Time and Position Spoofing
with Open Source Projects

Kang Wang
Mobile Security of Alibaba Group
wangkang.wk @alibaba-inc.com

Abstract—Time and position data of mobile devices are trusted
without checking by most vendors and developers. We discover a
method of GPS spoofing with low-cost SDR devices. The method
can be used to alter the location status as well as the time of
affected devices, which poses a security threat to location-based
services. We also examine other positioning methods used by
smart devices (e.g. WiFi) and how to spoof them. Advices on
preventing such spoofing are given.

I. INTRODUCTION

GPS is widely used for positioning and time syncronization
for mobile devices. However, since time and position data
of mobile devices are trusted and seldom verified by most
vendors and developers, it provides a huge attack surface for
potential attackers.

In this paper, we demonstrate that time and position data of
mobile devices can be easily cheated using open source tools,
and neither physical touch with mobile devices nor jailbreak/-
root process is necessary. It is able to interfere all the position
and time of cellphones in the surrounding area. Several years
ago, it is still very expensive for personal potential attackers to
obtain SDR devices. But with SDR platforms becoming much
cheaper, hardware cost of this method is only about $300 today
and could be even cheaper later.

First, a method of GPS signal spoofing with SDR platform
is introduced and demonstrated. A software defined radio
platform is required to complete this attack. Faked GPS
baseband signal samples are generated using an open source
project, and replayed using SDR platform such as HackRF,
BladeRF or USRP. The time of affected devices is altered as
well.

Second, a method of WiFi based positioning spoofing is
introduced and demonstrated. It only requires a Linux laptop
with a wireless adapter. A demonstration of cheating Baidu
Map app with faked WiFi SSIDs and BSSIDs is shown. Tools
and scripts to complete this attack are given is this section as
well.

In our opinion, it is urgent to inform vendors and developers
of mobile devices that GPS and WiFi positioning data are not
reliable, and should be verified carefully. In the end, some
advices on preventing such spoofing are provided.

The rest of this paper is organized as follows. Section II
first gives an overview on GPS system including positioning
principle, GPS signal frames and GPS broadcast ephemeris,
then introduces the experiment platform and software, and

Shuhua Chen
Mobile Security of Alibaba Group
xingzhong @alibaba-inc.com

Aimin Pan
Mobile Security of Alibaba Group
aimin.pan@alibaba-inc.com

finally shows some examples of GPS spoofing results. Section
IIT introduces WiFi based location spoofing principle, then
gives the detailed method of this spoofing, and finally shows
a few examples. Section IV gives some advices on how to
prevent such spoofing.

II. GPS SPOOFING
A. GPS Overview

Satellites 2
(x2, y2, 22)

Fig. 1. GPS Positioning Principle

1) GPS Positioning Principle: First, let us clarify the
problem. What we want to know is our position coordinate
(z,y, ). If there is a position A (in fact, it’s a satellite) which
has a known coordinate (x1,y1,21), we can simply broadcast
a signal, which can be either light or sound or electromagnetic
wave, from position A. Then we try to measure the duration
71 between the signal is sent and arrived. In GPS system, we
choose electromagnetic wave as the signal, so we know the
velocity of electromagnetic wave, c. And we can give this
equation as below:

V@—21)2+y-—y)+(z—2)2=cn

This equation cannot be solved since it has three unknowns.
So we can simply add another two positions(satellites) whose
coordinates are already known too. Let’s mark them as



(22,Y2,22) and (x3,ys, 23). And we also measure the dura-
tions 72 and 73. So we can get an equation set as below:

VE—21)?+y—n)?+(E-—z)2=cn
V(e —22)2+ (y —12)? + (2 — 22)* = e
Vi —23)2+ (y —y3)? + (2 — 23)°

Now, our position coordinate (z,y, z) can be solved out of
the equations.

