Automating Linux Malware Analysis Using Limon Sandbox
Monnappa K A
monnappa22@gmail.com

A number of devices are running Linux due to its flexibility and open source nature. This
has made Linux platform the target for malware attacks, so it becomes important to
analyze the Linux malware. Today, there is a need to analyze Linux malwares in an
automated way to understand its capabilities.

Limon is a sandbox developed as a research project written in python, which
automatically collects, analyzes, and reports on the run time indicators of Linux
malware. It allows one to inspect the malware before execution, during execution, and
after execution (post-mortem analysis) by performing static, dynamic and memory
analysis using open source tools. Limon analyzes the malware in a controlled
environment, monitors its activities and its child processes to determine the nature and
purpose of the malware. It determines the malware's process activity, interaction with
the file system, network, it also performs memory analysis and stores the analyzed
artifacts for later analysis. Since Limon relies on open source tools, it's easy for any
security analyst to setup a personal sandbox to perform Linux malware analysis. The
paper will touch on details of Linux malware analysis and features of Limon sandbox.

Why Malware Analysis?

Malware is a piece of software which causes harm to a computer system without the
owner's consent. Viruses, Trojans, worms, backdoors, rootkits and spyware can all be
considered as malwares.

With new malware attacks making news every day and compromising company’s
network and critical infrastructures around the world, malware analysis is critical for
anyone who responds to such incidents.

Malware analysis is the process of understanding the behaviour and characteristics of
malware, how to detect and eliminate it.

There are many reasons why we would want to analyze a malware, below to name just a
few:

e Determine the nature and purpose of the malware i.e. whether the malware is an
information stealing malware, http bot, spam bot, rootkit, keylogger, RAT etc.

e Interaction with the Operating System i.e. to understand the file system, process
and network activities.

e Detect identifiable patterns (network and host based indicators) to cure and
prevent future infections

Types of Malware Analysis

In order to understand the characteristics of the malware three types of analysis can be
performed they are:

Static Analysis
Dynamic Analysis
Memory Analysis

In most cases static and dynamic analysis will yield sufficient results however Memory
analysis helps in determining hidden artifacts, rootkit and stealth malware capabilities.

Static Analysis

Static Analysis involves analyzing the malware without actually executing it. Following
are the steps:

Determining the File Type: Determining the file type can also help you
understand the type of environment the malware is targeted towards, for
example if the file type is ELF (Executable and Linkable format) format which is a
standard binary file format for Unix and Unix-like systems, then it can be
concluded that the malware is targeted towards a Unix or Unix flavoured systems.

Determining the Cryptographic Hash: Cryptographic Hash values like MD5
and SHA1 can serve as a unique identifier for the file throughout the course of
analysis. Malware, after executing can copy itself to a different location or drop
another piece of malware, cryptographic hash can help you determine whether
the newly copied/dropped sample is same as the original sample or a different
one. With this information we can determine if malware analysis needs to be
performed on a single sample or multiple samples. Cryptographic hash can also
be submitted to online antivirus scanners like VirusTotal to determine if it has
been previously detected by any of the AV vendors. Cryptographic hash can also
be used to search for the specific malware sample on the internet.

Strings search: Strings are plain text ASCII and UNICODE characters embedded
within a file. Strings search give clues about the functionality and commands
associated with a malicious file. Although strings do not provide complete picture
of the function and capability of a file, they can yield information like file names,
URL, domain names, ip address, attack commands etc.

File obfuscation (packers, cryptors) detection: Malware authors often use
softwares like packers and cryptors to obfuscate the contents of the file in order
to evade detection from anti-virus softwares and intrustion detection systems.
This technique slows down the malware analysts from reverse engineering the
code.

Determine Fuzzy Hash: Comparing the malware samples collected or
maintained in a private or public repository is an important part of file
identification process. The easiest way to check for file similarity is through a
process called “Fuzzy Hashing”. Fuzzy hash comparison can tell the percentage
similarity between the files. Fuzzy hash comparison is a method by which
identical files can be identified. This can help in determine the variants of the
same malware.

