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Abstract. Since recent years, more and more tasks in personal data
processing are performed by smartphone applications. Users store and
manage an increasing amount of sensitive information inside these apps
and expect the data to be available across devices and platforms. Applica-
tion developers, on the other hand, are pressed to deliver new applications
faster and with more features. As a consequence, they outsource tasks
such as backend provisioning to specialized service providers.
In this paper, we perform a study on the security of Backend-as-a-Service
(BaaS) and its practical use in real-world Android and iOS applications.
As we show, many apps embed hard-coded credentials, putting not only
the user’s data, but the whole platform at risk. We show that with
current tools attackers can gain access to huge amounts of sensitive data
such as millions of verified e-mail addresses, thousands of health records,
complete employee and customer databases, voice records, etc. Often, one
can manipulate, and delete records at will. Some BaaS instances even
suffer from remote code-execution vulnerabilities.
We provide HAVOC, a fully-automated tool for finding potentially vul-
nerable applications and a fully-automated exploit generator that extracts
the required credentials from the app and checks their validity with the
BaaS backend. We analyzed over 2,000,000 applications from the Google
Play Store and alternative markets and found over 1,000 backend cre-
dentials, many of them re-used in several applications. In total over all
apps, we found that more than 18,670,000 records with over 56,000,000
individual data items were freely accessible.

1 Introduction

Smartphone applications are used to manage a broad variety of personal data
items. Users store their personal notes, contacts, expenses, and even health
records on their phones to have them handy in every situation. Modern apps
therefore provide convenient mechanisms for synchronizing their data between
devices and platforms. Even if a hardware failure destroys one device, the user
still has access to his data from a replacement device or possibly a web interface.

Such features, however, require applications to store their data remotely, even
if the application does not offer so-called social features like sharing the data
with other people on the Internet. But developing and maintaining backend-
solutions for data storage is time-consuming and costly. Furthermore, it can



significantly increase app-development costs and time to market. Many application
developers do not have a strong background in database development and server-
side languages and platforms such as PHP, or ASP.net. This is why a number of
companies now provide fully maintained and readily-usable backend solutions
that application developers can integrate into their apps with just a few lines
of code. This approach promises to leave all the effort of actually running the
backend with the respective provider and is called Backend-as-a-Service (BaaS).
Often, such services also include ready-made solutions for common tasks such
as user authentication, storing key-value pairs, social-media integration or push-
notifications. BaaS services are provided via specialized software development
kits (SDK) and application programming interfaces (APIs) for easy integration.

The simplicity of these services from the application developer’s point of
view has given rise to a market of multiple competing BaaS providers. The
most widely used BaaS providers are Parse.com (recently bought by Facebook)1,
CloudMine2, and Amazon Web Services3. In this paper, we evaluate the security
of the most widely used BaaS solutions in real-world Android and iOS applications.
We concentrate on the three biggest competitors at the time of writing: Parse,
CloudMine and Amazon AWS. We found that while all three BaaS service
providers offer security features that would allow for secure data storage, their
defaults are mostly alarmingly insecure. Application developers usually accept
these defaults for convenience, failing to include appropriate means of protection
such as access control or data encryption. By default, most BaaS solutions require
an application only to authenticate using an ID that uniquely identifies the app,
and a so-called “secret” key, used to indicate that the app uses the ID legitimately.
These credentials, however, neither authenticate a device nor a user. They merely
authenticate the app as such and are therefore shared between all installations of
this app. As we show, adversaries can extract these two values from apps with
ease, allowing them to easily forge a malicious application, which inherits the
very same backend-privileges that the original application had. If the original
application was able to list all records of a customer database, the impersonator
can do so as well.

In theory, all BaaS providers provide documented techniques that layer
additional security mechanisms on top or at least minimize the privileges of the
application. An app that, e.g., uses a BaaS to store crash reports does not need to
operate with privileges to read this data back, delete records, or even manipulate
the database schema. These actions only need to be taken by the developer
himself through separate channels such as the administrative web-interfaces that
many BaaS providers offer - and never through the normal mobile applications
distributed to end-users. Developers, however, oftentimes do not use the features
for restricting access, but only invest the minimal effort required to build a
functionally working application. As a consequence, not only the end users’ data
is left at risk, but the respective applications and even backend servers are readily

1 https://www.parse.com/
2 https://cloudmine.me/
3 http://aws.amazon.com/de/mobile/
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susceptible for data manipulation, exploitation, and misuse. In our study, we find
millions of verified e-mail addresses, hundreds of employee- and customer records,
thousands of health records, and other highly privacy-sensitive data items. We
find servers that allow remote code execution, arbitrary storage misuse, and data
manipulation at will.

Previous work [11] has already identified a number of constant Amazon AWS
keys in applications downloaded from the Google Play Store. We, however, show
that the problem is neither limited to Amazon AWS, nor to constant keys. Keys
that are obfuscated or computed at runtime share the same issue. Not only can
they as well be easily reconstructed by attackers, but obfuscated keys instead
fool the often simpler syntactic security checks that search for such keys when
new apps are submitted to an app store—security by obscurity in its perfection.

With this work we expose HAVOC, a fully-automatic exploit generator.
HAVOC not only finds simply embedded credentials based on static analysis but
also uses a hybrid (static/dynamic) analysis for cases where keys are computed
at runtime. This allows HAVOC to find keys which cannot be recognized by
simple pattern matching as proposed in [11]. Overall, this paper presents the
following original contributions:

– The first comprehensive security evaluation of several popular BaaS providers
and APIs as well as their use in real-world Android and iOS applications,

– a fully-automatic and efficient scanning tool that identifies Android applica-
tions which use BaaS APIs, even if the app was obfuscated,

– a fully-automatic exploit generator that extracts the necessary credentials
from an Android application and verifies if the credentials are still valid with
the BaaS provider, and

– a set of proposed mitigation techniques to overcome the vulnerabilities laid
out in this paper.

The remainder of this paper is structured as follows: Section 2 gives background
information on the most popular BaaS frameworks and providers. In Section 3,
we present HAVOC, our fully automated exploit generator. In Section 4, we
evaluate our findings and their possible implications on security and privacy. Our
responsible disclosure process is discussed in Section 5, while Section 6 presents
recommended mitigation strategies against the vulnerabilities we discovered.
Section 7 gives an overview of related work, Section 8 outlines our planned future
work, and Section 9 concludes the paper.

