
New Tool for Discovering Flash Player 0-day Attacks in the

Wild from Various Channels

@heisecode

1, Background

In 2014, Microsoft introduced isolated heap and memory protector to

avoid IE UAF exploits, it is harder to exploit PC using IE as a target. In late

2014 when did a plan for 2015, I thought Flash Player will be most

popular attack target in PC, So I did some research for catching flash

0-day attack in 2015 and finally have some results.

There are two important factors to discover 0-day attacks, one is how to

get more effective samples in the wild, another is how to identify 0-day

from large number of samples.

I found some sample channels which can provide effective samples in

the wild and develop a tool to help me identify these samples.

2, Sample Channels

1> Products’ feedback

There are usually many SWF samples from kinds of products or

engines’ detection feedback. This channel is most effective channel,

because the samples have been filtered by products and engines’

rules, and the number of samples is large. There are many new

feedback added every day, so need to process them every day.

2> URL Crawl

Attackers always prepare several exploits in a URL, use which exploit

depends on the software version installed in the victims’ PC. So

products or engines’ feedback may contain many old CVEs detection

just because some users installed old Java version or IE version.

I get these old CVEs detection URLs from feedback and crawl these

URLs to get the whole exploits based in these URLs, and there may

have a Flash exploit.

3> Download from VT Intelligence

I can download many SWF samples from

https://www.virustotal.com/intelligence

Based on some research, attackers may submit their exploits or POCs

to VT to check AV detection. And some 0-days firstly submitted to VT

before they were publicly disclosed.

4> URL Pattern

Exploit Kits and some targeted attacks may use URLs which have

some pattern. Some URLs have relation to the type of the target and

some URLs have same kind based on attackers’ habits.

I can use URL pattern to search URLs from our products or engines’

feedback to get some suspicious URLs and visit them to check there is

a flash 0-day.

https://www.virustotal.com/intelligence/

3, Tool to identify 0-day

Because the number of samples and URLs is large, so I need a tool to

help me to identify. This tool should have fast process speed and low

false alert. It also should have a logger to log the URL/Sample name

corresponding to the events/behaviors.

So I developed a tool named AFED (Advanced Flash Exploit Detector).

AFED is something:

• An IE BHO written by C++

• Hook Flash OCX when Flash Player loaded to IE tab process.

• Hook IE event to get current URL name.

• Write exploit detection or sample behaviors to log.

And the automation process is:

• Simple Python code

• Register AFED BHO using regsvr32.exe

• Every time load a URL in IE, AFED hook Flash Player OCX to detect

• Kill IE processes to load next URL

• When finished all URLs, parse log file

In July, Adobe introduced Vector object mitigation into Flash Player with

help of Google Project Zero.

The mitigation is based on the fact that almost every flash exploit used

corrupt Vector object to achieve arbitrary read and write. And Vector

object was easily to be corrupted.

So there are some differences between before and after Adobe

introduced Vector object mitigation.

1> Before Adobe introduced Vector.<*> mitigation

Before the mitigation, Flash exploits used corrupted Vector object to

achieve arbitrary read and write process memory. So AFED checks the

Vector object length to detect Flash exploits.

Simplified flash exploit flow is like this:

I hook AVM2 JIT flow to get the check point, the hook key function is:

So the detection flow is like this:

Then I hook the vector object creating, the key function is:

So the final detection flow can be this:

2> After Adobe introduced Vector.<*> mitigation

JIT native code prologues are like this:

And we can get AS3 method name and its JIT native code address in

the hook point.

So we can log every AS3 method call:

We can add heuristic rules based on behaviors. For example,

CVE-2015-7645 used ByteArray heapspray to exploit, so AFED will

print lots of “Call [flash.utils::ByteArray]” to the log. We can add rule

when parsing log to match the ByteArray heapspray.

We can add other rules based on analysis of recent exploits or your

experience such as BitmapData heapspray used in recent exploits.

3> Hook Flash OCX load

Because Flash OCX is a COM component, so I hook CoGetClassObject

function in urlmon.dll.

I use IsEqualCLSID(rclsid, CLSID_Flash) to identify Flash OCX is being

loaded or not.

4, Reference

1> “Inside AVM”, Haifei Li

2> Google Project Zero Blog,

http://googleprojectzero.blogspot.tw/2015/07/significant-flash-explo

it-mitigations_16.html

http://googleprojectzero.blogspot.tw/2015/07/significant-flash-exploit-mitigations_16.html
http://googleprojectzero.blogspot.tw/2015/07/significant-flash-exploit-mitigations_16.html

