

2 / 32

 Dongwoo Kim : Hyeon-jeong Lee’s Husband
• Ph.D. Candidate at Chungnam National University

in South Korea

• Majoring in Computer Communications & Security

• Interested in mobile hacking, digital forensics

 Sangwho Kim : Hye-ji Heo’s Boyfriend
• Master’s course at the same school

• Interested in mobile hacking, vulnerability analysis

Who we are

3 / 32

 We want to find remote code execution vulnerabilities
of real-world Android apps.

 Our targets are apps that consume file data like office
file browser.

 We’re especially interested in their native libraries that
can cause crashes.

 It’s not a big deal to make targets get crashed using
simple fuzzing.

 The problem is that it’s a very time-consuming task to
analyze crashes to determine exploitability.

Our purpose

4 / 32

 We have to MANUALLY figure out that the operand at
crash point is affected by the user input.

How to determine exploitability

BL R3

LDR R3, [R1]
...

LDR R2, [R4, #4]

...

LDR R4, [R5, #20]

User Input Data

LDR R1, [R2]
Crash

Shellcode

5 / 32

 We need something that can let us know whether the
operand is affected by the input in an automated
manner. (Time is precious!)

 We tried to take advantage of any tools for it.

 However, there is nothing that we can use for our
purpose on ARM architecture.

 We have decided to write our own tools using taint
analysis based on dynamic binary instrumentation.

Our goal 1 / 2

6 / 32

 Our tools should be easy to use on both Android
emulator and device for practical use.

 We want our tools to answer the following questions.
Q. Operand at crash point is affected by input?

A. Yes or No!

Q. If yes, where is exactly coming from?

A. Offset 0x1004 in the input file

Our goal 2 / 2

7 / 32

 Triaging Bugs with Dynamic Dataflow Analysis
presented by Julio Auto at Source 2009 conference

 For crash analysis of user level applications on
Windows OS (x86)

 Using taint analysis to determine exploitability

VDT (Visual Data Tracer)

Input data

Crash Point

① Leave trace log

② Backward taint analysis
using the trace log

1 / 3

8 / 32

 VDT-Tracer : Leave trace log (Extension of WinDBG)

VDT (Visual Data Tracer)

trace.log

2 / 3

9 / 32

 VDT-GUI : Backward taint analysis

VDT (Visual Data Tracer)

▼ Instruction chain engaged in data flow

3 / 3

10 / 32

TREE (Tainted-enabled Reverse Engineering Environment)

 Dynamic Analysis and Debugging of Binary Code for
Security Applications by Lixin Li and Chao Wang in
2013

 For crash analysis of user level applications on
various architectures based on debugging feature of
IDA Pro

 Using taint analysis to determine exploitability.

1 / 2

11 / 32

TREE (Tainted-enabled Reverse Engineering Environment)

IDA Pro

TREE-Tracer TREE-Analyzer TREE-Visualizer

Trace_log.idb

2 / 2

12 / 32

Type of DBI (Dynamic Binary Instrumentation)

Target

DBI Tool TargetDBI Tool

Attach

- Same process - Separate process Our choice!

- NOT appropriate
for crash analysis

- OS support NOT required
(Low overhead)

- OS support required
(High overhead)

- Appropriate for crash analysis

Type

Pros

Cons

vs.

13 / 32

Overview of our tools

① ARM-Tracer (Online) ② ARM-Analyzer (Offline)

- CLI Interface
- Working on 32bit ARM-based Linux

(Android emulator and real device)
- Extracting context of every instruction

until the target gets crashed

- GUI Interface
- Working on Desktop for efficiency
- Parsing trace.log and show the list

of executed instructions
- Allowing a user to choose an object

for backward taint analysis

trace.log

14 / 32

 No hardware support for single-stepping whereas Intel
x86 provides it known for trap flag.

• We can implement it with DBM (Debug Breakpoint Mechanism).

 It requires various considerations which are not
necessary in x86.
• Such as calculating Next PC, handling signals in multi-

threaded environment, handling atomic instruction sequence.

Challenges in ARM-Tracer

15 / 32

 Not a simple task to identify semantic of ARM
instructions in terms of data propagation, and
distinguish their syntax.

 SIMD (Single Instruction Multiple Data) instruction set is very
annoying!

 SIMD is for multimedia like SSE (Streaming SIMD Extensions)
in x86 which has its own register bank that size is 256
bytes in total.

Challenges in ARM-Analyzer

16 / 32

 Instruction tracing with DBM
• single-stepping using ptrace system call

• Breakpoint instruction differentiate according to the
instruction state

ARM-Tracer

[Step 1] Determine Next PC

0x1004 01 10 C0 24
0x1008 01 00 BD E8
0x100C 1E FF 2F E1

1. Analyze current instr.
0x1004 01 10 C0 24

2. Determine Next PC
Next PC = 0x1008

[Step 2] Set BP

0x1004 01 10 C0 24
0x1008 “Breakpoint”
0x100C 1E FF 2F E1

3. Backup instr. at Next PC
0x1008 01 00 BD E8

4. Set BP at Next PC
0x1008 “Breakpoint”

[Step 3] Restore Instr.

0x1004 01 10 C0 24
0x1008 01 00 BD E8

0x100C 1E FF 2F E1

5. Execute
0x1004 01 10 C0 24

6. Restore Instr.
0x1008 01 00 BD E8

1 / 8

17 / 32

 Instruction state

 Instruction state change (interworking) can happen by
BX/BLX instructions.

