

Who are we?

- All Principal Security Analyst @Riscure
- Cristofaro Mune
 - Keywords: Software, Reversing, Exploit, Fault Injection...
 - Previous work on Mobile and Embedded Exploitation
- Eloi Sanfelix
 - Keywords: Software security, RE, Exploiting, SCA/FI, CTF
- Job de Haas
 - Keywords: Embedded, Side Channel Analysis, Fault Injection
 - All-round from network pentester to SoC evaluator

What and why...

- White-Box cryptography → Protect keys in untrusted environment
- Increasingly relevant in security solutions
- The idea: Porting Hardware attacks to Software...

... it works! Extremely effective approach

- Relevant not only on WBC:
 - Potentially applicable to all Software-based crypto solution

Key recovery attacks

Conclusion

Ø

Ø

Sign of the times...

٩Þ

Sign of the times...

Ø

Ø

White-Box Cryptography

- Protection against key extraction in the white-box security model
- A technique that allows merging a key into a given crypto algorithm:
 - Described for the first time in 2002 by S. Chow et al.
 - Available for AES and DES
- Lookup tables used for applying mathematical transforms to data
- Remove the distinction between keys and crypto algorithm code.

Software in the White-Box context

Software Protection

Obfuscation

- Control-flow obfuscation
- Data obfuscation

Anti-analysis and anti-tamper

- Detect debugger/emulator
- Detect hooks and modifications

Device binding

• Bind code to current device

How does WBC work?

Image source: whiteboxcrypto.com

WBC Construction: partial evaluation

WBC Construction: encoding

definit(self,	lut, key, inbij, outbij):	
<pre>selflut = []</pre>		
<pre>for i in xrange(len(lut)): ii = inbij.inv(i) si = lut[ii ^ key] msi = outbij.apply(si) selflut.append(msi)</pre>		

Example code

```
void aes128 enc wb final(unsigned char in[16], unsigned char out[16])
   memcpy(out, in, 16);
   for (size_t i = 0; i < 9; ++i)
   {
       ShiftRows(out);
       for (size t j = 0; j < 4; ++j)
       {
           unsigned int aa = Tyboxes[i][j * 4 + 0][out[j * 4 + 0]];
           unsigned int bb = Tyboxes[i][j * 4 + 1][out[j * 4 + 1]];
           unsigned int cc = Tyboxes[i][j * 4 + 2][out[j * 4 + 2]];
           unsigned int dd = Tyboxes[i][j * 4 + 3][out[j * 4 + 3]];
           out[j * 4 + 0] = (Txor[Txor[(aa >> 0) & 0xf][(bb >> 0) & 0xf]][Txor[(cc >> 0) & 0xf][(dd >> 0) & 0xf]])
                           ((Txor[Txor[(aa >> 4) & 0xf][(bb >> 4) & 0xf]][Txor[(cc >> 4) & 0xf][(dd >> 4) & 0xf]]) << 4);
           out[j * 4 + 1] = (Txor[Txor[(aa >> 8) & 0xf][(bb >> 8) & 0xf]][Txor[(cc >> 8) & 0xf][(dd >> 8) & 0xf]])
                           ((Txor[Txor[(aa >> 12) & 0xf][(bb >> 12) & 0xf]][Txor[(cc >> 12) & 0xf][(dd >> 12) & 0xf]]) << 4);
           out[j * 4 + 2] = (Txor[Txor[(aa >> 16) & 0xf][(bb >> 16) & 0xf]][Txor[(cc >> 16) & 0xf][(dd >> 16) & 0xf]])
                           ((Txor[Txor[(aa >> 20) & 0xf][(bb >> 20) & 0xf]][Txor[(cc >> 20) & 0xf][(dd >> 20) & 0xf]]) << 4);
           out[j * 4 + 3] = (Txor[Txor[(aa >> 24) & 0xf][(bb >> 24) & 0xf]][Txor[(cc >> 24) & 0xf][(dd >> 24) & 0xf]]) |
                           ((Txor[Txor[(aa >> 28) & 0xf]](bb >> 28) & 0xf]][Txor[(cc >> 28) & 0xf][(dd >> 28) & 0xf]]) << 4);
       <u>}</u>
   ShiftRows(out);
   for (size_t j = 0; j < 16; ++j)
   {
       unsigned char x = Tboxes_[j][out[j]];
       out[j] = x;
```

Source: https://doar-e.github.io/

External encoding

Potential attacks on WBC (I)

Data manipulation – Fault Injection (FI)

Potential attacks on WBC (II)

Process manipulation – Fault injection (FI)

Potential attacks on WBC (III)

Side channel analysis (SCA) / intermediate data analysis

WBC attack literature

- Attacks for all academic WBC proposals
 - Focus on key extraction
 - Type of transformations assumed known
 - Concrete transformation and key unknown
- In real life...
 - we do not know much about the design!
- Not many publicly documented SCA/FI on WBC
 - Implementation-specific DFA paper in 2002 [2]
 - Recent generic DPA-like attack in [3]*

Fault Injection Attacks

Differential Fault Analysis

DFA computation for DES

$$\mathsf{R}_{16} = \mathsf{F}(\mathsf{R}_{15}, \mathsf{K}_{16}) \oplus \mathsf{L}_{15}$$

DFA computation for DES

$$R_{16} = F(R_{15}, K_{16}) \oplus L_{15}$$

$$R'_{16} = F(R'_{15}, K_{16}) \oplus L_{15}$$

$$XOR$$

 $R_{16} \oplus R'_{16} = F(R_{15}, K_{16}) \oplus F(R'_{15}, K_{16})$

Divide and conquer

How to port DFA to WBC?

