
Page | 1

Malicious Application Compatibility Shims

Table of Contents
Introduction .. 2

Background ... 2

How the Windows Image Loader works with the Shim Engine .. 6

Prior Work ... 7

In the wild ... 9

Other Offensive Uses .. 13

Tools .. 14

Current Analysis Tools... 14

Defense Tools .. 15

Forensics Tools .. 16

Penetration Testing Tools ... 16

Defenses .. 17

Moving Forward .. 18

Conclusion ... 18

Bibliography .. 19

Page | 2

Introduction

One of the many reasons why Microsoft has dominated the personal computer market
is because they have gone to extraordinary lengths to ensure backwards compatibility in
(most) of their products, and many third party products. This is currently implemented by the
Application Compatibility Framework (ACF) which holds a position of considerable tactical
value on modern computer systems because, by design, the ACF is capable of intercepting
application API calls and manipulating the Portable Executable (PE) file loading process.
Actors in the wild have been observed leveraging a few of the simple components of the
ACF and it is expected that the number of exploitations will rise and grow in sophistication.
Some of these more advanced malicious techniques will be demonstrated and I will be
releasing the source code of several new tools that help mitigate this new threat.

Background

Raymond Chen is a developer on the Windows Team at Microsoft and maintains a blog
called ‘The Old New Thing’ in which he describes many fascinating stories and deep
technical insights into the history of Windows. On August 24th 2005 he wrote:

“During the development of Windows 95, application compatibility was of course a very high
priority. To make sure that coverage was as broad as possible, the development manager
for Windows 95 took his pick-up truck, drove down to the local Egghead Software store
(back when Egghead still existed), and bought one copy of every single PC program in
the store... In exchange for taking responsibility for ensuring that Windows 95 was
compatible with your adopted programs, you [the developer] got to keep them [the
applications] after Windows 95 shipped.” (Chen, 2005)

In any given Windows 7 machine one can find hard coded
references to ‘3DFrogFrenzy’, ‘Acrobat5’, ‘WordPerfect8’,
‘Works99’ and many other applications dating back to the
early 1990’s. These programs do not correctly function on
modern Windows machines, so in an effort to compensate
for poor coding (on all sides), Microsoft has sacrificed
security for developer convenience by allowing anyone to
create and install Shim database (sdb) files. These
database files contain the specific details on how
Windows should manipulate (in other words ‘shim’) a
target program with predefined ‘Fixes’. The Application
Compatibility Toolkit (ACT) contains hundreds of
configurations for thousands of programs (like those listed
above) primarily contained within the file
%WINDIR%\AppPatch\sysmain.sdb. Microsoft provides a
free tool called the Application Compatibility Administrator
which allows users to create and apply specific Fixes
such as ‘DisableNX’, ‘ModifyShellLinkPath’, ‘VirtualRegistry’,
‘DisableAdvancedRPCClientHardening’, ‘ForceAdminAccess’, ‘InjectDll’ (my favorite),
‘DisableSeh’, ‘ShellExecuteXP’ and many others.

Page | 3

Figure 1. The Application Compatibility Toolkit (ACT) – Compatibility Administrator

The Application Compatibility Toolkit can be used to create and install a shim by guiding the
user through a Wizard which first asks for a path to the target executable. The ACT will then
analyze the file for criteria to filter on such as file name, file size, link date, PE checksum,
etc. Then the user will be presented with a list of ‘Modes’ where each ‘Mode’ is effectively a
bundle of individual Fixes that can be applied to a process and its children (A ‘Mode’ or
‘Compatibility Mode’ are sometimes referred to as a ‘Layer’). An example of a Mode would
be ‘VistaSP1VersionLie’ as opposed to a Fix such as, ‘Emulate Cursor’. After the Mode
screen, the wizard will show a list of Fixes. By default the 32-bit Compatibility Administrator
will show a list of 367 Fixes, however if the Compatibility Administrator is executed from the
command line with the ‘/x’ parameter the list of Fixes will increase to 811 to include
undocumented Fixes. After finishing the wizard, a user can save the sdb file, and then
install it by right clicking on the database icon and clicking ‘Install’. The installer simply
executes the command line sdb installer called sdbinst.exe.

The Application Compatibility Toolkit (ACT) – Compatibility Administrator

Page | 4

The installer will create a GUID, copy the sdb file into
%SystemRoot%\AppPatch\Custom\<GUID>.sdb then add a registry key using an internal
database name in the format of HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Custom\<GUID>.sdb and \InstalledSDB\<GUID>.sdb.
If everything is successful, the installer will add an entry to the Add/Remove programs list.
Obviously if a user has administrative access, they could simply add the keys to the registry
directly.
Registry keys:

 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Custom

 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\InstalledSDB

Figure 2 Install Registry Keys (1)

Figure 3. Install Registry Keys (2)

Default Install File Locations

 %WINDIR%\AppPatch\Custom\

 %WINDIR%\AppPatch\Custom\Custom64\

Figure 4 - Default Install Path. Note: The sdb file can be put anywhere accessible. Even a UNC path

After the sdb file installation is complete all processes launched after that point will be
subjected to the file matching rules of this shim database. For efficiency reasons, Windows
caches metadata for each executed file and stores that data in the Application Compatibility
Cache. In effect, the cache is a record of all executed processes since the computer was
last rebooted. The forensic value from this data is used by some tools such as Mandiant’s

Page | 5

Shim Cache Parser ® and was the subject of the MS15-001 elevation of privilege
vulnerability in January 2015.

