitation procedure,
 If it determines that the
application is vulnerable.

Reducing false Reducing false
positives.positives.

Reducing false positives.

1. Regarding results-based command injections.
● Prints three times a randomly generated string, combined with the result

of a mathematic calculation of two randomly selected numbers.

● Must take as response → union of the strings combined with the result of
the mathematic calculation (i.e KVCGCQ52KVCGCQKVCGCQ)

2. Regarding blind command injections.
● Problem: High probability of false-positive results, due to random or

accidental response delays of the target host.
● Calculates the average response time of the target host.

● The average response time, is added to the default delay time which is
used to perform time-based attacks.

Functionality.Functionality.

HTTP headers.

● Commix allows us to provide our own HTTP Referer header,
HTTP User-Agent header, Cookies values, as well as extra
custom HTTP headers.

● It also supports, command injections via all these HTTP Headers
on every described technique!

Enumeration options.

The enumeration options, can be used to enumerate the target
host.

● Retrieve current user name.
● Retrieve current hostname.
● Check if the current user has root privileges.
● Retrieve system information.

● Operating system and hardware platform.
● Retrieve system users list.
● Retrieve system users privileges.
● Retrieve system users password hashes.

● Limitation: The “/etc/shadow” file must be readable by current user.

Alternative os-shell.

● Bypasses target host's bash limitation.

● ...restrctions of bash commands i.e “cat”, “echo”, etc.

● At this moment only python alternative is fully supported on
every injection technique.

● Future plan support → PHP/Perl/Ruby alternative os-shells

Hint: Pwn @VulnHub's “Persistense” vm via this os-shell.

https://www.vulnhub.com/entry/persistence-1,103/

We <3 shellz!

1. Netcat (nc) reverse shells → Reverse shells to netcat.

2. Netcat-without-netcat reverse shells → Reverse shells to
netcat... without using netcat.

Hint: Check “usage examples” wiki page → several test cases /
attack scenarios.

3. Write/Upload a web-shell on target host via file access options.

● Metasploit PHP meterpreter web shell.

● Weevely PHP web shell.

● ...suggest yours! → Fork & commit.

Hint: Check “upload shells” wiki page.

https://github.com/stasinopoulos/commix/wiki/Usage-Examples
https://github.com/stasinopoulos/commix/wiki/Upload-shells

Meterpreter
PHP Reverse
Shell

Netcat
Reverse
Shell

We <3 shellz!

Modules

1. The ICMP exfiltration module.

● This module is designed to provide a server-side component to
receive and store files, exfiltrated over ICMP echo request packets.

● Hint: Pwn @VulnHub's “Persistense” vm via this module.

3. Develop and easily import your own modules.

● Increase the capabilities of commix and/or adapt it to our needs.

Hint: Check “Module Development” wiki page.

2. The 'Shellshock' module.

● This module is designed to affect a bash vulnerability which allows an
attacker to remotely execute shell commands by attaching malicious
code in environment variables used by the operating system.

Hint: Pwn @Pentesterlab's “CVE-2014-6271/Shellshock” vm via this
module.

https://www.vulnhub.com/entry/persistence-1,103/
https://github.com/stasinopoulos/commix/wiki/Module-Development
https://pentesterlab.com/exercises/cve-2014-6271

Evaluation.Evaluation.

Command injection testbeds.
 1. Damn Vulnerable Web App

 2. Xtreme Vulnerable Web Application

 3. OWASP: Mutillidae

 4. bWAPP: bee-box (v1.6)

 5. Persistence

 6. Pentester Lab: Web For Pentester

 7. Pentester Lab: CVE-2014-6271/Shellshock

 8. Pentester Academy: Command Injection ISO: 1

 9. Pentester Lab: Rack Cookies and Commands injection

 10. SpiderLabs: MCIR (ShelLOL)

 11. Kioptrix: Level 1.1 (#2)

 12. Kioptrix: 2014 (#5)

 13. Acid Server: 1

 14. Flick: 2

 15. w3af-moth

 16. commix-testbed

http://www.dvwa.co.uk/
https://github.com/s4n7h0/xvwa
https://www.owasp.org/index.php/Category:OWASP_Mutillidae
http://www.itsecgames.com/
https://www.vulnhub.com/entry/persistence-1,103/
https://www.vulnhub.com/entry/pentester-lab-web-for-pentester,71/
https://pentesterlab.com/exercises/cve-2014-6271
https://www.vulnhub.com/entry/command-injection-iso-1,81/
https://pentesterlab.com/exercises/rack_cookies_and_commands_injection
https://github.com/SpiderLabs/MCIR/tree/master/shellol
https://www.vulnhub.com/entry/kioptrix-level-11-2,23/
https://www.vulnhub.com/entry/kioptrix-2014-5,62/
https://www.vulnhub.com/entry/acid-server-1,125/
https://www.vulnhub.com/entry/flick-2,122/
https://github.com/andresriancho/w3af-moth/
https://github.com/stasinopoulos/commix-testbed
https://github.com/s4n7h0/xvwa

0-day d0-day disclosure.isclosure.

0-day #1 disclosure

WP-Plugin-Grunt - https://github.com/michaelbontyes/wp-plugin-grunt

“A Wordpress plugin to manage your project using Grunt.”

● Vulnerable file → https://github.com/michaelbontyes/wp-plugin-grunt/blob/master/wp-plugin-grunt.php

https://github.com/michaelbontyes/wp-plugin-grunt
https://github.com/michaelbontyes/wp-plugin-grunt/blob/master/wp-plugin-grunt.php

0-day #2 disclosure
Sabai Technology - http://www.sabaitechnology.com/

“Sabai's goal is to make VPN routers and other VPN network technology extremely easy to use and
accessible to the average home or business at an affordable price.”

● OpenVPN-AS (v1) : A Sabai version of Open-VPN Access Server.

● Vulnerable file → https://github.com/sabaitechnology/openvpnas/blob/master/bin/shell.php

● VPNA (v1) : Configuration tools for a VPN accelerator.

● Vulnerable file → https://github.com/sabaitechnology/vpna/blob/master/www/bin/shell.php

http://www.sabaitechnology.com/
https://github.com/sabaitechnology/openvpnas/blob/master/bin/shell.php
https://github.com/sabaitechnology/vpna/blob/master/www/bin/shell.php

Bugs and enhancements

Except for pull requests, forks, or stars non-developers can
open an issue @github.

Things i'd really appreciate:

● Bug reports

● Preferably with error logs!

● Enhancements

● Suggestions on how i can improve commix for you !?

● Descriptions of how you use it !?

https://github.com/stasinopoulos/commix/issues

Any questions?Any questions?

@ancst

https://github.com/stasinopoulos

stasinopoulos@unipi.gr | GPG : 0x2D40CEBF804F5133

https://stasinopoulos.github.io/

https://twitter.com/ancst
https://github.com/stasinopoulos
mailto:stasinopoulos@unipi.gr
https://stasinopoulos.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