50

DFA attack process

1. Location of fault injection point

2. Fault injection and ciphertext collection

Multiple options available

3. Fault analysis

- We use our own tools
- Some AES DFA examples on GitHub

Example target: wbDES

- Binary DES encryption WBC
 - Challenge posted at whiteboxcrypto.com
- DES key hidden within lookups
 - Key value is 0x30 0x32 0x34 0x32 0x34 0x36 0x32 0x36
- We'll demo all our attacks on this target

STEP 1: Locating the injection point

Event counter

STEP 2: Fault injection

1. Select target event within target region

2. Modify data read by that event

```
def hook_mem_access_fault(uc, access, address, size, value, user data):
   global output, evtId, fault
   evtId += 1
   pc = uc.reg read(UC X86 REG EIP)
                                                        If event id within target region
   targetId = user_data[0]
   if access == UC MEM READ:
       tvp = "r"
       value = u32(uc.mem read(address, size))
       if should_fault(evtId, targetId, fault, address, size)
           print "FAULTING AT ", targetId
           # Already faulted this time
           fault = False
           # Random bit in this event
           bitfault = 1 << random.randint(0, size*8 -1)</pre>
           uc.mem_write(address, pack(value ^ bitfault, size))
                     Invert a random bit
```

STEP 3: Analysis

DEMO

Summary DFA results

Implementation	Fault injection	Results
Wyseur (DES)	Unicorn script	Broken in 40 faults
Hack.lu 2009 (AES)	Debugger script	Broken in 90 faults
SSTIC 2012 (DES)	Modified lifted code	Broken in 60 faults
Karroumi (AES)	Modified source code	Broken in 80 faults
NSC 2013 (encoded AES)	N/A	Not broken – encoding makes DFA not feasible

Side Channel Attacks ...on WBC

What is a DPA attack?

Differential Power Analysis attack

First proposed ~1998 by Paul Kocher to attack on smart cards:

Measuring power consumption of a crypto execution

Take multiple measurements for different inputs

✓ Infer information about the key from the difference of these

Differential trace

Hypothesis testing

Divide and conquer

Generalization of differential SCA attacks

To our surprise....

It works on White Box Crypto out-of-the-box!!!

SCA attack process

1. Instrument WBC to collect "measurements"

• Again:

0.

- 2. Execute WBC with random inputs multiple times
- 3. Collect "measurement input/output pairs" in useable form
- 4. SCA Analysis

STEP1: Capture measurement

- Grab the data using any method that fits your target
 - Instrument execution (eg. PIN, Valgrind)
 - Capture stack snapshots per crypto round (Hooking, debugger)
 - Use emulators and record (QEMU, Unicorn, PANDA)
- Capture any information during execution that might leak
 - All reads/writes to memory
 - Lower bits of addresses of memory accesses
 - All register contents

STEP2+3: Execute + Collect

- Provide/inject random input data, capture output data
 - Program arguments
 - Use instrumentation from STEP 1
- Store it in a way that allows testing key guesses
 - Store as single bit samples
 - Assure alignment between multiple captures

STEP 4: SCA Analysis

Same target as for DFA: wbDES

Same hidden key: 0x30 0x32 0x34 0x32 0x34 0x36 0x32 0x36

Summary SCA results

Implementati on	Attacked intermediate	Results	Results NXP [3]
Wyseur	Round output	Broken in 75	Broken in 65
(DES)		traces	traces
Hack.lu 2009	S-Box output	Broken in 16	Broken in 16
(AES)		traces	traces
SSTIC 2012	Round output	Broken in 16	Broken in 16
(DES)		traces	traces
Karroumi (AES)	S-Box and GF(256) inverse	Broken in ~2000 traces	Broken in ~500 traces
NSC 2013 (encoded AES)	N/A	Not broken	Not broken – encoding makes DPA not feasible

What does it mean?

No detailed knowledge required

- Of WBC implementation
- Where the WBC is processed exactly

No manipulation required

A secret random input/output encoding is the only barrier But:

These random encodings do not work for many real world applications

ls White-Box Crypto dead?

Is WBC broken and useless?

- SCA/FI on standard WBC very effective:
 - Very limited knowledge required
 - RE skills might be needed
 - Countermeasures and risk mitigation required
- Broken several open-source and commercial WBC
 - Commercial implementations typically require more RE skills
- But...
 - Not regular software crypto \rightarrow more complex attacks
 - Software protection layers can be a deterrent
 - With renewability it can be good enough

How to make it stronger?

Robustness against advanced SW RE

Robustness against key extraction attacks (SCA, FI, algebraic, ...)

But how?

Side Channel Analysis attacks

- Must prevent statistical dependence between intermediates and key
- Typical countermeasures based on randomness difficult in white-box scenario

Differential Fault Analysis attacks

- Double-checks on encoded data → might be bypassed if detected!
- Carry redundant data along computation?
- Break fault models by propagating faults?

Do you have any other ideas?

riscure Challenge your security

Thank you!!

eloi@riscure.com @esanfelix mune@riscure.com @pulsoid

dehaas@riscure.com

References

[1] <u>http://crypto.stanford.edu/DRM2002/whitebox.pdf</u>

[2] <u>http://crypto.stanford.edu/DRM2002/drm1.pdf</u>

[3] <u>https://eprint.iacr.org/2015/753</u>

[4] https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf

[5] <u>https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf</u>