But it is not enough in engineering practice. For the mea-
surement of duration between electromagnetic wave is sent
and arrived, 7, a timestamp t¢; is needed to write into this
electromagnetic wave signal just the same time as it is sent
from the satellite, and the time reference of which is from the
clock carried in the satellite. When the signal arrives at our
position, we extract the timestamp t; from the signal, then
calculate the time offset between ¢; and localtime t; to get
the duration 7;. But local clock and satellite clock are not
synchronized, there is a time deviation At; between them.
This deviation brought by clock desynchronization should be
taken into consideration. The revised equations are as below:

V(=) + (y —v:)? + (2 — 2)?
This equation set is unsolvable again, since there are another
three unknowns, Aty, Aty, Ats.
The clocks carried by each GPS satellites are high precision

atomic clocks, which are in strict synchronization state. So we
have the following equation:

Aty = Aty = Aty = At
Then the equation set becomes:
V@ —2)2+ (y — )2 + (2 — )% = c(At+7),i € {1,2,3}

Still, we cannot solve this equation set for now. So we add
the 4th satellite. The equation set becomes:

= CT3

Where

e (x,y,2) is the coordinate of receiver antenna.

o (zi,yi,2;) is the coordinate of the ith GPS satellite.

 c is the speed of light.

e ¢(At 4 7;) is the distance from the receiver antenna to
the satellite antenna including receiver and satellite clock
offsets (and other biases, such as atmospheric delays),
a.k.a the pseudo-range (PR).

e T; is the signal travel duration

Now that our position (z,y,z) can be solved out of this

equation set. That is why at least 4 satellites are needed
to complete the GPS positioning. Besides, we can also cal-
culate our local clock offset against the atomic clock in
GPS satellites, and this procedure is known as GPS time
synchronization.

= C(Atz+TZ),Z c {1, 2, 3}

TABLE I
GPS L1 SIGNAL
Parameter Value
Code C/A Code
Modulation  BPSK
Frequency 1575.42MHz
Code Rate 1.023 MHz

1 Frame = 5 Subframes

[«— 30 sec, 1500 bits 4’|

1 2 3

%ubframe =10 VM

[«— 6 sec, 300 bits ———»]
1]2[3]a]s]e][7]8]9]10

Subframes 4 and 5
have 25 Pages

1 Word = 30 Bits
0.6 sec

||||||||||||||||||||||| 1 Master Frame includes all 25 pages of
2 sec subframes 4 & 5 = 37,500 bits taking 12.5 minutes

Fig. 2. GPS Signal Frame

2) GPS Frames: GPS signal frame structure is shown in
Fig. 2. The bitrate of GPS signal is 50 bps. GPS satellites
broadcast GPS signals in different frequency band and in
different modulation. L1 signal is the most common signal
in civil usage.

The strength of GPS signal received is very weak, at about
-130 dBm, and most GPS receivers wouldn’t work indoor. It
makes GPS signal interference or spoofing quite easy, since
attackers don’t need to generate a strong signal to cover the
real GPS signal.

Fig. 3. Generated GPS Signal Spectrum

3) BRDC Data: BRDC (Broadcast Ephemeris Data) files
contain the unique GPS satellite ephemeris messages for
each day. Ephemeris data provides the exact location data
(z4(t), y:(t), z:(t)) of each satellites, so that receivers can get
prior information in order to calculate position.

You can download BRDC archives in form of RINEX
(Receiver Independent Exchange Format) from ftp://cddis.
gsfc.nasa.gov/gnss/data/daily/.



The archives are named in the following scheme by rules
in Table II.

YYYY/DDD/YYn/brdcDDDO.YYn.Z

TABLE II
BRDC FILENAME RULES
Code Meaning
YYYY  4-digit year
YY 2-digit year
DDD 3-digit day of year
Z compressed Unix file

For example, ‘brdc3540.14n" means GPS satellite ephemeris
messages of December, 20th, 2014.

B. GPS Position Spoofing Using Opensource Code and SDR

1) GPS-SDR-SIM Project: GPS-SDR-SIM project is an
opensource GPS baseband signal generator released under
MIT license. The principal author of this project is Takuji
Ebinuma. We have contributed code of static location support
and BladeRF script support to this project.