Seven months prior to the MS15-001 patch, a forensics expert named Chris Graham
published a blog post titled, ‘Shimming Your way Past UAC’. In this entry he provided a
detailed walk through (including source code) on how to generate and install an sdb file that
would use the ‘RedirectEXE’ Fix to redirect the execution (while retaining the privileges) of a
target executable (Graham, 2014). The processes that are targeted by this method rely on
the fact that these executables are signed by Microsoft and have a manifest file property of
<autoElevate>true</autoElevate> such as SndVol.exe. The MS15-001 did nothing to

prevent this UAC bypass technique and as a result it is still being exploited in the wild.
However, in April 2015 Microsoft did push out an optional update (KB3045645) which
removed the auto-elevating manifest property from sdbinst.exe (the system sdb installer).
More details can be found in the Defenses section.

Shims are heavily integrated into Windows for normal operations, such as auto elevating
any executable matching the filename *instal*. Microsoft also uses shims to test and fix their
own products such as Outlook and Word rather than updating/patching them the traditional
way. When evaluating compatibility issues with Windows Vista, the ACT was used to collect
data via shimming exeplorer.exe and other system processes (Hancke, 2009). Primarily
Microsoft uses shims to implement most of the functionality in products such as the
Enhanced Mitigation Experience Toolkit (EMET) and Windows Fixit patches which are used
to mitigate critical vulnerabilities as a stopgap measure between patch cycles.

Shim strengths from an attacker’s point of view are:
 Nearly every process is vulnerable. The shim engine (shimeng.dll) will not shim

certain hard coded modules such as:
o NT Symbolic Debugger (NTSD)
o WinDbg
o Software License Service (slsvc.exe) for Windows Vista (Ionescu, 2007)

 The shim engine (shimeng.dll) will intercept GetProcAddress() in the event an
application attempts to dynamically call a function that the shim engine has
manipulated.

 There are many ways to apply native fixes maliciously.
 There are little to no defensive measures from malicious shims (until now).
 They are not considered executable even though they can contain shellcode.
 Custom fixes can be defined in the form of a user supplied DLL file. This is useful

because the ‘InjectDll’ is not a predefined Fix for 64-bit shims.
 With a few exceptions, all modern Windows OS versions support shims and natively

ship with the auto-elevated shim database installer sdbinst.exe. The native installer
will add an entry in the Add/Remove programs list but this can be bypassed by
directly adding to the appropriate keys.

Shim weaknesses from an attacker’s pointer of view:
 An attacker needs administrative rights to execute the shim database installer and/or

write to the necessary registry keys.

Page | 6

 Programs only need to change their names to avoid being shimmed. There are no
currently available tools that allow wildcards in file names, but the functionality does
exist as seen in the native shim databases such as sysmain.sdb.

 Shims only run in user-mode so they cannot manipulate kernel-mode modules.

How the Windows Image Loader works with the Shim Engine
When a new process needs to be created, a program will use one of the functions in
ntdll.dll, such as CreateProcess(). To determine if the new process needs to be shimmed,
apphelp.dll is loaded and two registry keys might be opened or queried:

 HKCM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Layers

 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Layers

If the application needs to be shimmed an undocumented __ COMPAT_LAYER
environment variable will be set in the new child process. The kernel creates the various
data structures, sets up the process space then loads ntdll.dll into that new process space.
In that space, the kernel will set the context struct to begin executing the ntdll.dll function
called LdrInitializedThunk(). This function effectively sets up everything the process will
need such as:

 Initialize the heap

 Maps and initializes the appropriate DLL’s

 Initializes Tread Local Storage (TLS)

 Fiber Local Storage (FLS)

 Import Address Tables (IAT’s)

 Export Address Tables (EAT’s)

 Process the Manifest files (Which might also have compatibility settings)

 Read the application compatibility database and loading the shim engine

After all the initialization is done, the kernel will reset the threat’s context to the ntdll.dll
function RtlUserThreatStart() which will in turn begin executing the actual original entry point
for the executable that was specified with CreateProcess(). If the child process needs to be
shimmed, both the parent and child processes will load apphelp.dll and verify the sdb file:

Figure 5 Confusing procmon log output of a program named 'LaunchWithoutShim.exe' executing a program called,
'HelloWorldShimmed.exe'. Procmon is a part of SysInternals by Mark Russinovich

Page | 7

If the sdb file cannot be found or opened the Application Event Log will record, ‘Unable to
open shim database version registry key’. Assuming the sdb file is found and loaded without
error, it is then parsed to further verify that the file should indeed be shimmed by checking
the sdb file for more name filters and other file criteria; there is always at least one filter, but
by default it is a match-all wildcard character: *. The loaded sdb file will be further parsed to
find the specific Fix (or Fixes) that will be applied along with a reference to a DLL where that
Fix is implemented. The specified DLL is then loaded into the suspended process, and
allowed to execute DllMain() following the initialization of the other system DLLs. If the Fix
does not reference a DLL then the native system shim database(s) are loaded in order find
the appropriate DLL where that particular fix is implemented. Most of the predefined Fixes
are found in %WINDIR%\AppPatch\sysmain.sdb and most of those fixes are implemented
in %WINDIR%\AppPatch\AcGeneral.dll.