Submission to online Antivirus scanning services: This will help you
determine if the malicious code signatures exist for the suspect file. The signature
name for the specific file provides an excellent way to gain additional information
about the file and capabilities. By visiting the respective antivirus vendor web
sites or searching for the signature in search engines can yield additional details
about the suspect file. Such information may help in further investigation and
reduce the analysis time of the malware specimen.

VirusTotal (http://www.virustotal.com) is a popular web based malware scanning
services.

Inspecting File Dependencies: Executable loads multiple shared libraries and
call api functions to perform certain actions like resolving domain names,
establishing an http connection etc. Determining the type of shared library and
list of api calls imported by an executable can give an idea on the functionality of
the malware.

Examining ELF File Structure: ELF stands for “"Executable and Linkable
Format” this is a standard binary file format for Linux systems. Examining the ELF
file structure can yield wealth of the information including Sections, Symbols and
other file metadata information.

Disassembling the File: Examining the suspect program in a disassembler
allows the investigator to explore the instructions that will be executed by the
malware. Disassembly can help in tracing the paths that are not usually
determined during dynamic analysis.

Dynamic Analysis

Dynamic Analysis involves executing the malware sample in a controlled environment
and monitoring as it runs. Sometimes static analysis will not reveal much information
due to obfuscation, packing in such cases dynamic analysis is the best way to identify
malware functionality. Following are some of the steps involved in dynamic analysis:

Monitoring Process Activity: This involves executing the malicious program
and examining the properties of the resulting process and other processes
running on the infected system. This technique can reveal information about the
process like process name, process id, child processes created, system path of
the executable program, modules loaded by the suspect program.

Monitoring File System Activity: This involves examining the real time file
system activity while the malware is running; this technique reveals information
about the opened files, newly created files and deleted files as a result of
executing the malware sample.

Monitoring Network Activity: In addition to monitoring the activity on the
infected host system, monitoring the network traffic to and from the system

during the course of running the malware sample is also important. This helps to

identify the network capabilities of the specimen and will also allow us to
determine the network based indicator which can then be used to create
signatures on security devices like Intrusion Detection System.

¢ System Call Tracing: System calls made by malware can provide insight into
the nature and purpose of the executed program such as file, network and

memory access. Monitoring the system calls can help determine the interaction of

the malware with the operating system.

Memory Analysis

Memory Analysis also referred to as Memory Forensics is the analysis of the memory
image taken from the running computer. Analyzing the memory after executing the

malware sample provides post-mortem perspective and helps in extracting forensics
artifacts from a computer's memory like:

e running processes

e network connections

e loaded modules

e code injections

e Hooking and Rootkit capabilities.
e API Hooking

Limon Linux Sandbox

Limon is a sandbox for automating Linux malware analysis. It was developed as a
research project for learning Linux malware analysis. It is written in python and uses
custom python scripts and various open source tools to perform static,
dynamic/behavioural and memory analysis.

Working of Limon
Limon performs below steps for analyzing the linux malware samples.

e Takes sample as input

e Performs static analysis

e Starts the VM

e Transfers the malware to VM

e Runs the monitoring tools (to monitor process, file system, network activity etc)

e Executes the malware for the specified time

e Stops the monitoring tools

e Suspends the VM

e Acquires the memory image

e Performs memory analysis using Volatility framework

e Stores the results (Final reports, destkop screenshot, pcaps and malicious
artifacts for later analysis)

Tools Used by Limon
Limon relies on below tools to perform static, dynamic and memory analysis

e Custom python scripts

e YARA-python
o https://github.com/plusvic/yara

e VirusTotal Public api
o https://www.virustotal.com/en/documentation/public-api/

e ssdeep
o http://ssdeep.sourceforge.net/

e strings utility
o http://linux.die.net/man/1/strings

e |dd
o http://linux.die.net/man/1/ldd

e readelf
o https://sourceware.org/binutils/docs/binutils/readelf.html

e Inetsim
o http://www.inetsim.org/downloads.html

e Tcpdump
o http://www.tcpdump.org/

e strace
o http://linux.die.net/man/1/strace

e Sysdig
o http://www.sysdig.org/

e Volatility memory forensics framework
o http://www.volatilityfoundation.org/#!releases/component 71401

