
Automating Linux Malware Analysis Using Limon Sandbox

Monnappa K A

monnappa22@gmail.com

A number of devices are running Linux due to its flexibility and open source nature. This

has made Linux platform the target for malware attacks, so it becomes important to

analyze the Linux malware. Today, there is a need to analyze Linux malwares in an

automated way to understand its capabilities.

Limon is a sandbox developed as a research project written in python, which

automatically collects, analyzes, and reports on the run time indicators of Linux

malware. It allows one to inspect the malware before execution, during execution, and

after execution (post-mortem analysis) by performing static, dynamic and memory

analysis using open source tools. Limon analyzes the malware in a controlled

environment, monitors its activities and its child processes to determine the nature and

purpose of the malware. It determines the malware's process activity, interaction with

the file system, network, it also performs memory analysis and stores the analyzed

artifacts for later analysis. Since Limon relies on open source tools, it's easy for any

security analyst to setup a personal sandbox to perform Linux malware analysis. The

paper will touch on details of Linux malware analysis and features of Limon sandbox.

Why Malware Analysis?

Malware is a piece of software which causes harm to a computer system without the

owner's consent. Viruses, Trojans, worms, backdoors, rootkits and spyware can all be

considered as malwares.

With new malware attacks making news every day and compromising company’s

network and critical infrastructures around the world, malware analysis is critical for

anyone who responds to such incidents.

Malware analysis is the process of understanding the behaviour and characteristics of

malware, how to detect and eliminate it.

There are many reasons why we would want to analyze a malware, below to name just a

few:

• Determine the nature and purpose of the malware i.e. whether the malware is an

information stealing malware, http bot, spam bot, rootkit, keylogger, RAT etc.

• Interaction with the Operating System i.e. to understand the file system, process

and network activities.

• Detect identifiable patterns (network and host based indicators) to cure and

prevent future infections

Types of Malware Analysis

In order to understand the characteristics of the malware three types of analysis can be

performed they are:

• Static Analysis

• Dynamic Analysis

• Memory Analysis

In most cases static and dynamic analysis will yield sufficient results however Memory

analysis helps in determining hidden artifacts, rootkit and stealth malware capabilities.

Static Analysis

Static Analysis involves analyzing the malware without actually executing it. Following

are the steps:

• Determining the File Type: Determining the file type can also help you

understand the type of environment the malware is targeted towards, for

example if the file type is ELF (Executable and Linkable format) format which is a

standard binary file format for Unix and Unix-like systems, then it can be

concluded that the malware is targeted towards a Unix or Unix flavoured systems.

• Determining the Cryptographic Hash: Cryptographic Hash values like MD5

and SHA1 can serve as a unique identifier for the file throughout the course of

analysis. Malware, after executing can copy itself to a different location or drop

another piece of malware, cryptographic hash can help you determine whether

the newly copied/dropped sample is same as the original sample or a different

one. With this information we can determine if malware analysis needs to be

performed on a single sample or multiple samples. Cryptographic hash can also

be submitted to online antivirus scanners like VirusTotal to determine if it has

been previously detected by any of the AV vendors. Cryptographic hash can also

be used to search for the specific malware sample on the internet.

• Strings search: Strings are plain text ASCII and UNICODE characters embedded

within a file. Strings search give clues about the functionality and commands

associated with a malicious file. Although strings do not provide complete picture

of the function and capability of a file, they can yield information like file names,

URL, domain names, ip address, attack commands etc.

• File obfuscation (packers, cryptors) detection: Malware authors often use

softwares like packers and cryptors to obfuscate the contents of the file in order

to evade detection from anti-virus softwares and intrustion detection systems.

This technique slows down the malware analysts from reverse engineering the

code.

• Determine Fuzzy Hash: Comparing the malware samples collected or

maintained in a private or public repository is an important part of file

identification process. The easiest way to check for file similarity is through a

process called “Fuzzy Hashing”. Fuzzy hash comparison can tell the percentage

similarity between the files. Fuzzy hash comparison is a method by which

identical files can be identified. This can help in determine the variants of the

same malware.

• Submission to online Antivirus scanning services: This will help you

determine if the malicious code signatures exist for the suspect file. The signature

name for the specific file provides an excellent way to gain additional information

about the file and capabilities. By visiting the respective antivirus vendor web

sites or searching for the signature in search engines can yield additional details

about the suspect file. Such information may help in further investigation and

reduce the analysis time of the malware specimen.

VirusTotal (http://www.virustotal.com) is a popular web based malware scanning

services.

• Inspecting File Dependencies: Executable loads multiple shared libraries and

call api functions to perform certain actions like resolving domain names,

establishing an http connection etc. Determining the type of shared library and

list of api calls imported by an executable can give an idea on the functionality of

the malware.