2 Background

This section gives some background information on the most important BaaS
providers on the market: Parse.com, CloudMine, and Amazon AWS. We first
explain the basic authentication concept employed by all three providers. After-
wards, we discuss the individual details of the respective services.



2.1 Basic Authentication

All three BaaS providers use the same concept of application ID and secret key
for basic authentication. The application ID uniquely identifies the app and the
tenant to which it belongs on the back-end system. The secret key serves as
a proof that the application that makes the request is actually authorized to
access the database associated with the given application ID. One can think of
these two values as user name and password. The key difference, however, is that
they do not identify a user or a device, but an app. All copies of the app share
the same credentials, regardless of where they are installed and who uses them.
The security mechanism solely relies on these credentials only being known to
trusted applications which only perform intended operations on the database.
If an attacker is able to extract these credentials, he can easily craft an own
application, which uses these credentials to authenticate against the backend and
impersonates the original application. His own (potentially malicious) application
inherits all privileges of the original app.

2.2 Parse.com

The Parse API allows an application developer to store key/value pairs in tables
with very little effort. Listing 1.1 shows how to store the value 100 for the key
playerName in a table called GameScore.

Besides storing custom key/value pairs, the Parse.com API offers specialized
functions for common backend tasks such as user management. To ease application
development, the Parse.com API offers functions to register new users and
authenticate existing ones by checking a given combination of user name and
password. Internally, ParseUsers are stored in a normal key/value table in the
very same backend that also hosts the user tables. The ParseUser class represents
a single user account, i.e., a single row in the pre-defined user table. By default,
accounts have a number of properties such as a user name, an e-mail address, and
a password. One can thus use the very same query functions that are available
on user-defined tables with the system-provided user table as well. By default,
queries on the user table will return all data fields except for the password. This
means that, while passwords are protected, all other data items such as the e-mail
addresses and further application-specific profile data can be retrieved using
simple API calls. As the data is protected only by application authentication, if

1 // connection to the backend
2 Parse.initialize(this , APPLICATION_ID , CLIENT_KEY);
3 // access table ’GameScore ’
4 ParseObject gameScore = new ParseObject("GameScore");
5 // access record ’playerName ’ from ’GameScore ’
6 String playerName = gameScore.put("playerName", 100);

Listing 1.1: Code Snipped necessary for accessing a particular record in
database stored in the Parse backend



an attacker can easily extract the application ID and client key from the original
application, he can use both to forge an ‘authenticated’ malicious application
that, for instance iterates over all user records and dumps all profile data.

The same issue is shared by the user-defined tables. By default, they can
freely be read as long as the application has been ‘authenticated’. In contrast
to the user table, user-defined tables can by default even be written freely by
default, just like in the example above. The Parse.com backend offers a number
of configuration options to mitigate the above problems. When saving a new
record, for instance, the application can attach an access-control list (ACL) which
restricts read and/or write access to that record to the currently logged-in user or
specific roles such as administrators. This connects the data tables to Parse.com’s
built-in user-management system. Once a user has been authenticated using
this mechanism, his identity can be matched against the ACL of a table. The
developer can configure that certain tables may only be read by authenticated
user ‘Bob’, and not by ‘Alice’ or an unauthenticated user. ACLs can be defined
on the level of tables and records. Records created by Bob can thus be stored in
the same table as Alice’s records without necessarily becoming visible to Alice.
The default settings, however, allow arbitrary accesses to all tables and records
except for very few restrictions such as the password field of the user table. A
developer who simply uses a code snippet from a tutorial without reading the
manual any further is thus likely to inadvertently put his data at risk.

2.3 CloudMine

The CloudMine backend service is very similar to Parse.com in principle. Data
storage is done using developer-implemented classes that are derived from a
CloudMine base class, as shown in Listing 1.2. In contrast to Parse, objects in
CloudMine are divided into application objects and user objects. Application
objects can be read by the application regardless of whether a user is currently
authenticated or not. User objects are tied to the currently logged-in user. This
means that accessing user objects requires the log-in data of the respective user
and is thus not vulnerable to the attacks presented in this paper. While the
distinction between application objects and user objects puts a direct emphasis
on keeping sensitive data local to its owner’s user account, it offers less flexibility
than Parse.com’s ACL model. It also requires developers to correctly classify
objects into one of the two categories.

Just like Parse.com, CloudMine also offers a user-management table with
respective API support for signing up new users and authenticating existing
ones. Both platforms share the same basic concept of how user accounts are
stored. In both systems, the user table is a regular table and can be queried as
such. CloudMine also protects the user’s password. For an attacker, CloudMine,
however, has the advantage that it provides API methods to retrieve all application
objects, regardless of their name or type. This API support allows one to obtain
data for tables which are not used in the current application under analysis, and
for which one thus does not know the table name. Such tables might still contain



1 //user class definition
2 public class Order extends CMObject {
3 private String orderNo;
4 public Order () { } // required by CloudMine
5 public Order(String orderNo) {
6 this.orderNo = orderNo;
7 }
8 }
9

10 //store user elements to the cloud
11 CMApiCredentials.initialize(APPLICATION_ID , CLIENT_KEY ,

getApplicationContext ());
12 ClassNameRegistry.register("Order", Order.class);
13 Order order = new Order("123 -456");
14 CMStore.getStore ().saveObject(order1);

Listing 1.2: CloudMine Example for Storing user data

data of interest to an attacker. In Parse, one would need to know the respective
table names from some external source to perform the corresponding queries.

2.4 Amazon AWS

The Amazon Web Services (AWS) are a collection of backend services hosted on
the Amazon cloud. They are commercially available to developers and consist of
various products such as EC2 for running virtual machines, S3 for storing data,
and SWS for sending e-mail messages.

Dynamo Amazon Dynamo is part of AWS, the Amazon Web Services. It provides
users with a high-availability key/value store similar to the service of Parse.com.
The data inside Dynamo is represented and queried as JSON documents, i.e., one
table row corresponds to one JSON document, and a field corresponds to a JSON
attribute. To simplify the use by Android and Java developers, Amazon provides
an object mapper that automatically transfers objects to JSON documents and
vice versa.

To use an AWS service such as Dynamo from an application, the application
must authenticate against Amazon’s servers by providing its application ID and
secret key. This level of authentication is similar to the one required by Parse.com.
If a developer, however, specifies his root AWS credentials, which provide full
access to all his AWS services, all records inside his Dynamo database and all
their attributes are freely readable. Since AWS uses a Single-Sign-On system,
such a mistake can not only put the database backend at risk, but also e.g.,
virtual machine instances hosted on EC2. To obtain access, an attacker only
needs to extract the ID and the key from the application.