It takes a RINEX formatted GPS ephemeris archive and
location as input, and generates GPS baseband signal for
SDR platform to playback. The default maximum duration
of samples generated is three minutes.
$ git clone git@github.com:osgzss/gps—sdr-sim.git

$ cd gps—-sdr-sim
$ gcc gpssim.c -1m —-fopenmp -o gps-sdr-sim

Listing 1. Fetch GPS-SDR-SIM Code and Compile

$ ./gps—-sdr-sim -h

Usage: gps-sdr-sim [options]
Options:
—e <gps_nav> RINEX navigation file for GPS
ephemerides (required)

-u <user_motion> User motion file (dynamic mode)
—-g <nmea_gga> NMEA GGA stream (dynamic mode)

-1 <location> Lat, Lon,Hgt (static mode) e.g.
30.286502,120.032669,100
-0 <output> I/Q sampling data file (default:
gpssim.bin)
-s <frequency> Sampling frequency [Hz] (default:
2600000)
-b <ig bits> I/Q data format [8/16] (default:

8)
Listing 2. Usage of GPS-SDR-SIM

2) SDR Platforms: To transmit signals into real air, we need
Software Defined Radio platform such as HackRF, BladeRF,
USRP.

HackRF is an open source SDR platform using USB 2.0
interface, operating on frequency band from 10MHz to 6GHz,
supporting 20Msps sample rate maximum, but only half du-
plex. It provides every design details from host driver to ARM
firmware and even hardware scheme, PCB layout and BOM.
BladeRF uses USB 3.0 interface, operating on frequency band
from 300MHz to 3.8GHz, supporting independent RX/TX 12-
bit 40MSPS quadrature sampling and full duplex.

BladeRF seems to have a better radio frequency perfor-
mance than HackRF, since it uses an integral radio chip to
support all working RF frequency range from 300MHz to
3.8GHz. HackRF uses some RF switches and RF converters
on PCB board to expand a narrow working frequency between
2.3GHz and 2.7GHz to 10MHz and 6GHz, which brings quite
a lot of RF power loss. But according to our experiment,
both GPS signal transmitted by HackRF and BladeRF can be
decoded by regular GPS receivers.
$ ./gps—-sdr-sim -e brdc3540.14n -1

30.286502,120.032669,100 -b 16 # For BladeRF

$ ./gps-sdr-sim -e brdc3540.14n -1
30.286502,120.032669,100 # For HackRF

Listing 3. Generate a GPS Baseband Signal Samples for a Static Location
at December 20th, 2014

After baseband signal samples are generated, we can trans-
mit them through antenna of SDR platform.

3) HackRF Transmittion: We can use the command line
below to transmit samples using HackRF, at 1575.42MHz,
repeatedly.

$ hackrf_transfer -t gpssim.bin —-f 1575420000 -s
2600000 -a 1 -x 0 -R

Listing 4. Loop Transmitting the Baseband Samples Using HackRF

Where:

o -t filename, Transmit data from file.

o -f freq_hz, Frequency in Hz.

¢ -s sample_rate, Sample rate in Hz.

o -a amp_enable, RX/TX RF amplifier 1=Enable, 0=Dis-

able.

o -x gain_db, TX VGA (IF) gain, 0-47dB, 1dB steps.

e -R, Repeat TX mode.

The ‘-R’ parameter is contributed by us to HackRF project
to support repeat transmit mode. It’s very handy because ‘gps-
sdr-sim’ only generates a sample of three minutes, while GPS
receivers probably don’t have enough time to complete the
first GPS capture process in just three minutes.

4) BladeRF Transmittion: We can use the command line
below to transmit samples using BladeRF, at 1575.42MHz.

bladeRF-cli -s bladerf.script

Listing 5. BladeRF Transmit Command

Fig. 3 shows frequency spectrums of GPS samples trans-
mitted by BladeRF.

C. Experiment Results

Item Value

Hardware

Test device

Test network

Real location

Real localtime

GPS spoofing location
GPS spoofing time

BladeRF or HackRF

iPhone 6 and Apple Watch (42mm sports version).
China Mobile LTE, China Unicom LTE

Tsinghua University Main building , Beijing, China
~ 2015-06-20 21:00 (UTC+8)

Japan, (35.274931N, 137.013638E)

2014-12-20 00:00:00 (UTC+0)




2814-12-28T88:82:37.8811
35.274931 N

Longitu 137.813638 E

Altitude: 49.8 m
Speed: 79.9 kph
2 deg (true)
8.8 mS/min
30 FIX (3 secs)