If the Fix is not predefined in sysmain.sdb it is called a Custom Fix. Anyone can create a
custom fix by creating a DLL which exports the following functions:

 GetHookAPIs(char *,ushort *,ulong *)

 NotifyShims(char *, unsigned __int16 *, unsigned __int32 *)

The DLL containing the Fix is typically hooks the IAT of the target to intercept specific
functions. For example the VirtualRegistry Fix will hook all registry related calls and
manipulate them accordingly. GetProcAddress() is also hooked to anticipate dynamic calls
to the would-be hooked functions. Sdb files have undocumented features such as hot
patching which is currently only used by Microsoft to implement the functionality in Fixit
patches (discussed later). After ntdll.dll loads the AppInit DLLs in the child process, it then
loads the shim engine which implemented with apphelp.dll. This shim engine will clear the
environment variable __COMPAT_LAYER then apply the Fixes and patches (if any) to the
target module. It is possible to have more than one sdb apply Fixes to the same process but
this leads to undefined behavior due to the uncertain order in which the shims are applied.

Prior Work
The earliest mention of shims relating to security was in 2007 when a software engineer
named Alex Ionescu started to publish a number of blog posts titled, ‘Secrets of the
Application Compatilibity Database (SDB)’. This was planned to be a 7 part series but
unfortunately Ionescu stopped after the fourth post. In the years preceding and following, a
small number of disparate bloggers posted various technical details and mentions of shims,
but typically with the focus of application compatibility. Below is a general timeline of major
shim references:

1. June 2005. A Microsoft Employee named Chris Jackson’s started an MSDN blog

called, ‘The App Compat Guy’. Around January 2007 he began posting information

about the ACT and blogging about shims.

http://blogs.msdn.com/b/cjacks/

2. May 2007. Ionescu ‘Secrets of the Application Compatilibity Database (SDB)’

www.alex-ionescu.com/?p=39

http://blogs.msdn.com/b/cjacks/
http://www.alex-ionescu.com/?p=39

Page | 8

3. August 2008. A blogger with the handle ‘wedday’ posted some technical details

about how the shim engine worked based on the shim engine’s debug output.

http://wedday.blogspot.co.uk/2008/08/shimeng.html

4. July 2009. Another Microsoft Employee named ‘Maarten van de Bospoort’ wrote a

blog post titled ‘Disabling a Shim’. However his solution was to disable the shim

engine via group policy which is not advised because Windows relies on the shim

engine for EMET and Fixit patches (discussed later). (Bospoort, 2009)

http://blogs.msdn.com/b/maartenb/archive/2009/07/24/disabling-a-shim.aspx

5. February 2010. A developer who goes by the name, ‘Jochen Kalmbach’ posted a

tool that will display the shims that would be activated by a particular file.

http://blog.kalmbach-software.de/2010/02/22/the-shim-database/

6. April 2012. A company named ‘Recx’ posted a compilation of research notes titled

‘Windows AppCompat Research Notes’ where deep technical insight and control

flow of the shim engine was discussed. (Ollie, 2012)

http://recxltd.blogspot.co.uk/2012/04/windows-appcompat-research-notes-part-

1.html

7. May 2012. Microsoft updated its Application Compatibility Toolkit (ACT) Technical

Reference where background information is given on the ACT along with details of

individual fixes. This article also links to the AppHelp.dll documentation.

https://technet.microsoft.com/en-us/library/hh825181.aspx

8. May 2012. “Shim: A New Method of Injection” by the Journal of Computer Hooligans

ftp://os2.fannet.ru/fileechoes/programming/XA_159.PDF

9. October 2013. Mark Baggett gave a talk at DerbyCon titled, ‘Windows – Own3d by

Default’. He is the first to discuss the use of shims in a post exploitation context.

http://www.irongeek.com/i.php?page=videos/derbycon3/4206-windows-0wn3d-by-

default-mark-baggett

10. March 2014. Jon Erickson presented at Black Hat Asia ‘Persist-It – Using and

Abusing Microsoft Fix It Patches’ where he describes how Fixit patches work and

how his tool can be used to analyze them. (Erickson, 2014)

https://www.blackhat.com/docs/asia-14/materials/Erickson/Asia-14-Erickson-Persist-

It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf

https://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-

Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf

11. May 2014. Graham Posts ‘Shimming your Way Past UAC’ (Graham, 2014). This

provided the first public source code reference for how the ACT can be used to

bypass a UAC prompt.

http://blog.ddifrontline.com/4#more-4

12. December 2014. Jon Erickson presents ‘The active use and exploitation of

Microsoft's Application Compatibility Framework’ at SysScan 360 and CodeBlue in

Japan.

http://sdb.io/erickson-codeblue.pdf

13. Jan 2015. Sean Pierce (me) Shmoocon Epilogue “Forensic Analysis of Advanced

Persistence through the Application Compatibility Toolkit”

http://wedday.blogspot.co.uk/2008/08/shimeng.html
http://blogs.msdn.com/b/maartenb/archive/2009/07/24/disabling-a-shim.aspx
http://blog.kalmbach-software.de/2010/02/22/the-shim-database/
http://recxltd.blogspot.co.uk/2012/04/windows-appcompat-research-notes-part-1.html
http://recxltd.blogspot.co.uk/2012/04/windows-appcompat-research-notes-part-1.html
https://technet.microsoft.com/en-us/library/hh825181.aspx
ftp://os2.fannet.ru/fileechoes/programming/XA_159.PDF
http://www.irongeek.com/i.php?page=videos/derbycon3/4206-windows-0wn3d-by-default-mark-baggett
http://www.irongeek.com/i.php?page=videos/derbycon3/4206-windows-0wn3d-by-default-mark-baggett
https://www.blackhat.com/docs/asia-14/materials/Erickson/Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
https://www.blackhat.com/docs/asia-14/materials/Erickson/Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
https://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
https://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://blog.ddifrontline.com/4#more-4
http://sdb.io/erickson-codeblue.pdf