If an application developer uses Dynamo to store security-sensitive information,
he can optionally enable encryption. With this feature, all fields inside the
respective table (except for the primary key) are encrypted and exclusions from
this rule must be explicitly defined using a DoNotEncrypt annotation. However,
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Fig. 1: Amazon AWS Credential Handling

the encryption client for Java does not yet support all data types available in
Dynamo and the developer is left with the task of storing and managing his
encryption keys. All these factors make the security features less attractive to
developers.

Amazon AWS: S3 The Amazon Simple Storage Service (S3) offers easily
accessible object storage to application developers. S3 can be thought of as a
web-based file system for mass data. For large amounts of unstructured data,
the service is assumed to scale better than traditional databases, but on the
downside leaves data control and management to the application developer. In
particular, it is up to the developer to ensure the integrity of concurrent writes
and the correct definition of access-control policies.

To access S3 buckets (essentially top-level directories) from within an applica-
tion, the application needs to authenticate using its application ID and secret
key. Similarly to the other features of AWS, using the developer’s default AWS
credentials instead of special-purpose credentials with restricted permissions, as
would be provided by the Amazon Identity and Access Management (IAM), leads
to tremendous security risks. The default credentials have full access to all S3
buckets associated with the ID. This directly allows an attacker who successfully
extracted the application ID and the corresponding secret key from a legitimate
application to read, write, and delete arbitrary objects on the whole S3 storage
associated with that app.

The problem is aggravated by system-level features that rely on the integrity
and confidentiality of the S3 buckets. Amazon Elastic Beanstalk, for instance,
is a web-application deployment and hosting service that stores its applications
as war files inside an S3 bucket. If an attacker gains access to that bucket, he
can retrieve sensitive configuration information such as credentials for further
back-end services or even inject his own code. This code will then be executed



by Amazon’s servers just like legitimate user code uploaded by a regular user of
Elastic Beanstalk.

Amazon AWS: SNS The Amazon Simple Notification Service (SNS) allows
applications to register the phone in a broadcast channel. The developer can then
send messages to the enlisted phones. When a message is received, the Android
operating system will display it in the notification bar. The developer can freely
decide which text to send to the registered phones. When the user clicks on the
message, a customizable intent is executed (originally defined during channel
subscription). A benign auction application, for instance, could use this feature
to notify the user when the auction is going to expire or when a higher bid has
been placed on an item.

If an attacker is able to extract the developer’s credentials from the app, he
can, in the worst case, send push notifications to all registered phones. The users
cannot distinguish such rogue messages from benign ones; both are displayed
exactly in the same style. To the operating system or the app, there is no difference.
Naturally, rogue push notifications are an attractive means for scamming or social
engineering.

Securing AWS Access Hard-coded root credentials are a security risk as they
allow full access to a developer’s AWS instance regardless of the concrete service
to be used. Credentials extracted from an app that uses S3 can thus also be
used to access virtual machines run in Amazon’s Elastic Compute Cloud (EC2).
Therefore, these credentials should never be distributed to untrusted clients. Still,
clients need to somehow authenticate against their respective AWS services.

This issue can be solved using the Amazon Identity and Access Management
(IAM) system (see Figure 1). IAM can be used to derive new keys that are valid for
the same application (and thus same backend service), but which have restricted
permissions. While the root key can freely perform all supported operations on
the backend, an IAM key might, for instance, not be able to delete any data.
This system even allows developers to specify fine-grained policies on their AWS
objects such as certain records or attributes.

Having said so, the use of IAM requires additional configuration effort. A
developer needs to know the IAM concepts, needs to thoroughly read the extensive
documentation, or at least the relevant parts of it, and then implement the
appropriate policies. On the other hand, if he just integrates his root credentials
into the app, using Dynamo is rather easy and the time-to-market is decreased,
leaving developers with dangerously wrong incentives.

Even when using IAM, this still requires credentials to be hard-coded into
the respective application, which makes it hard to change or rotate them over
time. To mitigate this problem, AWS offers temporary credentials. The Security
Token Service is capable of deriving these token from an IAM credential on a
trusted server running a so-called Token Vending Machine (TVM). Only this
trusted server knows the original IAM credential. Clients first contact the server



to obtain their temporary ID and key and then use these credentials to access to
AWS services as normal.

While using IAM with a TVM can be considered a best-practice solution
in terms of security, it is not the default implementation variant. The official
tutorials on using AWS on Android on Amazon’s developer website provide
code snippets with placeholders for ID and secret key. A developer pressured on
time-to-market might thus simply enter his root credentials there and completely
miss the security concept. Furthermore, using a TVM requires the developer to
perform a variety of steps on his own: He needs to build the TVM client and
server components from samples shipped with the SDK, and then install and
run the TVM server on Elastic Beanstalk. In the worst case, this requires the
developer to first read about and understand Java Server Pages, and Elastic
Beanstalk, frameworks and concepts he would probably never have gotten in
touch with if it had not been for the TVM. The usual developer might easily
back away from such additional effort that increases security, but does not offer
any new features for his app. Furthermore, for using more advanced features
such as policy objects (i.e., access control on individual objects on AWS), the
TVM samples need to be extended by the app developer. By default, only basic
features are available in the TVM samples.

Amazon Cognito provides a more recent alternative to TVMs. Cognito provides
user authentication as well as temporary credentials with limited access privileges
as a readily-usable solution. This removes the effort to build and set up the TVM.
It still requires additional developer actions such as configuring identity pools,
but is by far more declarative and simple than TVMs. Since Cognito is rather
new and not yet known to the majority of developers, many apps, however, still
use hard-coded root credentials or TVMs.

3 Fully-Automatic Exploit Generator

To help assess whether an app that uses BaaS services does so securely, we
developed HAVOC, a fully-automated exploit-generation tool consisting of three
phases, see Figure 2. First it identifies whether a given application uses one of the
supported BaaS libraries. Second it extracts the credentials required for accessing
the backend from the app. For all three target services, this is some pair of ID
and key. Lastly, HAVOC collects other useful information such as the names of
tables queried inside the app (not required for CloudMine, which allows for full
traversal, see Section 2.3) or the names of the accessed S3 buckets.