• Examining ELF File Structure: ELF stands for “Executable and Linkable

Format” this is a standard binary file format for Linux systems. Examining the ELF

file structure can yield wealth of the information including Sections, Symbols and

other file metadata information.

• Disassembling the File: Examining the suspect program in a disassembler

allows the investigator to explore the instructions that will be executed by the

malware. Disassembly can help in tracing the paths that are not usually

determined during dynamic analysis.

Dynamic Analysis

Dynamic Analysis involves executing the malware sample in a controlled environment

and monitoring as it runs. Sometimes static analysis will not reveal much information

due to obfuscation, packing in such cases dynamic analysis is the best way to identify

malware functionality. Following are some of the steps involved in dynamic analysis:

• Monitoring Process Activity: This involves executing the malicious program

and examining the properties of the resulting process and other processes

running on the infected system. This technique can reveal information about the

process like process name, process id, child processes created, system path of

the executable program, modules loaded by the suspect program.

• Monitoring File System Activity: This involves examining the real time file

system activity while the malware is running; this technique reveals information

about the opened files, newly created files and deleted files as a result of

executing the malware sample.

• Monitoring Network Activity: In addition to monitoring the activity on the

infected host system, monitoring the network traffic to and from the system

during the course of running the malware sample is also important. This helps to

identify the network capabilities of the specimen and will also allow us to

determine the network based indicator which can then be used to create

signatures on security devices like Intrusion Detection System.

• System Call Tracing: System calls made by malware can provide insight into

the nature and purpose of the executed program such as file, network and

memory access. Monitoring the system calls can help determine the interaction of

the malware with the operating system.

Memory Analysis

Memory Analysis also referred to as Memory Forensics is the analysis of the memory

image taken from the running computer. Analyzing the memory after executing the

malware sample provides post-mortem perspective and helps in extracting forensics

artifacts from a computer's memory like:

• running processes

• network connections

• loaded modules

• code injections

• Hooking and Rootkit capabilities.

• API Hooking

Limon Linux Sandbox

Limon is a sandbox for automating Linux malware analysis. It was developed as a

research project for learning Linux malware analysis. It is written in python and uses

custom python scripts and various open source tools to perform static,

dynamic/behavioural and memory analysis.

Working of Limon

Limon performs below steps for analyzing the linux malware samples.

• Takes sample as input

• Performs static analysis

• Starts the VM

• Transfers the malware to VM

• Runs the monitoring tools (to monitor process, file system, network activity etc)

• Executes the malware for the specified time

• Stops the monitoring tools

• Suspends the VM

• Acquires the memory image

• Performs memory analysis using Volatility framework

• Stores the results (Final reports, destkop screenshot, pcaps and malicious

artifacts for later analysis)

Tools Used by Limon

Limon relies on below tools to perform static, dynamic and memory analysis

• Custom python scripts

• YARA-python

o https://github.com/plusvic/yara

• VirusTotal Public api

o https://www.virustotal.com/en/documentation/public-api/

• ssdeep

o http://ssdeep.sourceforge.net/

• strings utility

o http://linux.die.net/man/1/strings

• ldd

o http://linux.die.net/man/1/ldd

• readelf

o https://sourceware.org/binutils/docs/binutils/readelf.html

• Inetsim

o http://www.inetsim.org/downloads.html

• Tcpdump

o http://www.tcpdump.org/

• strace

o http://linux.die.net/man/1/strace

• Sysdig

o http://www.sysdig.org/

• Volatility memory forensics framework

o http://www.volatilityfoundation.org/#!releases/component_71401

Supported File Types

Limon can analyze below file types (both with and without parameters) :

• ELF Executable(both x86 and x86_64)

• Perl Script

• Python script

• Shell script

• Bash script

• PHP script

• Loadable kernel module(LKM)

General Features of Limon

• Can run in sandbox mode (does not allow to connect to c2)

• Can run in internet mode (connects to c2)

• Simulates all services (like dns, http and other protocols) when run in sandbox

mode

• Option to run malware for specified time (default is 60 seconds)

• Captures desktop screenshot

• Reports on the malware behaviour

Static Analysis Features

Below are the static analysis capabilities of Limon:

• Determines File Type

• Determines File Size

• Determines md5 hash

• Determines fuzzy hash(ssdeep hash)

• Comparison of fuzzy hash with previously submitted samples to determine similar

variants

• Display ELF header Structure

• Dumps ASCII and UNICODE strings

• Determines packers using YARA rules

• Determines malware capability using YARA rules (ability to run custom YARA rules

will be added soon)

• Perfoms md5 search on VirusTotal(does not submit samples)