Page | 9

In the wild

The frame of reference for leveraging malicious shims is centered around post exploitation
where it is assumed the attacker has administrative privileges in order to write the
necessary registry keys to install shims on a system wide basis. Listed below are numerous
examples of malicious shims being used in cyber-espionage and cyber-crime activities.
While the ACT offers many avenues to perform arbitrary code execution, attackers routinely
use only a few of the basic Fixes:

BlackEnergy: There are variants of this malware that have been used in cyber-
crime & cyber-espionage and has been under continuous development since
June 2007. Modern variations support components such as rootkits and 64-bit
plugins. In April 2013 the authors responsible for BlackEnergy added the UAC
bypass ‘RedirectEXE’ Fix making BlackEnergy the first publically known
malicious use of the ACT. They also used the ‘DisableNXShowUI’ Fix to
disable Data Execution Prevention (DEP) in its host process. (F-Secure, 2015)
(Aquilino, 2014) (Cherepanov R. L., 2014)
BlackEnergy 2 hash: 26b9816b3f9e2f350cc92ef4c30a097c6fec7798
BlackEnergy 3 hash: 78636f7bbd52ea80d79b4e2a7882403092bbb02d

GootKit: This is a backdoor that was initially observed in April of 2014 and is
purportedly created by the actor ‘MzH’ (hFireF0X, 2015). It used the UAC
bypassing ‘RedirectEXE’ Fix to target the auto-elevated ‘cliconfg.exe’ (SQL
Server Client Network Utility). In March 2015, the malware author(s) leveraged
the in-memory patching as discussed by Jon Erickson at his talks at BlackHat
Asia in August 2014. The authors of Gootkit most likely used Erickson’s
publically available sample code to generate the sdb files (23 in all), but for
unknown reasons the Gootkit authors did not use Erickson’s stealth installation
technique (they still use the traditional native sdb installer, sdbinst.exe).
(Pernet, 2015) (Dr. WEB, 2014) (Erickson, 2014)
GootKit: f9772fcfbcaac9c4873989a1759a5c654eec440e

Roaming Tiger: This is a cyber-espionage group outed by Eset’s Anton
Cherepanov at ZeroNights 2014. Cherepanov observed Roaming Tiger
targeting countries belonging to the Russia and Commonwealth of Independent
States (CIS) with phishing documents to get initial code execution which then
used the ACT UAC bypass technique and then installed ACT enabled
persistence. What makes this case unique is that Roaming Tiger registered
specially crafted 32-bit and 64-bit shim databases for ‘explorer.exe’ and two
other processes. These sdb files described custom Fixes named
‘AcProtect_Apps’ and specified that those Fixes were contained within the
library ‘AcProtect.dll’ as seen in Figure 6. As a result the AcProtect.dll was
injected into every target process that matched the sdb criteria.
(Cherepanov A. , 2014)

Page | 10

Figure 6 sdb-explorer showing the shim (Fix) name and DLL reference (bottom two boxes), and the DLL file
reference (top)

Search Protect by Conduit: This has been classified by multiple anti-virus
venders as a Potentially Unwanted Program (PUP) starting in August 2013. In
January of 2015 Search Protect was observed using the ACT for targeted
persistence by creating a 32-bit shim layer named ‘VC32Ldr♦☻’ which applies
the ‘InjectDll’ Fix to ‘chrome.exe’, ‘firefox.exe’, ‘iexplorer.exe’,
‘software_remove_tool.exe’, and ‘software_reporter_tool.exe’. For the 64-bit
processes, a custom Fix named, ‘VC64Shim’ was defined as being in the
‘VCLdr64.dll’; similar to Roaming Tiger. This resulted in that DLL being injected
into ‘iexplore.exe’, ‘chrome.exe’, and ‘explorer.zza’. The custom fix was most
likely used because there is no predefined ‘InjectDll’ Fix for 64-bit processes.

By using the sdb-explorer.exe tool developed by Jon Erickson of iSIGHT
Partners, the output below will show that the Fix injected
\\.\globalroot\systemroot\apppatch\nbin\vc32loader.dll into every process that
matched one of the target filenames listed above.
Search Protect shim: 175abbeaf62f08716f7975190e550b95

Page | 11

Figure 7 sdb-explorer output for Search Protect shim

Upatre: This was first observed in August 2013 (msft-mmpc, 2013) and acts as
a downloader for other malware such as Zbot, Dyre, and Dridex. As early as
February 2015 Upatre started installing other malware with administrative
privileges by using Graham’s UAC bypass technique (Inocencio, 2014) (Author,
2015).
Upatre hash: 1d38c362198ad67329fdf58b4743165e

DRIDEX: This is the successor to CRIDEX, both of which focus on stealing
personal and banking information. This latest variant was upgraded to use
webinjects, more evasion techniques and relies on spam or Upatre for delivery.
At the same time Upatre implemented Graham’s code, Dridex also started
using it but in a slightly different manner: Unlike Upatre, Dridex targeted
‘iscsicli.exe’ and used the ‘RedirectEXE’ Fix to execute a batch script to simply
open up a port in the Window’s Firewall. After that, the batch script uninstalled
the shim and destroyed all evidence of there being a shim (Drapeau, 2015).
This is most likely due to the fact that Graham’s technique used the native
‘sdbinst.exe’ installer, which adds an entry into the add/remove programs’ list.
The commands used are:

Page | 12

"C:\Windows\system32\sdbinst.exe" /q
"C:\Users\%USERNAME%\AppData\Local\Temp\\..\..\LocalLow\com.%USERNAME%.
sdb"

The batch script:
start C:\Users\user_name\AppData\Local\edg3FAC.exe
C:\Users\user_name\Desktop\malware.exe
sdbinst.exe /q /u "C:\Users\user_name\AppData\LocalLow\$$$.sdb"
reg delete "HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Custom\iscsicli.exe" /f
reg delete "HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\InstalledSDB\{f48a0c57-7c48-461c-9957-
ab255ddc986e}" /f
del C:\Windows\AppPatch\Custom\{f48a0c57-7c48-461c-9957-
ab255ddc986e}.sdb
del %LOCALAPPDATA%Low\$$$.sdb
del %LOCALAPPDATA%Low\$$$.bat

Dridex hash: 2dcf82bfc86397969059e118f3feab10

Page | 13

Other Offensive Uses

Attackers have been observed using the ACT predominantly as a UAC bypass, as a
persistence mechanism, and only recently has one family (GootKit) used the in-memory
patching capability. However there are still over 800 more ‘Fixes’ and ‘Modes’ that can be
used for an array of offensive purposes, the examples listed below will be demonstrated
during the talk. Incident Responders and Malware Analysts need to be aware of how shims
can modify a process before and during execution, because malicious shims are capable of
leveraging many rootkit-like functions:

 Evasion, and System Integrity Subversion: The autoruns.exe utility (part of the
SysInternals Suite) is a tool created by Mark Russinovich which displays many of the
common auto-start locations for executables in Windows. Autoruns does not detect
shims as having any kind of auto-start capability and furthermore can be shimmed to
hide auto-start locations such as registry keys with the ‘VirtualRegistry’ Fix. This type
of tool subversion is not unheard of but what makes the ACT uniquely powerful is
that the malicious shim could be developed in as little as 30 seconds. The same
process can be reapplied for both 64-bit and 32-bit versions of regedit.exe (the
native Windows registry editor).

 Manipulating a Process with Redirections: Fixes such as ‘VirtualRegistry’,
‘CorrectFilePaths’, ’VirtualizeDeleteFile’, ‘RedirectShortcut’ and ‘APILogger’.
Depending on the application, these fixes could be used to intercept and manipulate
sensitive information such as credentials, and debugging logs. The primary example
being web browsers.

 Persistence & Trojanizing: Almost any process can be a host for malicious activity
with ‘InjectDll’, ‘LoadLibraryRedirect’, ‘RedirectShortcut’, ‘RedirectEXE’,
‘ShimViaEAT’, ‘LoadLibraryfromCWD’ and much more can be accomplished with in-
memory patching.

 Denial of Service: The “TerminateExe” Fix is the most trait forward way to prevent
processes from running, however many of the fixes can be used to achieve the
same goals such as ‘IgnoreLoadLibrary’, ‘RedirectEXE’, and
‘DeprecatedServiceShim’. The last shim will allow the denial or redirection of any
service that the process was attempting to start.

 Disabling Defenses: Shims can also incorporate simple Fixes such as
‘DisableWindowsDefender’, ‘DisableASLR’, 'DisableAdvancedRPCClientHardening',
‘DisableSeh’, and ‘DisableNX’ which would be useful when executing malware or
attempting to exploit a vulnerability. This is especially powerful when one considers
that vulnerabilities like MS08-067 can simply be restored as Mark Baggett mentioned
in his 2013 DerbyCon talk (Baggett, 2013).

 Malware Obfuscation: As a malware analyst this section has been divided into three
categories based on the target/host executable:

o Benign Executables – The shimmed executable can be a generic program
that has been signed and/or whitelisted. The classic ‘InjectDll’ and
‘LoadLibraryRedirect’ Fixes could be leveraged via a UNC path but patching
in new code and/or utilizing existing code akin to ROP (Return Oriented
Programming) chains would be a much stealthier and would be very difficult
to analyze.

o Dependently Malicious Executables – The target executable is purposefully
built to work in tandem with its shim for malicious functionally. As a result the
target would fail to display any malicious behaviors without the malicious shim

Page | 14

to interfere. A classic example would be a subtle ‘kill switch’ being disabled
via a shim like the ‘IgnoreException’ Fix. Another example would be hot
patching instructions to redirect program flow to malicious code existing
elsewhere in the binary.

o Obfuscated Executable – The target executable will fail completely without
the shim. This can be done with code injection and/or hot patching. Such an
executable could be partially or completely encrypted.

 In-Memory Patching. This can offer the most wide array of stealth, defense and
general anti-analysis capabilities:

o Hooking any function
o Add/Remove/Edit Instructions
o Inserting strings/data where needed

 Changing destination IP’s/hostnames
 Changing/Randomizing Indicators

o Early detection of debugging and/or other analysis tools.