In HAVOC, we chose to implement support for Parse.com, CloudMine, and
Amazon AWS as these services are most widely used. Adding support for other
BaaS frameworks is trivial if their API methods used for authentication are
known.

3.1 Library Identification

When given a set of Android applications, HAVOC first needs to identify whether
one of the supported BaaS frameworks is used inside an app, and if so, which one.
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This detection is not trivial, as applications can be highly obfuscated and have
randomly generated strings instead of the original package, class, and method
names.

To overcome this challenge, we created signatures for the supported BaaS
libraries. A signature consists of the numbers and types of certain selected API
calls as well as some characteristics of the containing class. Even if the method
Parse.initialize(), for instance, is obfuscated, it will usually still receive
the same number of arguments with the same types. Furthermore, we exploit
the observation that an obfuscator needs to retain the original behavior of the
program. All calls that were made from within the original initialize() must
still be made from within the obfuscated version. If the sequence of these calls
(order and target) still match, the method is very likely to be the initialize()

method we are looking for, regardless of its name or the name of its containing
class.

All these hints contribute to a score. A method that only has the correct
parameter types will receive a lower score than a method that has the correct call
sequence (or a subsequence of it) inside as well. If the score exceeds a configurable
threshold, we assume the library to be present. If the calls inside the Parse.com
library are obfuscated as well, the call sequence might not be fully detected. In
that case, the score is lower, i.e., the uncertainty is higher.



3.2 Pre-Filtering

Though HAVOC is able to identify apps that use BaaS services efficiently,
scanning whole app store with millions of applications still takes considerable
time. For getting a first overview over the BaaS security in today’s popular
app stores, we therefore propose a fast pre-filter that is able to identify likely
candidate applications. The pre-filter is based on the observation that even if an
application is obfuscated, the libraries are oftentimes not. They still bear their
original package names. Though this filter will miss those apps that are fully
obfuscated, we argue that the pre-filtered set still gives a useful bottom line on
BaaS security in real-world app stores. Nevertheless, it is not a replacement for
HAVOC’s more thorough scanner explained in Section 3.1. A store provider
might for instance want to screen new applications when they are uploaded. He
would then operate on fewer apps at a time and would therefore rather use the
more expensive, but also more through library identification without applying
the pre-filter.

3.3 Simple Key Extraction

HAVOC is built on top of the Soot [7] program analysis framework. Soot
can directly process Android APK files and convert the Dalvik bytecode into
the Jimple intermediate language, a typed three-operand IL. HAVOC scans
through all method bodies to find the calls to the authentication methods for
the supported BaaS frameworks. For Amazon AWS, these are, for instance, calls
to the constructor of the BasicAWSCredentials class. For Parse.com, the calls
to the static initialize method of the com.parse.Parse object are of interest.
The APIs for Amazon AWS, Parse.com, and CloudMine have in common that
the application credentials are always passed as parameters to such methods
before any other operation on the BaaS service is performed.

In the easiest (and most insecure) case, the values are constant strings and
can directly be retrieved by HAVOC. This is, however, not always the case. Even
if developers do not attempt to obfuscate their applications, normal software
engineering practices can lead to them being places elsewhere. In many cases the
credentials are stored in static final fields, either inside the class that initializes
the BaaS client framework, or inside a special configuration class. These strings
are nevertheless constant as shown in the example in Listing 1.3.

To efficiently cope with such cases, HAVOC applies FlowDroid’s inter-
procedural constant-value propagator [1] before inspecting the app. The propa-
gator looks for occurrences of static strings in static initializers or assignments.
A value is considered static if the respective field or local variable is only ever
assigned the same constant value, which is commonly the case for configuration
classes as they comprise static final fields. All references to these fields or local
variables are then replaced by the constant value found for the respective field or
variable. If successful, the constant will then appear in the call to the authenti-
cation API method for one of the supported BaaS services. The code from the
example in Listing 1.3 will be transformed to the code shown in Listing 1.4.



1 public class MyActivity extends
Activity{

2 private String APP_ID;
3 private String CLIENT_KEY;
4
5 private void prePhase () {
6 APP_ID = "12345678";
7 CLIENT_KEY = "87654321";
8 }
9

10 @Override
11 public void onCreate(Bundle b) {
12 prePhase ();
13 Cloud.initialize(APP_ID ,

CLIENT_KEY);
14 }
15 }

Listing 1.3: Example That Requires
Inter-procedural Constant
Propagation

1 public class MyActivity extends
Activity{

2 private String APP_ID;
3 private String CLIENT_KEY;
4
5 private void prePhase () {
6 APP_ID = "12345678";
7 CLIENT_KEY = "87654321";
8 }
9

10 @Override
11 public void onCreate(Bundle b) {
12 prePhase ();
13 Cloud.initialize("12345678",

"87654321");
14 }
15 }

Listing 1.4: Example That Requires
Inter-procedural Constant
Propagation

The inter-procedural constant propagator can only deal with constants, but
runs in O(n) where n is the number of Jimple statements in the program. Only
in cases where this does not yield a result, i.e., there is still no constant in the
call to the authentication method, a more sophisticated (and thus more costly)
analysis needs to be applied, as we detail next.

3.4 Harvesting Credentials from Applications

Some applications also store the credentials in configuration files included in
the respective app’s assets folder. Other applications have been obfuscated
using string encryption. Such an app only contains an encrypted string or byte
array, and then apply either some simple transformations or operations of the
Java Crypto API to reconstruct the original credentials at runtime. Yet other
applications hide the credentials in native code, e.g., by having simple native
getters return the respective values or have a native method perform some string
transformations such as in the example in Listing 1.5.

However, since the application needs the credentials during normal execution,
all data and code required to reconstruct them needs to be contained inside the
app in some way. In the example in Listing 1.5, one can retrieve the credentials by
performing the same de-obfuscation steps that the native method in the original
app would perform. To achieve this, one could place the native library into a new,
artificial app, and call it with the obfuscated credentials just as the original app
would do. Consequently, the method would then return the same de-obfuscated
result that the original app computed. This, however, requires more complex
processing than the content value propagator.

