New Tool for Discovering
Flash Player O-day Attacks in the
Wild from Various Channels

Agenda

Who am |
Background

Sample Channels
Tool to identify O-day

About me

Core Member of Trend Micro Zero-Day
Discovery Team

Trend Micro Anti-APT engine developer

Interested in discovering vulnerabilities and

writing exploit.
Flash/Android/OS X

''''''

Agenda

Who am |
Background

Sample Channels
Tool to identify O-day

Flash Year

e JAVA Click-to-Play
 Browsers” UAF mitigations
e So Flash Player boom in 2015

Flash Year

e Zero-day attacks’ targets are mostly Flash Player in
2015

CVE-2015-0310

CVE-2015-0311
CVE-2015-0313
CVE-2015-3043
CVE-2015-3113
CVE-2015-5119
CVE-2015-5122

Flash Year

e In late 2014, | decided to catch Flash Player
zero-day attacks in 2015.

 There were two questions need to solve to
achieve the goal.

Two questions

* How to get effective samples in the wild?

Try any possible source channel to get effective samples.

* How to identify O-day from these samples?

Need a processing tool, fast, low false alert.

Agenda

Who am |
Background

Sample Channels
Tool to identify O-day

Sourcing Channels

e Channel 1 - products’ feedback

> Large number of SWF samples from products or engines’
detection feedback

> Most effective channel

Sourcing Channels

e Channel 2 - URL Crawl

> Several exploits integrated in one URL

> Trigger which exploit depends on software version installed
in victim’s system

> Crawl this kind of URLs may catch other software exploits

Sourcing Channels

e Channel 3 - vt intelligence

> SWF samples downloaded from
https://www.virustotal.com/intelligence/

> 0-day sample may be submitted to VT before it is discovered

https://www.virustotal.com/intelligence/

Sourcing Channels

e Channel 4 - URL Pattern

> Exploit Kit or Campaign URLs may have some pattern.

> Find these kinds of URLs, visit them to detect

Agenda

Who am |
Background

Sample Channels
Tool to identify 0-day

Need a tool

 Need a tool to identify SWF files or URLs can
exploit target version of Flash Player.

> Low False Alert.
> Logger for automation.
> Record exploit event when detect.

> High performance.

Advanced Flash Exploit Detector(AFED)

e |E BHO written by C++
e Hook Flash OCX to detect.
e Hook IE event to get current URL name.

 Write detections and behaviors to log.

Automation Process

Simple Python code

Register AFED using regsvr32.exe

Every time load a URL in IE, AFED hook Flash OCX to detect
Kill IE processes to load next URL

When finished all URLs, parse log file with rules

How to implement AFED?

 Before vector.<*> mitigation introduced, all Flash
Exploits used corrupted vector.<*> to exploit.

D Chris Evans £k

Project Zero blog: we collaborated with
Adobe to land Vector.<uint> exploit
hardening into the latest Flash builds:
goo.gl/DyWwBal

O E58hE

i o .
107 63 A e®[Rwri) = El

Typical Exploit Flow Before Mitigation

e Simplified Exploit Flow

vectorAllocate();

triggerVulnerability();

findCorruptVector();

buildRopAndShellCode();
execRopAndShellCode();

Detect Flow Before Mitigation
e |deally

vectorAllocate();

triggerVulnerability();

l

findCorruptVector(); CheckVectorLen();
buildRopAndShellCode (); LogExploit();

execRopAndShellCode();

Hook JIT

e Almost each AS3 method will be JITed before called
 So | hook the JIT point of AVM?2

* In hook point, check Vector object length

Detect Flow Before Mitigation

e So, Practically

vectorAIIocate

triggerVulnerability(); \
findCorruptVector(); 7 JIT_HOOK(); = CheckVectorLen();

buildRopAndShellCode ()

execRopAndShellCode();

Hook JIT

e Key function

> [n AVM2(https://github.com/adobe-flash/avmplus),
BaseExecMgr::verifylit is the function to verify and emit native code.

wold BaseExecMgr::werifylit(MethodInfo* m, MethodSignaturep ms,
Toplevel *toplewel, AbcEnv*® abc_env, O0SR *osr)

{

#ifdef WVMCFG_HALFMOON
if (verifyOptimizelit({m, ms, toplevel, abc_env, osr))
returng halfmoon jit worked.

e L L -2 EXA

al] B g
L L LD L il LVC = =

m-»set_abc_exceptions(core->gc, NULL);

N — "
£ bl e e -

all through to CodegenLIR JIT logic.
#endif
CodegenLIR jit(m, ms, toplevel, osr, &noise};
PERFM_NTPROF_BEGIN("verify & IR gen");
verifyCommon({m, ms, toplevel, abc_env, &jit);
PERFM_NTPROF_END("werify & IR gen™);
GpriMethodProc code = jit.emitMD();
if (code) {
setJit(m, code);
1} else if (config.jitordie)} {
jit.~CodegenLIR(); // Explicit cleanup since destructor won't run otherwise.
txception® e = new (core->GetGC()})
Excepticn{core, core-:newStringlLatinl{"JIT failed")-»atom());

https://github.com/adobe-flash/avmplus

How to check vector length?

 Hook Vector Creating

> Vector.<int>, Vector.<uint>, Vector.<Number> and Vector.<Object>

> Template function, 4 instances in flash binary.

template<class OBJ>
0B1* TypedVectorClass<0BJ»::newVector(uint32 t length, bool fixed)
1

OBJ* v = (0OBI*)0B]::create(gc(), ivtable(), prototypePtr());

v->m_vecClass = this;

if (length > @)

v->set length(length);
v->m_Tixed = fixed;
return v;

How to check vector length?