Heading:
Climh:
status:
Longltude Err: +/= 6 m
Latitude Err: +/- 9 m
Altitude Err: +f= 25 m
Course Err: n/a

+/= 69 kph

15651773, 792

PMB5mg

In View

13 13

41 40 41 43 41 40 41 40 40 40 40 40

0102030609 10111217 202328

SNR
00 10 20 30

o

Fig. 5. GPS Faking Demo: Android GPS Test App

1) iPhone and Android Cellphones: When GPS spoof
starts, the positioning data of iPhone will be cheated, even
with WiFi and cellular service switched on. So Apple seems
to trust GPS data at quite a high level.

When GPS spoofing is stopped, but without real GPS
signal received, date and time wouldn’t be fixed immediately
according NTP service from WiFi or cellular network.

When we get to the open air to get a strong and stable
real GPS signal, the affection won’t be fixed for at least 10
minutes even after we switched ‘General — Date & Time —
Set Automatically’ to ‘Off” and set back the right time then
switched to ‘On’.

Fig. 5 shows that a GPS Test app running on Android
cellphone, gets a ‘3D Fix’ result.

2) Time Spoofing on Apple Watch: The date and time of
iPhone and Apple Watch was cheated by GPS signal also,
in this case, changed to December 20th, 2014, while the real

eaco HEGH 4G LT806

*  SREEHWBES Nue

Fig. 6. GPS Faking Demo: iPhone. Real Position: Beijing

eecco HEKE) F 22:23 @ 7 O 3%E
{ Hit At % Q ki
2014512 H12H HE
2014412 H20H E133

—
- .
20:23:26

20:23:31
20:23:32

e0 0810

=R

12H20H

Fig. 7. GPS Faking Demo: Camera timestamp disorder

local date and time is June 20th, 2015. Since Apple Watch is
fully synchronized with iPhone, as is shown in Fig. 9.

Fig. 7 shows that photos or screenshot taken with iPhone
at this time, will be inserted into photo stream with a false
timestamp location.

3) LBS Apps: Uber, Didi, and Wechat: Nowadays, more
and more mobile apps use positioning data to bring more
suitable service to users. But it seems that those apps trust
positioning data totally. For example, taxi calling apps like
Uber and Didi can be easily cheated using this GPS spoofing
method, as are shown in Fig. 10.

Fig. 11 shows that location based apps like WeChat, will
get a cheated location when posting a photo with geographic
labels.



Rosition

Fig. 8. GPS Faking Demo: Beijing Japan

LEUE

jsf e ] 17!

Fig. 9. GPS Faking Demo: Apple Watch. Real Date: 2015-06-20

4) Furthermore: Base station frequency offset: Later, we
found out that this GPS spoofing method can also interfere
the sync signal of cellular network base stations. Most base
station in cellular networks rely on PPS(Pulse Per Second)
signal which derived from GPS signal to calibrate frequency
offset. We transmit fake GPS signal which contains a high-
error PPS signal, then the LTE base station automatically sync
with this PPS signal, and the whole LTE network’s frequency
error increased from SHz to ~11000Hz.

5) Furthermore: NTP Service: NTP service provides time
synchronization service through Internet connection. Most of

seoec MEHBT) 4G 08:10 @ 70} 51% M) eeeec hEBE 4G 08:06 @703 48% M
@ UBER 15 x mEeE
Q T
- BEEET
’ B
(CEaTy P HhHFFRELA...
B © T i -BE °
o 5 I
© QT E

EfEnE

Fig. 10. GPS Faking Demo: Uber and Didi Taxi

EERNN SR

O <OzEsmpLicm
AnE me

Fig. 11. GPS Faking Demo: Wechat App

NTP services use GPS time as upstream synchronization
source.

If NTP service is affected by attackers, the impact would
be enormous.

III. WIFI BASED LOCATION SPOOFING

A. Principle of WiFi Assisted Positioning

Since GPS positioning won’t work indoors, positioning
service providers such as Apple Maps, Google Maps, Baidu
Maps often use WiFi signal to help users to get a better
positioning performance.