1 public class MyActivity extends Activity{
2



3 private native String deobfuscate(String data);
4
5 private final String APP_ID = "dsgfdsf";
6 private final String CLIENT_KEY = "lkhkjkgfhdhsfdsb";
7
8 @Override
9 public void onCreate(Bundle b) {

10 // other code
11 String appID = deobfuscate(APP_ID);
12 // other code
13 String clientKey = deobfuscate(CLIENT_KEY);
14 // other code
15 Cloud.initialize(appID , clientKey); // s0
16 // other code
17 }
18 }

Listing 1.5: Example That Requires Harvester

Fortunately, encoded credentials like the one in the figure can be easily
extracted with Harvester, a fully automatic tool developed by Rasthofer et
al. [10]. Harvester uses a combination of static slicing and concrete dynamic
execution to extract values such as the above. The tool is configured with so-called
logging points. A logging point is a pair 〈v, s〉 where v is a variable or field access
and s is a statement such that v is in scope at s. For the purpose of HAVOC,
s is chosen from the set of all BaaS-service authentication methods. v are the
arguments that get passed to the authentication methods and that contain the
ID and key. In the example, this would be 〈appID, s0〉 and 〈clientKey, s0〉.

Harvester then performs a static backward slicing starting from each logging
point. Every logging point (i.e., every authentication statement) yields a new
slice. Any slice comprises exactly only those statements that could contribute to
the computation of the v variables (i.e., the arguments containing the ID and the
key). All other statements are excluded from the slice. All slices are combined
to build a new, artificial executor application. This application executes every
slice one after the other and reports the runtime values of the logging points to a
database, as shown in Listing 1.6. The executor application can be run either on
an emulator or a real phone. After this process is complete, HAVOC can directly
access the runtime values of the ids and keys from the Harvester database.

1 public class ExecutorMainActivity extends Activity {
2
3 private native String deobfuscate(String data);
4
5 private final String APP_ID = "dsgfdsf";
6 private final String CLIENT_KEY = "lkhkjkgfhdhsfdsb";
7
8 @Override
9 public void onCreate(Bundle b) {

10 runSlice1 ();
11 runSlice2 ();
12 }
13
14 private void runSlice1 () {
15 String appID = deobfuscate(APP_ID);
16 // Cloud.initialize(appID , clientKey);
17 Reporter.report("appID", "s0", appID);
18 }



19
20 private void runSlice2 () {
21 String clientKey = deobfuscate(CLIENT_KEY);
22 // Cloud.initialize(appID , clientKey);
23 Reporter.report("clientKey", "s0", clientKey);
24 }
25 }

Listing 1.6: Slices and Executor Application Computed by Harvester

Harvester can even recover such values that are hidden inside native code
(as in the example) or which are obfuscated using other concepts that a purely
static analysis cannot handle.

3.5 Extracting Additional Data

In addition to the credentials as such, HAVOC also extracts other information.
For Parse.com, these are the names of the tables accessed inside the app. For
Amazon AWS, these are the features that are used inside the app (Dynamo, S3,
etc.) as well as the S3 bucket names if S3 is used. These additional pieces of
information are required for the exploit generator in case one cannot list all tables
/ buckets of the respective BaaS instance due to ACLs other restrictions. Even
then, in many cases the tables or buckets themselves are not secured properly
and can, for instance, be read or even manipulated.

To extract this additional information, HAVOC uses the same techniques as
for the credentials. For table and bucket names, the constant-value propagator is
sufficient in most cases and Harvester does not need to be employed. Note that
we do not automatically extract the table names for Amazon Dynamo. While
Dynamo is an AWS service and suffers from the same configuration issues as S3
in many applications, Dynamo is much less widespread. Additionally, the effort
for building a Dynamo exploit is much higher. For querying Dynamo, one would
need to reconstruct the schema of the key entries in the database. For the few
applications that we found to use Dynamo, we therefore crafted exploits by hand.

3.6 Verifying the Credentials

To test whether the credentials extracted from the app are still valid, we ran
carefully-chosen read-only commands on the backend BaaS infrastructure. Our
main goal was to never adversely affect the productive operations of the apps
from which we extracted the credentials or of the BaaS infrastructure.

For applications that used Amazon AWS, we tried to run an ls command
to the S3 API. If successful, this command proves that the credentials are still
valid and also give a list of the S3 buckets in the developer’s S3 instance. The
latter can give a first impression of the privacy or security implications of the
vulnerability. If this command fails, it returns the reason for the failure. This can
either be a non-existing application ID or missing privileges. In the first case, we
assumed that the credentials were no longer valid. In the second case, we re-tried
an ls on the concrete bucket used inside the application.



We also ran an info command against S3. This command returns, among
other information, the access privileges of the current application ID and key. This
shows whether a malicious attacker is able to not only read but also manipulate
files on the S3 storage.

With a describe-instances command against EC2, we checked whether
the credentials used inside the application also had access to EC2 which it should
normally never have. For an Android app with fixed credentials, there is usually
no reason to list, or even start or stop, virtual machines inside the Amazon cloud.
In either case, if this check succeed, this is an indicator that the tested credentials
might be full-access root credentials for AWS.

For Parse.com, we obtain the schema of the tables references inside the
applications. The Parse.com API does not provide a means to list all tables in
the backend, so our exploit cannot detect if additional data is freely accessible if
an attacker is able to guess the correct table name. Note that system tables like
user can directly be tested even if they do not occur in the app’s bytecode as
they always have the same pre-defined name.

4 Evaluation

In this section, we evaluate our findings in real-world applications. Note that we
only tested accesses that did not put the regular operations of the application
or the BaaS provider’s infrastructure at risk. However, from our results, we are
sufficiently sure that even such requests would be possible.

We do not provide the concrete names of the individual applications in which
we found the security vulnerabilities. Due to the magnitude of the problem there
are still quite a number of apps for which the problem has not yet been addressed.
Section 5 will detail our responsible-disclosure process.

4.1 Exploit Generator

We evaluated our exploit generator over 2,000,000 real-world Android applications
obtained from the Google Play Store and various third-party app stores. We
also ran HAVOC on 350,000 malware applications. Many of these malware
applications were re-packaged benign applications which had a malicious part
(such as sending premium-rate SMS messages) attached on top of the original
functionality. It is therefore not surprising that these malware applications share
many security vulnerabilities with the benign ones.

For efficiency reasons, we first applied a pre-filtering to only analyze those
applications that were likely to contain one of the supported BaaS libraries.
According to AppBrain,4 Parse is used in 1.35% of all apps in the Google Play
Store and in 4.23% of all apps that are part of the Google Play Store’s Top 500
list. While this number might appear low, our evaluation shows that nevertheless,
a large number of data records is affected. Furthermore, many of these records

4 http://www.appbrain.com/stats/libraries/details/parse/parse

http://www.appbrain.com/stats/libraries/details/parse/parse


pose severe threats to system security (e.g., through remote-code execution)
or user privacy. Our pre-filtered set of apps likely to contain the Parse library
consisted of 902 apps.