* Check Vector length before mitigation

> vec_obj addr + 0x18 is the ListData which save data.

> poi(poi(vec_obj_addr + 0x18)) is vector length

template<class STORAGE, uint32 t slop>

struct ListData
uint32 t len; // Invariant: Must *newver® exceed kListMaxLength
MMgc::GC* pe;
STORAGE entries[1]; !/ Lying: Really holds capacity()

// add an empty, inlined ctor to avoid spuricus warnings in MSVC2883
REALLY INLINE explicit ListData() {}

Detect Flow Before Mitigation

e So, Finally

vectorAIIocate SaveVectorObij();

triggerVulnerability();

JIT_HOOK(); == CheckVectorLen();

findCorruptVector(); /

buildRopAndShellCode ()

execRopAndShellCode();

After mitigation introduced

 Use other objects to exploit.

> CVE-2015-7645 used ByteArray based object.

> Overwrite ByteArray length to achieve arbitrary read and
write.

> No general exploit object like Vector

Detect Based on Behaviors

* JIT native code prologues are almost like this:

> Hook first 9 bytes of JIT native code to record each call.

N058254fa Shec mow éhp,esp

N058254fc 8lec=el000000 =ub e=p, IE8h

05E25502 899d7Vcifffft mow dword ptr [ebp-84h].eb=
05825508 89bS3cffffff mow dword ptr [ebp-0C4h].e=i
0582550 89bd3gffffff mnow dword ptr [ebp-0C8h].edi

- T R R Y

05825034 Bbec mow ebp. esp
05825036 83ec?i =uh e=p. 78h
05825039 895dac Mo dword ptr [ebp-54h].=bx
05825030 89758c Mo dword ptr [ebp—-74h].e=1

0582503f 897d9c Mo dword ptr [ebp—-64h].edi
05825042 8b4d0a Mo ec®, dword ptr [ebp+8]

Detect Based on Behaviors

e AFED can get AS3 method name and JIT native code address
by hooking JIT.

 So we can get something like this in log:

Call [Functions$-createEmptyFunction]

Call [Objectss _dontEnumPrototype]

Call [Objects$.s _init]

Call [flash.geon: :Rectangle]

Call [flash.display: Stage]

Call [flash.display: DisplaylbjectContainer]
Call [flash.display: : InteractivelbjectVector.<flash display: :Stageil:]
Call [flash di=play: DisplayObject]

Zall [flash.events: EventDispatcher]

Call [Hain]

Call [flash.displav: Sprite]

Call [Hain<init]

Call [flash.text: :TextField]

Call [flash.display: LoaderInio]

Zall [flash.display: :Loader]

Call [Hain<-HexStringZBin]

Call [Arrav]

Call [flash.utils: ByteiArrav]

Call [flash.svstem: LoaderContext]

Call [flash.display: :Loader-loadBytes]

Zall [flash.display: :Loader- _buildLoaderContext]
Call [ext_fla: HainTimeline]

Zall [flash.display: MovieClip bil]

Call [flash.accessibility: AccessibilitvyProperties]
Call [ext_fla: MainTimeline-framsl]

Call [flash.event=s: :Ewvent]

Call [HvClasz=5-COnLoadEmbedFlashConplete]
Call []

Call [Trait=@5=£91£0]

Call [Hain$<LogToText]

Call [flash.text: :TextField-appendText]

Call [HyOwnBAlJ

Call [MvE=tZ]

Call [MvE=tl]

Call [flash. utils: ObjectOutput]|

Heuristic rules based on behaviors

For example, ByteArray heapspray.

AFED will print lots of “Call [flash.utils::ByteArray]” to log. Add
this rule when parsing the log.

Other heuristic rule can be added by analysis from recent
exploits or experience.

Recently, exploits also used BitmapData heapspray.

Forget one thing
Hook Flash OCX loading, like Windbg’s module load event.
Hook CoGetClassObject function in urlmon.dll

IsEqualCLSID(rclsid, CLSID_Flash) to identify Flash OCX is being
loaded or not.

Reference

e “Inside AVM,” Haifei Li

 Google Project zero,
http://googleprojectzero.blogspot.tw/2015/07
/significant-flash-exploit-mitigations 16.html

http://googleprojectzero.blogspot.tw/2015/07/significant-flash-exploit-mitigations_16.html
http://googleprojectzero.blogspot.tw/2015/07/significant-flash-exploit-mitigations_16.html

Thank you!

	New Tool for Discovering �Flash Player 0-day Attacks in the Wild from Various Channels
	Agenda
	About me
	Agenda
	Flash Year
	Flash Year
	Flash Year
	Two questions
	Agenda
	Sourcing Channels
	Sourcing Channels
	Sourcing Channels
	Sourcing Channels
	Agenda
	Need a tool
	Advanced Flash Exploit Detector(AFED)
	Automation Process
	How to implement AFED?
	Typical Exploit Flow Before Mitigation
	Detect Flow Before Mitigation
	Hook JIT
	Detect Flow Before Mitigation
	Hook JIT
	How to check vector length?
	How to check vector length?
	Detect Flow Before Mitigation
	After mitigation introduced
	Detect Based on Behaviors
	Detect Based on Behaviors
	Heuristic rules based on behaviors
	Forget one thing
	Reference
	Thank you!