One can learn more about what each documented Fix does here:
https://technet.microsoft.com/en-us/library/cc765984(v=ws.10).aspx

Tools

Current Analysis Tools

There are a number of publicly available tools that are indispensable when analyzing a
suspicious sdb file. Below is an inventory of the major ones:

 Compatibility Administrator: The free tool by Microsoft to aid customers in creating,
testing, and installing shim database files as mentioned above. It is the only tool with
a graphical user interface (GUI) and uses that to display sdb files in a logical
manner. However it fails to open most custom made sdb files (such as those made
with sdb-explorer) and fails to display most of the technical details or even the
existence of in-memory patches and custom Fixes.
Link: http://www.microsoft.com/en-us/download/details.aspx?id=7352

 sdbinst.exe: The native installer that the Compatibility Administrator uses to install
sdb files.
Link: https://support.microsoft.com/en-us/kb/308235

 sdb-explorer.exe: Created by Jon Erickson and for his BlackHat Asia talk ‘Using and
Abusing Microsoft’s Fix It Patches’ in March 2014. Unlike the Compatibility
Administrator sdb-explorer displays tremendous amounts of technical information for
a given shim database including disassembling the shims patch code for x86. sdb-
explorer can also create in-memory patch code and stealthily install a shim by
manually adding the required registry keys. This technique bypasses the sdbinst
safe guard of creating an entry in the Add/Remove Programs list.
Link: https://github.com/evil-e/sdb-explorer

 sdb2xml.exe: - Created by Heath Stewart of Microsoft in November 2007 extracts
some data as XML from a shim database. (Stewart, 2007)
Link: http://blogs.msdn.com/b/heaths/archive/2007/11/02/sdb2xml.aspx

https://technet.microsoft.com/en-us/library/cc765984(v=ws.10).aspx
http://www.microsoft.com/en-us/download/details.aspx?id=7352
https://support.microsoft.com/en-us/kb/308235
https://github.com/evil-e/sdb-explorer
http://blogs.msdn.com/b/heaths/archive/2007/11/02/sdb2xml.aspx

Page | 15

 shims.exe: - The only non-free application on this list. Created by David Tomczak in
March 2015, this tool similarly displays information about shim database files, shim
statistics, and patch information in a much prettier format than the other tools, but
does not automatically disassemble the patched bytes.
Link: https://tzworks.net/prototype_page.php?proto_id=33

 python-sdb: - A python sdb file parser. Created by William Ballenthin in July 2015,
this tool similarly displays information about shim database files.
Link: https://github.com/williballenthin/python-sdb

Defense Tools

Targeted persistence is currently not detected as a form of persistence by any analysis
tools (notably SysInternals’ autoruns). As a result, the code that is being released attempts
to uninstall malicious shims whenever they are detected. Some tools even have built-in
shim-defenses as proof of concept code for developers. The following are several examples
of these tools:

Shim-Process-Scanner: This scanner checks the memory of every running process for
Application Compatibility Flags. Features:

 Will search other processes for shim flags
 WMI event trigger on install registries

Shim-Detector-Lite: Shims have total control of file redirection and Registry re-mapping for
the target executable so this tool checks in-memory data structures for undocumented
Application Compatibility Flags. Features:

 Will detect and alert on installation of a custom shim database (sdb)

Shim-Guard-Service: This tools starts as a service when Windows starts up and monitors
the registry for any shim installations, then promptly uninstalls them. Features:

 Runs as a service
 Detects and alerts on newly installed shims
 Uninstalls detected shims

Shim-Guard-Lite

 Flexible WMI based script
 Alerts on newly installed shims
 Uninstalls detected shims

Shim-File-Scanner

 Scans Files/Folders for non-default shims and analyzes them
 Checks registry for installed shims
 Tests a file to see if any shim can be applied to them
 Future:

o Shell Extension for file/folder scanner

https://tzworks.net/prototype_page.php?proto_id=33
https://github.com/williballenthin/python-sdb

Page | 16

Forensics Tools

The tools listed below focus on a forensic perspective for which I have created two plugins
that will assist with both the live and dead analysis of a system afflicted by malicious shims:

shimScanner: Attempts to find evidence for active sdb files in-memory via the open source
memory analysis framework Volatility. Features:

 Searches the Registry for installed sdb files
 Searches each process for shim flags
 Future:

o Pull request for Volatility autoruns plugin
o Add analyzing ability

sdbFileIngestModule: Is a File Ingest Module that detects and analyzes sdb files for the
open source digital forensics tool Autopsy which is a graphical interface for the Sleuth Kit
tools. Features:

 Searches disk image for sdb files
 Parses Registry for installed sdb files
 Uses results from sdb-explorer (windows only tool)

Penetration Testing Tools

Run Self as Admin

 Builds an shim database, installs it, bypasses UAC

Subversion-Shims
 Hides auto run keys from autoruns
 Hides auto run keys from regedit
 Prevents SysInternals tools from launching

Stealth-Shim
 Hot patching code that will conceal flags that the above tools search for
 Unload custom App Comp DLL Helper with FreeLibraryAndExitThread()

PuttyRider-Shim

 Injects the putty rider DLL into Putty

During the course of this research it became obvious that to ensure compatibility, Microsoft
built Windows to effectively lie to all non-native code. Therefore 32-bit and 64-bit versions
are available but will only work in their native code environment. All tools have been tested
primarily on 64-bit Windows 7 Professional and should work on x86/x64 on Windows XP,
Vista, Win7, and Win 8 depending on certain compatibility issues (joke).