We then applied to these apps the analysis based on the inter-procedural
constant-value propagator (see Section 3.4). In 268 apps we found a total of
308 ID/key pairs for Parse.com and 440 names of accessed Parse tables. We
automatically generated exploits to verify which of the tables are freely accessible
to all adversaries who know the respective application ID and key. In total, all
tables contained more than 18,670,000 records. The largest number of records
found through one single app was 2,611,760. On average, every app gave access
to about 70,000 records. In the notion of Parse, one record is an object. Just
like a table can have multiple columns, serialized Parse objects can have fields.
We found that, on average, a Parse object has 6.66 fields, making the number of
individual data items being exposed even larger. Counted individually, all tables
contained more than 56,000,000 data items.

For Amazon AWS, our pre-filter returned 1,922 apps. These apps were different
ones than those that we found for Parse.com as developers usually do not combine
frameworks from different BaaS providers inside one app. In 763 of these apps,
we found 772 ID/key pairs. Only 106 of these keys, however, were unique, which
means that application developers who create multiple applications often share
one ID/key pair between multiple apps. The worst case was one key which was
used in 195 apps. Two other keys were used in 124 and 122 apps respectively. This
is critical, because it hinders a conceptual isolation in the backend. A security
vulnerability with one of the apps leads to all apps with that key being affected
as well. In only 72 of the apps that were returned by the prefilter and that did
indeed contain the AWS library, was the constant propagation-based exploit
generator too weak to extract the keys, which is why for these cases we had
to extract the keys with Harvester (Section 3.4). This was successful in every
instance.

We also verified whether iOS apps from the official App Store were vulnerable
to the same security issue. We found 82 unique Amazon AWS keys in 128 apps
from a set of 11,000 apps crawled from the App Store. This shows that iOS apps
share the same problem as Android apps: Developers on both platforms embed
their keys into the apps rather than using more secure authentication methods.
iOS developers also share keys between applications. One key, for instance, was
used in 9 different apps of the test set.

4.2 Privacy-Sensitive User Data

The keys we were able to extract from various applications give an attacker access
to a broad variety of privacy-sensitive information. A single app’s backend store,
for instance, contained more than one million e-mail addresses. This list would be
especially helpful for a spammer or scammer as the addresses were part of user
profiles managed with Parse.com. This means that all addresses were verified by
the Parse.com framework during user registration and are thus guaranteed to be
valid (or at least have been at the time of registration).



Another app stored sensitive health information in an insecure way. The
AWS key contained in the application (in plain text) gave access to more than
1,400 records of baby-growth and feeding data as well as photos of the respective
children. The e-mail addresses of the parents which were also accessible were even
a minor concern in this case. An attacker did not need to know any credentials
from the parents or the children to get access; the application ID and key extracted
from the app’s code were sufficient.

A chat application gave access to pictures uploaded by the respective users
and the contents of websites that were hosted via the same S3 storage instance.
In an online dating application, tables containing voice-chat messages were freely
accessible. The app vendor claims that more than 90 million people have signed
up for their dating website and app. The Google Play Store reports that the app
has between 10 and 50 million installations.

One application allowed users to record car-crash data. When a crash hap-
pened, the user can take photos of the scene, record voice comments on the
situation, and make additional notes. However, since the application ID and key
can easily be extracted from the app and the backend database is not properly
secured, an unauthenticated user who only knows this ID and key can extract all
this data from all users.

Applications that use Parse.com benefit from a convenient integration into the
Facebook API. This is not surprising, as Parse.com is now owned by Facebook
Inc. In some apps, however, this integration impairs the privacy mechanisms
of Facebook. One app, for instance, downloads a user’s friend list and stores it
in a custom Parse table. Since there is no access restriction on this table, it is
sufficient to extract the vulnerable app’s ID and key to gain access to all friend
records (including non-public friends) of all users of this app. The app’s users
generally must allow the app to access their Facebook data. But unsuspecting
users will not assume that this makes their friend data permanently available to
arbitrary remote adversaries. We have furthermore identified a similar issue in
an app that integrates with Twitter.

Some applications use AWS credentials that have access to buckets that are
not even required for the application. With these credentials, we would have
been able to retrieve Excel spreadsheets containing customer data (full names
and customer IDs), server logs, and database backups. Especially the customer
records could be abused by scammers who can try to impersonate a customer
using social engineering against a human company representative.

4.3 Data-Manipulation Vulnerability

With the default settings of user-defined tables in Parse.com, an attacker who
only knows the application ID and key can manipulate each records inside every
table of the whole database. In the car-accident documentation app discussed
earlier, this means that an attacker can manipulate the records taken by his
opponent before charges are filed in court. Even if these records are not allowed
as evidence in court, manipulating or deleting them makes it harder for the
opponent to prepare his defense.



Parse.com write-protects the pre-defined user table by default. Write op-
erations to this table are only permitted after a user authentication has been
performed and only to the record of the authenticated user, but not to any other
records inside the table. Still, Parse allows a user to freely modify his own record.
As a consequence, if an application stores additional profile data along with the
user object, this data can be tampered with. One app, for instance, added a flag
isPaid. Knowledge of the application ID and the key is sufficient to set this flag
to true for the own user account even if no payment was ever made.

4.4 Financial Harm to BaaS Clients

The various commercial BaaS providers have different revenue models. Some of
them charge for the data transferred between their datacenter and the customer
(or, more precisely, his applications), others bill their clients based on the average
number of requests per minute. Attackers can exploit this model by downloading
large datasets (or, in case of frequency, requesting a large number of records) from
the backend. Since applications based on BaaS usually perform their business
logic on the client, i.e., inside the app, there is no trusted entity between the
attacker-controlled client and the backend. Therefore, the validity of requests
can only be checked with very general anomaly-based fraud-detection schemes
on the side of the BaaS provider. Such fraud-detection schemes, if in place at all,
however, fundamentally suffer from the problem of having to cater to a broad
variety of unknown client applications that all have their individual usage and
data transfer patterns.