The principle is simple. The wireless chipset of cellphone
is able to provide site survey information against WiFi hotspot
surrounding. The key information to help positioning is SSID
and BSSID. SSID (Service Set IDentification) is the display
name of WiFi hotspot. BSSID (Basic Service Set Identifica-
tion) is the MAC address of the wireless access point (AP).
Positioning service providers collect SSID and BSSID against
GPS data into their positioning assist database, sometimes the
information collect process is completed in cellphones of end
users.

For example, in Apple Location Q&A [13]: “Rather, its
maintaining a database of Wi-Fi hotspots and cell towers
around your current location, some of which may be located
more than one hundred miles away from your iPhone, to
help your iPhone rapidly and accurately calculate its location
when requested. Calculating a phones location using just GPS
satellite data can take up to several minutes. iPhone can reduce
this time to just a few seconds by using Wi-Fi hotspot and cell
tower data to quickly find GPS satellites, and even triangulate
its location using just Wi-Fi hotspot and cell tower data when
GPS is not available (such as indoors or in basements). These
calculations are performed live on the iPhone using a crowd-
sourced database of Wi-Fi hotspot and cell tower data that
is generated by tens of millions of iPhones sending the geo-
tagged locations of nearby Wi-Fi hotspots and cell towers in
an anonymous and encrypted form to Apple. ”

So, what about we generate some fake SSIDs and BSSIDs,
in order to see whether those positioning service be cheated
or not.

The most straight forward idea is to collect those data
manually, then buy a lot of wireless routers, setting the BSSID
and SSID of each router according to our needs. But it will
be quite a hard job to complete. Thus, we need to come up
with a more effective idea.

B. Collect SSID and BSSID

First, we need to collect SSID and BSSID around. For
Linux, we have ‘iw’ utils which can easily collect those IDs.
In order to speed up, we wrote a GNU/awk text substitution
script ‘wifi-mdk3.awk’ in Listing 6 to process ‘iw’ utils output
to fit later use.

$1 == "BSs" {
MAC = $2
wifi[MAC] ["enc"] = "Open"
}
$1 == "SSID:" {
wifi[MAC]["SSID"] = $2
}
$1 == "freq:" {
wifi[MAC] ["freq"] = SNF
}
$1 == "signal:" {
wifi[MAC] ["sig"] = $2 " " $3
}
$1 == "WPA:" {
wifi[MAC] ["enc"] = "WPA"
}
$1 == "WEP:" {
wifi[MAC] ["enc"] = "WEP"

END {
for (BSSID in wifi) {
printf "%s %$s\n",BSSID,wifi[BSSID]["SSID"]

Listing 6. wifi-mdk3.awk

$ sudo iw wlanO scan |gawk -f wifi-mdk3.awk >
scan_result.txt

Listing 7. Capture Wireless Around

Scan Results:

ec:26:ca:38:25:8a metrust
74:1e:93:63:74:b9 STB_IKPG
4c:09:b4:2e:bc:e5 VIDEOPHONE_zwRu
c8:3a:35:3f:2e:e0 www.wboll.com
ag8:15:4d:14:a3:88 DYJL
c4:14:3c:£3:5c:4d Baidu_Mobile
4c:09:b4:2e:83:f4 CU_mcSC
Sba:c7:16:fa:e2:94 STB_Wa7a
c4:14:3c:fb:58:3c Baidu_Friend
c4:14:3c:ed:al:dc Baidu_Friend
c4:14:3c:£3:5c:4f Baidu
00:1f:ad4:ed:e6:d0 CU_pngE
00:1f:a4:ed:e6:dl VIDEOPHONE_pngE
00:1f:a4:ed:e6:d2 STB_pngE
00:1f:ad4:ed:e6:d3 BACKUP
ec:17:2f:25:ca:4e bjjfsd-VIP
6c:e8:73:fe:01l:ee dhijc
f4:ec:38:58:79:b2 ZJIDZGC off
ec:26:ca:b9%9:a5:d2 zkyclé8
l4:e6:ed4:7e:ad:56 lichunfeng
14:75:90:0£:52:10 bjjfsdol
c4:14:3c:fb:58:ac Baidu_Friend
c4:14:3c:f3:5c:4e Baidu_WiFi
42:0f:0e:20:9c:62 xz-test
32:0£:0e:20:9c:62 XZ-gaoceng
10:0£:0e:20:9c:62 XZ-office
12:0£:0e:20:9c:62 XZ-caiwu
c4:14:3c:fb:58:3f Baidu
c4:14:3c:ed:al:df Baidu
c4:14:3c:fb:58:3d Baidu_Mobile
cd4:14:3c:ed:al:de Baidu_WiFi
c4:14:3c:ed:al:dd Baidu_Mobile
c4:14:3c:fb:58:3e Baidu WiFi
c4:14:3c:fb:58:ad Baidu_Mobile
c4:14:3c:£3:5c:4c Baidu_Friend
c4:14:3c:fb:58:af Baidu
ec:26:ca:6¢c:09:17 TP_820_5G
14:75:90:2a:b8:3a zjyd
72:c7:16:£c:86:07 STB_E2B9
72:c7:16:fc:86:06 VIDEOPHONE_E2B9
72:c7:16:fc:86:04 BACKUP
b8:c7:16:fc:86:05 CU_E2B9
c0:a0:0b:49:¢c8:04 martin
00:25:86:a7:b5:82 etsee
80:89:17:b2:dc:d2 OT
14:75:90:31:34:ee hzcs
P8:62:1f:51:84:54 ciscosbl
14:75:90:35:43:0b sdtp
d4:ee:07:10:69:04 wechat.wboll.com
c8:3a:35:21:£2:b0 Tenda_21F2B0
8e:be:be:2a:7f:f7 Xiaomi_Hello_PZS7
8c:be:be:2a:7f:£5 YF.007
bc:dl:77:2c:96:1a Acoustic
14:75:90:2a:b8:3b zjyd
78:al:06:54:2a:1e 007

Listing 8. scan_result.txt

For Mac OS X:



$ cd /System/Library/PrivateFrameworks/Apple80211.
framework/Versions/Current/Resources/

$ ./airport -s |grep -v unicast |awk ’{ print $2 " "
$1; }'> /tmp/scan_result.txt

Listing 9. Scan on OS X

C. WiFi Spoofing

To complete this attack, we only need a linux laptop with
a wireless card.

First, we need to install MDK3, which is a proof-of-concept
tool to exploit common IEEE 802.11 protocol weaknesses.
$ wget ftp://ftp.hu.debian.org/pub/linux/

distributions/gentoo/distfiles/mdk3-v6.tar.bz2
$ tar jxvf mdk3-v6.tar.bz2

Then change the following line in Makefile in order to make
MDK3 compile successfully.

# Change this line

LINKFLAGS = -lpthread
# to the following line:
LINKFLAGS = -pthread

Listing 10. MDK3 Makefile Patch

In order to generate fake SSID beacons, we need to set the
wireless card to monitor mode. There are two way to do this,
one is using ‘aircrack-ng’ package, another is using ‘iwconfig’.
sudo apt-get install aircrack-ng
sudo killall wpa-supplicant
sudo service stop network-manager

sudo airmon-ng start wlanO
sudo mdk3 wlanO-mon b -v scan_result.txt

O Uy O i Uy

Listing 11. SSID beacons flooding using mdk3 and airmon-ng

Or, use iwconfig instead:

nmcli dev disconnect iface wlanO
sudo ifconfig wlanO down

sudo iwconfig wlan0 mode monitor
sudo mdk3 wlan0 b -v scan_result.txt

Oy 0 0y

Listing 12. SSID beacons flooding using mdk3 and iwconfig

$ sudo ./mdk3 --help b

b - Beacon Flood Mode
Sends beacon frames to show fake APs at
clients.

This can sometimes crash network scanners
and even drivers!
OPTIONS:
[...]
-v <filename>
Read MACs and SSIDs from file. See
example file!

[...]
Listing 13. Usage of MDK3 -b mode

D. Experiment Results

Soon after we start mdk3 program, a lot of fake SSIDs
can be scanned using our cellphone, but those SSIDs cannot
be attached successfully, which is as we expected. Then we
opened Baidu Map. After a while, the positioning is affected
successfully as shown in Fig. 12. Faked position and real
position of this case are shown in Fig. 13.