• Displays dependencies of the malware (shared objects)

• Displays program header structures

• Displays section header information

• Displays symbol table (both static and dynamic symbols)

Dynamic Analysis Features

Limon gives different options for performing dynamic analysis to track activity of the

malware(during execution), below are the different options:

• Filtered call trace for tracing system calls related to file, process, network activity

• Unfiltered call trace - traces all system calls (more noisy)

• Filtered system event montioring to track file, process, network activity (less noisy)

• Unfiltered system even monitoring to track file, process, network, memory

allocations/unallocations, signals etc (more noisy)

• Shows DNS summary

• Shows TCP conversations

• Stores packet captures

• Stores event trace dump

Memory Analysis features

Limon performs post-mortem analysis by performing memory analysis using Volatility

framework. This feature should help in detecting stealthy rootkits and malwares

performing Anti-Forensic tricks. Below are the memory analysis features:

• option to perform verbose memory forensics (slow)

• Process Listing (using different methods)

• Process tree listing

• Process listing with process arguments

• Displays thread associated with each process

• Dispays Network connections (TCP and UDP)

• Displays Interface Information

• Displays processes running with RAW sockets

• Displays shared libaries associated with the processes (using different methods)

• Displays kernel modules

• Dislays kernel modules hidden from module list but present in SYSFS

• Displays Kernel modules hidden from both module list and SYSFS

• Displays files opened within kernel

• Displays processes sharing credential structures

• Checks for keyboard notifier hooks

• Checks for TTY hooks

• Checks for system call table modification

• Displays BASH history

• Checks for modified file operation structures

• Checks hooked network operation function structures

• Checks netfilter hooks

• Check inline kernel hooks

• Checks for code or binary injection

• Check for PLT/GOT hooks (only in verbose mode)

• Checks for userland api hooks (only in verbose mode)

Analysis of Linux Malware Tsunami using Limon

To demonstrate the working of Limon, Linux malware sample “Tsunami” was run in

Limon for 40 seconds as shown in the screenshot below. This section contains the

analysis details of the Linux malware “Tsunami”. The screenshots also shows different

options in Limon.

Below screenshot shows some of the static analysis results after analyzing the malware

in Limon. The malware is 32 bit ELF executable, its dynamically linked and the symbols

are not stripped.

When a malware is submitted to Limon, Limon determines the ssdeep hash (fuzzy hash)

and compares the fuzzy hash with the master list of fuzzy hashes of previously

submitted samples. In this case the malware fuzzy hash has 100% match with the

previously submitted sample, indicating that it is the same malware sample and the

malware sample was also run against YARA rules to determine malware capabilities. As

shown in the below screenshot it looks like malware has IRC capabilities.

When the malware is submitted to Limon, it determines the md5 hash of the sample and

uses the md5sum to search the VirusTotal using its public api. In this case the sample is

detected by AV vendors as Tsunami.

Symbol information shows references to network related system calls indicating the

network capability of the malware.

Strings from the malware sample shows references to the C2 ip and references to http

and IRC commands

Strings extracted from the malware also shows the references to the attacks commands

of the malware, from the strings it looks like the malware has DOS/DDOS capabilities.

The screenshots below shows the dynamic analysis results. The malware was

successfully executed by Limon, after execution the malware creates a child process

(with pid 2674). The child process tries to read a file /usr/dict/words which does not

exist. From the name of the file it looks like it’s a dictionary file which malware uses for

some kind of password cracking. Also the malware creates a network socket, establishes

a connection with the C2 ip on port 5566 and writes some content on the socket.

The packet capture shows the IRC communication made by the malware to the C2 ip on

port 5566. The malware is an IRC bot.

Process listing from the memory analysis results shows the malicious process “tsuna”

running with a pid 2674

Network connections from the memory analysis shows that the process “tsuna” (with pid

2674) established the connection to the C2 ip on port 5566

Conclusion

Linux is growing in its popularity and with multiple devices running Linux it has become

target for malware attacks, so it becomes important to analyze the Linux malware in an

automated way to determine the network and host based indicators. This paper provided

a high level introduction to malware analysis and also introduced a tool “Limon” to

perform static, dynamic and memory analysis of Linux malwares. The paper also covered

the analysis of a Linux malware called “tsunami” using Limon, which helped in

determining the various capabilities of the malware.

References

https://en.wikipedia.org/wiki/Linux_malware

https://securelist.social-

kaspersky.com/en/descriptions/iframe/Backdoor.Linux.Tsunami.gen

http://malware.wikia.com/wiki/Tsunami

http://www.intego.com/mac-security-blog/tsunami-backdoor-can-be-used-for-denial-of-

service-attacks/