Page | 17

Defenses

Aside from using the given tools above, the only other technical defense from a malicious
shim is by disabling the Shim Engine via Group Policy. However, that is not recommended
because shims are heavily integrated into Windows for normal operations; such as auto
elevating any executable matching the filename *instal*.

In late April 2015, Microsoft released an optional update named KB3045645 for Windows 7
and above which, according to their description will “force a UAC prompt when a
customized .sdb file is created in Windows” (Microsoft Support , 2015). Contrary to the
official description, this patch effectively removes the <autoElevate>true</autoElevate>
property from the sdbinst.exe file and does not present a UAC prompt when a customized
sdb files are created or applied to a process. This prevents the traditional UAC bypass
method used by GootKit and other malware families. However the update is classified as
Optional so it will not install by default and sdbinst.exe was merely the official installer for
sdb files, so a UAC bypass is still possible by manually adding the necessary registry keys.

Figure 8. Optional Patch which will disable sdbinst.exe auto-elevation

Prior to KB3045645 malware relied on sdbinst.exe auto-elevating to install a ‘RedirectEXE’
fix in order to bypass a UAC prompt. Barring the use of that patch, some system
administrators may choose to increase the UAC security setting to “Always notify” but this
will of course annoy users into allowing everything especially over long periods of time.
Note: one particularly annoying part of Dridex is that the UAC prompt will appear in an
infinite loop until the user clicks ‘Yes’.

Page | 18

Figure 9 More details see http://support.microsoft.com/en-us/kb/975787

Moving Forward
I would recommend that Microsoft treat sdb files as they do any other executable file and
enable and enforce code signing. I also recommend Windows Defender and other security
software vendors to scan sdb files for suspicious attributes such as, ‘RedirectEXE’ for auto-
elevated apps, ‘TerminateExe’ for security apps, and ‘InjectDll’ for any app. Currently only
the security venders GData and Kaspersky appear to be aware of malicious shims and will
sometimes detect sdb files that are dropped by malware or sdb files attempting a UAC
bypass. In February 2015 a malware analyst named Takahio Haruyama created a generic
Indicator of Compromise (IOC) for the for the Volatility plugin openioc_scan to trigger on the
UAC bypass used by Dridex. (Haruyama, 2015)

Awareness of malicious shims capabilities combined with the tools described above, are
good but it is expected that in the near future more sophisticated ACT enabled in-memory
patching and malware obfuscation techniques will become more prevalent and beyond that
I hypothesize more advanced attacks will include insertion of malicious sdb configurations
into the native system sdb files, and the use of wildcards in file names (but this would
require much more reverse engineering). This will likewise require defenders to continue to
adapt and innovate to better defend their environments.

Conclusion

Defenders such as Incident Responders and Malware Analysts should be aware of how
shim databases can be used to leverage rootkit-like functionality from the features found in
the Application Compatibility Toolkit. Malicious shim database files have been observed in
the wild with increasing frequency and complexity. Given the features and ease-of-use
found in the ACT, attackers will soon start utilizing the more advanced methods
demonstrated here, which has prompted me to create and distribute the tools necessary to
prevent, detect, and combat this new avenue of post-exploitation.

Page | 19

Bibliography
Aquilino, B. (2014, 6 30). Beware BlackEnergy If Involved In Europe/Ukraine Diplomacy. Retrieved from

F-Secure: https://www.f-secure.com/weblog/archives/00002721.html

Author. (2015, 2 8). Upatre downloader malware using AppCompat for automatic UAC elevation.

Retrieved from Bleen. All the integers between 6 and 7:

http://lupwa.org/bleen/2015/02/08/upatre-downloader-malware-using-appcompat-for-

automatic-uac-elevation/

Bospoort, M. v. (2009, 7 23). Disabling a Shim. Retrieved from Maarten's blog:

http://blogs.msdn.com/b/maartenb/archive/2009/07/24/disabling-a-shim.aspx

Chen, R. (2005, 8 24). Buying an entire Egghead Software store. Retrieved from The Old New Thing -

MSDN Blogs: http://blogs.msdn.com/b/oldnewthing/archive/2005/08/24/455557.aspx

Cherepanov, A. (2014). Roaming tiger. Zeronights 2014 (p. 20). Moscow:

http://2014.zeronights.org/assets/files/slides/roaming_tiger_zeronights_2014.pdf.

Cherepanov, R. L. (2014, 1 25). Last-minute paper: Back in BlackEnergy: 2014 targeted attacks in the

Ukraine and Poland. Retrieved from Virus Bulletin:

https://www.virusbtn.com/conference/vb2014/abstracts/LM3-LipovskyCherepanov.xml

Dr. WEB. (2014, 4 9). Retrieved from BackDoor.Gootkit.112—a new multi-purpose backdoor:

https://news.drweb.com/show/?i=4338&lng=en

Drapeau, P. (2015, 1 16). Firewall Rule Changes and Compatibility Trickery. Retrieved from Kill Chain. The

Confer Blog: http://www.confer.net/kill-chain-the-confer-blog/80-firewall-rule-changes-and-

compatibility-trickery

Erickson, J. (2014). Persist It: Using and Abusing Microsoft Fix It Patches. BlackHat Asia (p. 14).

Singapore: https://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-

Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf.