A similar issue arises with malicious uploads, since all providers analyzed in
this paper charge their clients based on the size of the data stored on their services.
With Parse.com, 20 GB cost $200.5 This is a severe issue given that the default
settings of Parse.com allow clients to not only arbitrarily create new records, but
also completely new tables. Even worse, this also allows for file uploads. Such
malicious uploads might not even be detected by the application developer who
owns the storage, due to a design issue with Parse.com: One first uploads a file
and receives an identifier. Only in a second step is this identifier then associated
with a record in a table. If one uploads a file and discards the identifier, the
file becomes orphaned and can never be retrieved again. Parse.com staff even
acknowledges that this might be a problem in case of a buggy application 6. Their
platform offers a cleanup function to remove those orphaned files in bulk, but
this is neither a real solution to the original problem of orphaned files, nor does
it alert the developer that a cleanup is necessary in case of storage filling up due
to abuse.

5 https://www.parse.com/questions/how-to-get-a-list-of-uploaded-files-

that-are-not-associated-with-objects
6 https://www.parse.com/questions/how-to-get-a-list-of-uploaded-files-

that-are-not-associated-with-objectsandoffers
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4.5 Remote Code Execution

For some applications it is insufficient to simply store data in the cloud. Amazon
therefore offers a service called Elastic Beanstalk to host web applications inside
the Amazon cloud. These applications can be written in a variety of languages
such as Java, PHP, and .NET. A Java application for Elastic Beanstalk, for
instance, will be compiled into a war file and uploaded to an S3 bucket for storage.
An EC2 (Elastic Compute Cloud) instance then executes this file.

If a user gains access to the S3 bucket in which the code is stored, he can
download, potentially decompile, and then inspect the code. If the code accesses
further backend services like databases, the credentials for these services become
available to the attacker as well. He can simply extract them from the server-side
code or from configuration data stored inside the S3 bucket alongside the code.

From various applications, we were able to extract credentials that could not
only read arbitrary S3 buckets (including ones hosting web pages and server-side
code), but which also had write access. Such write access allows an attacker
to run arbitrary server-side code inside the Amazon cloud. Furthermore, the
attacker could modify and misuse S3-hosted websites to distribute malware or
perform phishing scams against unsuspecting users with ease.

Even worse, we were able to extract keys that gave us administrative access
to EC2, i.e., that would have allowed us to view the developer’s instances running
on EC2. A malicious user could also have created new server VM instances in
the developer’s account for hosting activities such as Bitcoin mining, the sending
of spam, or for hosting malware. It would also have been possible to shut down
or even delete existing VMs.

4.6 Sending Spam Messages

Amazon offers a service called Simple Email Service (SES), which can be used
to send purely outgoing (mass) e-mail messages. To use the service, one only
needs a valid application ID and key. We have found apps, which use this service.
However, if the app is able to send e-mail messages using these credentials,
everyone with the same credentials can. Attackers thus get an easy mechanism
to send spam and phishing e-mails using Amazon’s infrastructure at the cost of
the app developer who gets charged based on the number of messages sent. If
the e-mail service is used from within EC2 or Elastic Beanstalk, Amazon even
allows 62,000 free messages. An attacker who exploits a foreign key can thus send
a large number of messages even without risking exposure through unexpected
invoices.

4.7 Malware

Malware applications also use BaaS frameworks. Some of them store malware-
specific configuration data in a Parse.com table. One application, for instance,
used Parse to manage the list of country codes for which no malicious behavior
should be performed. Security experts and law-enforcement officials could use



this knowledge to first revoke write access to this table and then add all existing
country codes to this table to disable the malware. The user-registration infor-
mation with which the Parse.com instance was created could also give hints to
the identity of the malware author.

4.8 Push Notifications

We were able to extract credentials from Android applications that allowed us
to view a list of existing Amazon Simple Notification Service (SNS) channels.
For some applications and their channels, we were even able to list the devices
registered with these channels. The device information contained the location,
the manufacturer and model, the Android OS version, and other information with
which the respective device can be fingerprinted. Additionally, such information
also allows to automatically scan for outdated devices and deliver appropriate
exploits. The actual delivery can, for instance, happen by sending a push notifica-
tion pointing the user to a malicious download or URL. The user is then likely to
believe that he acts upon a legitimate notification from the respective app, giving
the message increased credibility. Several automated trading platforms digest
news messages to initiate automated stock trades. In the past, misinformation
in news channels has caused havoc at stock exchanges several times. One might
envision situations in which the vulnerabilities here could cause such an effect if
the respective channel is subscribed by the respective trading companies.

4.9 Key-Hiding Attempts

Some applications try to mitigate the security problem by obfuscating the code
that uses the BaaS API, especially those functions that provide the credentials.
While such attempts can increase the time required for an attacker to recover the
credentials, it does not resolve the fundamental issue of all required authentication
data being available in the app. Attackers can use debuggers, symbolic execution,
or hybrid data extraction [10] to obtain the data.

Some apps tried to hide the credentials in native code, but used functions
that were mere “getters”. Harvester can easily extract such keys. More thorough
approaches encrypted the credentials using AES and obfuscated the AES encryp-
tion key using various string-manipulation operations. There was, however, even
a large set of apps from one developer that simply flipped the key string (from
back to front) as an “obfuscation”.

4.10 Legacy Application Data

Some of the applications that we analyzed have been removed from the Google
Play Store in the meantime. However, even if an application is no longer publicly
available, this does not directly resolve a backend-related security vulnerability.
In many cases, the keys that we extracted from locally cached copies of the
applications which we crawled months ago were still valid. We were still able to



access the respective BaaS instances and extract the data that the app used to
store there.

This poses the question of what happens to the data of an application that
is no longer maintained and who is responsible for maintaining the security of
this data. While users who still have such applications installed on their devices
might appreciate still being able to use the respective service, their data is also
greatly at risk due to vulnerabilities no longer being fixed. The situation gets
aggravated with apps that do not provide their users a means of deleting their
data once they no longer trust the application. Worse, if an application is no
longer maintained, there is oftentimes no notice to the user that would make
them aware of the potential security problems of continued use of that app.

5 Responsible Disclosure

Since the problems we describe in this paper directly concern the security and
privacy of many smartphone users, we follows a responsible disclosure process
prior to submitting this publication. We informed the security teams of Amazon
and Facebook (who now owns Parse.com) as these providers were mainly affected
by our findings.