Q Eips. ENR. HBEL

Fig. 12. WiFi Position Faking Demo: Beijing

s1az

Fig. 13. WiFi Position Faking Demo: Beijing



IV. ADVICES

We give some suggestions on positioning security during
development as below:

1) Add a position and date time check based on continuous
principle. Position and time hopping should be verified
or prompted to users in mobile devices.

2) Add a separate clocking hardware module within Apple
Watch.

3) Decrease the cache time from GPS positioning signal.
According to our observation, the cache time of GPS
position data should be decreased, since it’s not appro-
priate for a faked GPS position to be cached for a long
period.

4) Add a manually refresh GPS cache function. It’s nec-
essary to provide a forced refresh function for position
data when user find out that position data is suspicious.

5) Add a high priority time sync service, based on NTP
over SSL. Since internet connection is more reliable for
mobile devices, an authoritative NTP time synchroniza-
tion over a safe channel as SSL should be lifted to a
higher priority in mobile system.

6) GPS signal strength detect. Fake GPS signals are often
much stronger and much more uniform than real signal,
as is shown in Fig. 5. Abnormal signal strength change
could be used as an detect identification.

7) WiFi positioning data provider should do cross verifica-
tion for their database in order to exclude fake samples.

V. CONCLUSION

In this paper, we have introduced two methods of position-
ing spoofing. Technical details have already been submitted to
Apple Product Security Team as well.

It is important for developers and vendors to examine
position and time data more closely and more frequently
and effectively. As a basic security principle, any user input
shouldn’t be trusted completely.

ACKNOWLEDGMENT

The authors would like to thank Dr. Yang Bo from China
Academy of Telecommunication Research (CATR) for his
work on frequency offset interference of basestation.

The authors would also like to thank Professor Mingquan
LU, we learned a lot from his courses on positioning systems.

The authors would also like to thank TUNA (Tsinghua
University TUNA Association) for the help on experiments.

REFERENCES

[1] Dong L. IF GPS signal simulator development and verification[M].
National Library of Canada= Bibliothque nationale du Canada, 2005.

[2] Akos, D. M. (1997), A Software Radio Approach To Global Navigation
Satellite System Receiver Design, Dissertation, Ohio University.

[3] Kaplan, E. D. (1996), Understanding GPS, Principles and Applications,
Boston: Artech House, Inc.

[4] https://play.google.com/store/apps/details?id=com.chartcross.gpstest

[5] http://www.pseudocode.info/post/50127404555/
beacons-beacons-everywhere-using-mdk3-for-ssid

[6] https://github.com/osqzss/gps-sdr-sim

[7] https://en.wikipedia.org/wiki/Global_Positioning_System

[8] https://en.wikipedia.org/wiki/GPS_signals

[9] https://en.wikipedia.org/wiki/RINEX

[10] http://cddis.gsfc.nasa.gov/Data_and_Derived_Products/GNSS/
broadcast_ephemeris_data.html

[11] BladeRF: http://nuand.com

[12] HackRF: http://github.com/mossmann/hackrf

[13] https://www.apple.com/pr/library/2011/04/
27Apple-Q- A-on-Location-Data.html

AUTHORS

o Kang Wang is a security specialist of the mobile security
division within the Alibaba Corporation. He focuses on
security issue of new technology. He is a contributor
of Linux Kernel (TDD-LTE USB Dongle support) as
well as a co-founder of the Tsinghua University Network
Administrators (http://tuna.tsinghua.edu.cn).

o Shuhua Chen is the director of the mobile security
division within the Alibaba Corporation. He focuses on
finding new technology and new business model to help
the industry solve security problems easily.

e Aimin Pan is the chief architect of the mobile security
division within the Alibaba Corporation. He has written
and translated many books, including “Understanding
the Windows Kernel”’(Chinese edition, 2010) and “COM
Principles and Applications”’(Chinese edition, 1999). Be-
fore joining Alibaba, he worked at Peking University
(Beijing), Microsoft Research Asia, and Shanda Inno-
vations. Aimin has published more than 30 academic
papers, filed 10 USA patents. In recent years, his research
focuses on mobile operating systems and security.