ARM-Tracer

State Instruction Size

ARM state ARM instruction 32

Thumb state
Thumb instruction 16

Thumb2 instruction 16/32

2 / 8

18 / 32

 Considerations on calculating Next PC
• We have to identify opcode of instructions according to

instruction state. (based on GDB)

ARM-Tracer

ARM (32bit) Thumb (16bit) Thumb2 (16/32bit)

BLX #Offset

BLX <Reg>

BX <Reg>

LDR PC, [<Reg>]

LDM <Reg>, {(RegList,) PC}

B #Offset

BL #Offset

POP {(RegList,) PC}

B #Offset

BX <Reg>

BLX <Reg>

MOV PC, <Reg>

CBZ <Reg>, #Offset

CBNZ <Reg>, #Offset

B #Offset
BL #Offset
BLX #Offset
SUBS PC, LR, #Offset
LDMIA <Reg>, {(RegList)}
LDMDB <Reg>, {(RegList)}
RFEIA <Reg>
RFEDB <Reg>
MOV PC, <Reg>
LDR PC, [<Reg>]
TBB [<RegA>, <RegB>]
TBH [<RegA>, <RegB>]

3 / 8

19 / 32

 Addressing interference by other threads
• Caused by code sharing

• We have to guarantee all the threads run properly.

ARM-Tracer

BreakpointBreakpoint

Thread Thread Thread
Target
Thread Thread Thread Thread

Target
Thread

4 / 8

20 / 32

 Handling instruction sequence for atomic operation
• ARM does not provide atomic instruction.

• Instead, it provides sequence for it. (LDREX/STREX)

• We should not intervene the sequence otherwise,
it may cause infinite loop.

ARM-Tracer

infinite loop

5 / 8

21 / 32

 The “good” starting point
 We designate a specific thread as the target thread which

opens the input file.

 We can know memory address where the input file is loaded
by checking open and read functions.

ARM-Tracer

Target starts

Input file is loaded!
(We start tracing here.)

Target crashes!

6 / 8

22 / 32

 Before logging, filter out instructions not executed
(ARM)

ARM-Tracer

[CPSR]

[ARM Instruction]

7 / 8

23 / 32

 Before logging, filter out instructions not executed
(Thumb2)

ARM-Tracer

[CPSR]

[Thumb2 – IT Instruction]

8 / 8

24 / 32

 Parsing each entry from the trace log file
• Identify instruction syntax based on disassembly

• Identify object : register, memory address (byte level)

ARM-Analyzer 1 / 3

25 / 32

 Classification of instructions
• ARM Architecture Reference Manual ARMv7-A Edition

• We have also considered some SIMD instructions (vld, vst).

ARM-Analyzer

Group Mnemonic Target Syntax Impl.

Memory access 16 8 39 54

General data processing 32 27 37 70

Multiply 25 22 22 28

Saturating 6 6 6 10

Parallel 4 4 4 5

Packing and unpacking 10 10 10 28

Branch and control 10 0 0 0

Coprocessor 14 0 0 0

Total 117 77 118 195

2 / 3

26 / 32

 How it works – Backward taint analysis

ARM-Analyzer

Dst : r6 / Src : r0
Dst : r3 / Src : r1, *0x2224
Dst : r5 / Src : r1
Dst : r4 / Src : r0
Dst : r0 / Src : r1
Dst : r1 / Src : r6
Dst : r3 / Src : r3, *0x1018

▼ Inside of ARM-Analyzer

Queue

“r3” ①

②

Enqueue

Crash

▼ View for user

3 / 3

27 / 32

 We generated crashes against Polaris Office 6.0.1.

 Among them, we chose 7 crashes that look cool!

 Such as..

 Let’s try to put them into our tools!

Experiment

LDR R3, [R3, #0x18]

BLX R3
Crash

1 / 3

28 / 32

 Tested on GalasxyS4
 2.3 GHz Quad-core, 2GB RAM, Android 4.4.2, Kernel 3.4.0

Experiment

ARM-Tracer Crash 1 Crash 2 Crash 3 Crash 4 Crash 5 Crash 6 Crash 7

of
instructions
executed

6,804,072 6,830,983 7,008,764 7,048,261 10,000,000+ 10,000,000+ 10,000,000+

of
instructions
filtered out

585,093 584,841 601,177 607,208 900,000+ 900,000+ 900,000+

of
atomic handler 2,600 2,600 2,662 2,630 3,800+ 3,800+ 3,800+

Taken time
(sec) 1,563 1,562 1,616 1,673 2,300+ 2,300+ 2,300+

Dump file size
(MB) 1,038 1,042 1,069 1,075 1,500+ 1,500+ 1,500+

2 / 3

29 / 32

 Tested on Desktop
 3.3 GHz Quad-core, 16GB RAM, Windows 7

 Fast Mode enqueues only effective address of source into
the search queue.
 ex) L D R R 1 , [R 2 , R 3] * (R 2 + R 3) / / 0 x 1 0 0 4

Experiment

ARM-Analyzer Crash 1 Crash 2 Crash 3 Crash 4

Probably Exploitable X O X O
of instructions executed 6,804,072 6,830,983 7,008,764 7,048,261

Taken time
to full scan

Fast Mode 10 ~ 15 sec

Normal Mode A couple of days.....

3 / 3

0x1000 0x4

30 / 32

31 / 32

 We have developed tools for crash analysis of user-
level applications on ARM architecture.
 It can avoid non-deterministic behavior.

 We can efficiently analyze crashes in a limited time.

 We have tested it with real-world app on Android
device.
 As a result, we got two exploitable crashes after short testing

our tools with crash samples that we have already generated.

 Before long, we’re going to release our tools with
source code after some revisions for those who are
interested in them.
 Please participate in improving our tools.

32 / 32