Due to the high number of vulnerable applications, we were unable to contact
all corresponding application developers directly. Because all applications were
(or used to be) available through the Google Play Store or the Apple App
Store, we worked together with our government’s CERT,7 Google and Apple
to help spread the word through appropriate channels. With this approach, we
leveraged on Google’s and Apple’s mass capabilities for reaching out to the
developers in their respective stores. The goal of this effort was to get as many
applications as possible secured before publishing our results to the general public.
Nevertheless, for vulnerabilities that are such widespread, it is almost impossible
to avoid information leaks to the public, as several hundred people will need to
be involved in the process.

Legacy applications that have been removed from the respective application
store but for which data is still hosted with a provider (see Section 4.10) are
especially hard to handle. Not all of these developers are still interested in
maintaining these apps or securing the data. In this case, we relied on the BaaS
provider to handle the case. We provided the respective official security contacts
with all identifiers extracted from the apps. All communications were encrypted
to make sure that none of our extracted IDs became available to unauthorized
people.

6 Mitigation

An important step in mitigating the security vulnerabilities described in this
paper is for application developers to properly apply the security features already

7 Name omitted due to double-blind review



offered by the various BaaS frameworks. Only blaming the developers would be
too simplistic, though. Their main goal usually is to get the app into the market
as soon as possible without spending too much extra effort on nun-functional
aspects. BaaS providers such as Parse explicitly benefit from this requirement.
They abstract away from backend handling and reduce it to a handful of lines
of code that every developer can just copy&paste into his app without further
knowledge or consideration. Every additional mandatory step would contradict
their own business model of abstraction and simplicity.

Still, given the severity of the problem, we argue that the default security
settings need to be more restrictive. We argue that forcing developers to explicitly
allow access to tables instead of granting full access to everything by default is a
reasonable cost to pay. The security configuration must be sufficiently simple,
however. While Amazon’s IAM is much more flexible than Parse’s ACLs, they are
also too complex for the average developer to handle. Providing pre-configured
templates (e.g., ”read-only bucket”, ”records only visible to the user who created
them”) could help solve this problem.

In general, developers need to be better educated in the security and privacy
implications of software development. We hope that examples of vulnerabilities
such as the ones in this paper help raise developer awareness. The exploit
generator presented in this paper could also be used by app-store providers to
check new uploads and counter the distribution of vulnerable apps. Apps from
which keys can automatically be extracted could then be rejected from stores
such as Google Play, effectively forcing the respective developer to fix the issue.
Amazon’s app store already applied such checks that warn the developer if she
uploads a potential insecure app containing Amazon credentials. Furthermore,
BaaS features that are not necessary for the majority of productive applications
such as creating new tables on the fly should be disabled by default.

Still, all these measures require application developers and users to trust the
BaaS provider. To mitigate this risk, the providers should include easily usable
end-to-end encryption and authentication methods into their open-source client
SDKs.

7 Related Work

Static and dynamic data flow tracking tools such as FlowDroid [1] and Taint-
Droid [3] can detect whether private information is leaking from an app to a
remote service. Sending the e-mail address of a customer to a back-end service is
however expected behavior and the more existence of the flows therefore does
not indicate a security issue. Assessing the security of the used back-end service
is out of scope for these approaches.

To find apps that use a specific library such as Parse to interact with their
respective backends, one can use approaches like DroidSearch [9]. DroidSearch
crawls the Google Play Store and various other stores. It conducts lightweight
pre-analyses on all the apps it downloads such as extracting all calls to library



methods or finding all requested permissions. A security analyst can then query
these results to find interesting apps for further investigation.

In previous work, Fahl et. al [4] have shown that Android application devel-
opers make security-critical mistakes in other areas as well, in particular when
accessing remote web sites using SSL. Viennot et. al. [11] already found and
verified a number of AWS credentials contained in apps as constant strings. They,
however, did not investigate further the privacy and security implications of the
access gained through these credentials, nor did they evaluate non-constant or
obfuscated credentials in applications. We were furthermore able to prove that the
issue is not limited to Amazon AWS, but is shared between backend-as-a-service
providers in general. Bugiel et al. [2] were able to extract sensitive information
including credentials from publicly available pre-configured images for Amazon
EC2 virtual machine instances. With these credentials, an attacker could gain
full control over the respective virtual machines.

Mansfeld-Devine [8] points out that the Mercury tool from MWR Labs can
find hard-coded online service passwords in the manifest. In our investigation, the
credentials were however contained in the code or other custom configuration files,
not in the manifest. An article by Steve Gold [5] quotes a bi-annual investigation
on Android security by Veracode. They report that 40% of all Android apps
contained at least one hard-coded cryptographic key. While our focus is on
credentials, cryptographic keys are an equally important topic and share many
of the security implications discussed in this paper.

Kalutarage et. al. [6] propose a certification process for Android apps which
checks these apps according to various Common Vulnerability Enumeration
(CWE) entries, including CWE 259 (”Hard-Coded Password”).

8 Future Work

As future work, we plan to extend HAVOC to automatically generate exploits
for iOS apps as well. Since many BaaS frameworks are available for both Android
and iOS, the structure and the security implications are often very similar.
Furthermore, many frameworks also have client-side interfaces that allow them to
be used from normal desktop applications written in Java or C/C++. Web-based
interfaces that allow the frameworks to be integrated into web applications are
also common. We plan to investigate whether these are vulnerable as well, and,
especially, whether data sanitization is applied correctly. By storing data on
one platform and retrieving it on another, additional vulnerabilities might be
exploited.

9 Conclusion

In this paper, we presented HAVOC, a fully automated exploit generator for
Backend-as-a-Service (BaaS) frameworks used in Android applications. All frame-
works we investigated require the applications to authenticate using an application
ID and a key. While this is not a proper security feature, application developers



tend to solely rely on it and refrain from implementing further security pre-
cautions. Measures like ACLs or restricted credentials as offered by Parse.com
or Amazon AWS are only used in the minority of cases, leaving many apps
unprotected against data extraction and manipulation.

Unlike previous work, this paper shows the severity of the issue and proves
that it is not limited to a single provider, but affects all commonly used BaaS
providers. We show that iOS applications suffer from the same issue. Our exploit
generator allows application developers and store operators to check apps for
this kind of vulnerability.

We have suggested several mitigations to these problems, from better defaults
for BaaS platforms, to better developer education and automatic vulnerability
checks on applications uploaded to app stores. In general, app developers need
to better understand that every app has security implications, which must be
taken into consideration as part of the basic design of the app.
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