F-Secure. (2015). BLACKENERGY & QUEDAGH. Retrieved from f-secure.com: https://www.f-

secure.com/documents/996508/1030745/blackenergy_whitepaper.pdf

Graham, C. (2014, 5 27). Shimming Your Way Past UAC. Retrieved from Digital Defense Incorporated:

http://blog.ddifrontline.com/4#more-4

Hancke, P. (2009). The Windows 7 App Compat Story. Retrieved from Microsoft Tech-ed Afraca 2009:

http://download.microsoft.com/download/6/7/3/673B71D0-6D4F-4591-9940-

D33DF9135487/WCL304_Win7_app_compat_story_Hancke.pptx

Haruyama, T. (2015, 2 26). Github. Retrieved from TakahiroHaruyama / openioc_scan:

https://github.com/TakahiroHaruyama/openioc_scan/blob/master/IOCs/generic/cdcd5fdb-

fcd3-4947-8c76-d2fbdc1b5f82_UAC_COM.ioc

hFireF0X. (2015, 1 9). FireF0X. Retrieved from Twitter:

https://twitter.com/hfiref0x/status/553777371682443264

Page | 20

Inocencio, R. (2014, 11 5). Banking Trojan DRIDEX Uses Macros for Infection. Retrieved from Security

Intelligence Blog: http://blog.trendmicro.com/trendlabs-security-intelligence/banking-trojan-

dridex-uses-macros-for-infection/

Microsoft. (2009, 10 29). Deploy an Application Compatibility Database by Using SDBInst. Retrieved from

TechNet: https://technet.microsoft.com/en-us/library/ee732408(v=WS.10).aspx

Microsoft Support . (2015, 4 29). Retrieved from Update to force a UAC prompt when a customized .sdb

file is created in Windows: https://support.microsoft.com/en-us/kb/3045645

msft-mmpc. (2013, 10 31). Upatre: Emerging Up(d)at(er) in the wild. Retrieved from Microsoft Malware

Protect Center: http://blogs.technet.com/b/mmpc/archive/2013/10/31/upatre-emerging-up-d-

at-er-in-the-wild.aspx

Ollie. (2012, 4 28). Windows AppCompat Research Notes - Part 1. Retrieved from Research, Develop,

Assess, Consult & Educate: http://recxltd.blogspot.co.uk/2012/04/windows-appcompat-

research-notes-part-1.html

Pernet, C. (2015, 3 30). Fake Judicial Spam Leads to Backdoor with Fake Certificate Authority. Retrieved

from TrendLabs Security Intelligence Blog: http://blog.trendmicro.com/trendlabs-security-

intelligence/fake-judicial-spam-leads-to-backdoor-with-fake-certificate-authority/

SS_TSS@mail.ru. (2012, May). Journal of Computer Hooligans. Retrieved from

ftp://os2.fannet.ru/fileechoes/programming/XA_159.PDF

Stewart, H. (2007, 11 3). Shim Database to XML. Retrieved from Setup & Install by Heath Stewart:

http://blogs.msdn.com/b/heaths/archive/2007/11/02/sdb2xml.aspx

Baggett, M. (2013, February 23). 2013 Posts and Publications. Retrieved October 23, 2013, from In

Depth Defense: http://www.indepthdefense.com/2013/02/2013-posts-and-publications.html

Ionescu, A. (2007, May 20). Secrets of the Application Compatilibity Database (SDB) – Part 1. Retrieved

April 15, 2015, from Alex Ionescu's Blog: http://www.alex-ionescu.com/?p=39

Ionescu, A. (2007, May 21). Secrets of the Application Compatilibity Database (SDB) – Part 2. Retrieved

April 15, 2015, from Alex Ionescu's Blog: http://www.alex-ionescu.com/?p=40

Ionescu, A. (2007, May 26). Secrets of the Application Compatilibity Database (SDB) – Part 3. Retrieved

April 15, 2015, from Alex Ionescu’s Blog: http://www.alex-ionescu.com/?p=41

Mark Russinovich, B. C. (2013, August 1). Autoruns for Windows v11.70. Retrieved September 5, 2013,

from Windows Sysinternals: http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

Microsoft. (2013, September 6). !chkimg. Retrieved October 2, 2013, from Dev Center:

http://msdn.microsoft.com/en-us/library/windows/hardware/ff562217%28v=vs.85%29.aspx

Microsoft. (2013, October 1). Application Compatibility Database. Retrieved October 23, 2013, from

Microsoft Developer Network:http://msdn.microsoft.com/library/bb432182.aspx

Microsoft. (2013). Fix it Solution Center. Retrieved 2013 24-October from Microsoft Support:

http://support.microsoft.com/fixit/

Page | 21

Microsoft. (2012, October 1). Microsoft Security Advisory: Vulnerability in Microsoft XML Core Services

could allow remote code execution. Retrieved September 5, 2013, from Microsoft Support:

http://support.microsoft.com/kb/2719615

Microsoft. (2012, December 7). Shim Database Types. Retrieved September 5, 2013, from Microsoft

Developer Network: http://msdn.microsoft.com/en-us/library/bb432483%28v=vs.85%29.aspx

Sikka, N. (2013, September 17). CVE-2013-3893: Fix it workaround available. Retrieved October 02,

2013, from Security Research & Defense:

http://blogs.technet.com/b/srd/archive/2013/09/17/cve-2013-3893-fix-it-workaround-available.aspx

Stewart, H. (2007, November 3). Shim Database to XML. Retrieved September 5, 2013, from Setup &

Install by Heath Stewart: http://blogs.msdn.com/b/heaths/archive/2007/11/02/sdb2xml.aspx