Supported File Types
Limon can analyze below file types (both with and without parameters) :

e ELF Executable(both x86 and x86_64)
e Perl Script

e Python script

e Shell script

Bash script
PHP script
Loadable kernel module(LKM)

General Features of Limon

Can run in sandbox mode (does not allow to connect to c2)

Can run in internet mode (connects to c2)

Simulates all services (like dns, http and other protocols) when run in sandbox
mode

Option to run malware for specified time (default is 60 seconds)

Captures desktop screenshot

Reports on the malware behaviour

Static Analysis Features

Below are the static analysis capabilities of Limon:

Determines File Type

Determines File Size

Determines md5 hash

Determines fuzzy hash(ssdeep hash)

Comparison of fuzzy hash with previously submitted samples to determine similar
variants

Display ELF header Structure

Dumps ASCII and UNICODE strings

Determines packers using YARA rules

Determines malware capability using YARA rules (ability to run custom YARA rules
will be added soon)

Perfoms md5 search on VirusTotal(does not submit samples)

Displays dependencies of the malware (shared objects)

Displays program header structures

Displays section header information

Displays symbol table (both static and dynamic symbols)

Dynamic Analysis Features

Limon gives different options for performing dynamic analysis to track activity of the
malware(during execution), below are the different options:

Filtered call trace for tracing system calls related to file, process, network activity
Unfiltered call trace - traces all system calls (more noisy)

Filtered system event montioring to track file, process, network activity (less noisy)
Unfiltered system even monitoring to track file, process, network, memory
allocations/unallocations, signals etc (more noisy)

Shows DNS summary

Shows TCP conversations

Stores packet captures

Stores event trace dump

Memory Analysis features

Limon performs post-mortem analysis by performing memory analysis using Volatility
framework. This feature should help in detecting stealthy rootkits and malwares
performing Anti-Forensic tricks. Below are the memory analysis features:

e option to perform verbose memory forensics (slow)

e Process Listing (using different methods)

e Process tree listing

e Process listing with process arguments

e Displays thread associated with each process

¢ Dispays Network connections (TCP and UDP)

e Displays Interface Information

e Displays processes running with RAW sockets

e Displays shared libaries associated with the processes (using different methods)
e Displays kernel modules

e Dislays kernel modules hidden from module list but present in SYSFS
e Displays Kernel modules hidden from both module list and SYSFS
e Displays files opened within kernel

e Displays processes sharing credential structures

e Checks for keyboard notifier hooks

e Checks for TTY hooks

e Checks for system call table modification

e Displays BASH history

e Checks for modified file operation structures

e Checks hooked network operation function structures

e Checks netfilter hooks

e Check inline kernel hooks

e Checks for code or binary injection

e Check for PLT/GOT hooks (only in verbose mode)

e Checks for userland api hooks (only in verbose mode)

Analysis of Linux Malware Tsunami using Limon

To demonstrate the working of Limon, Linux malware sample “Tsunami” was run in
Limon for 40 seconds as shown in the screenshot below. This section contains the
analysis details of the Linux malware “Tsunami”. The screenshots also shows different
options in Limon.

© O root@helios: ~/limon_sandbox = @ o 220em
root@helios:~/limon_sandbox# python limon.py -h
Usage: limon.py [Options] <file> [args]

show this help message and exit

-t TIMEOUT, --timeout=TIMEOUT
timeout in seconds, default is 60 seconds

-i, --internet connects to internet

-p, --perl perl script (.pl)

-P, --python python script (.py)

-z, --php php script

-s, =--shell shell script

-b, --bash BASH script

-k, --lkm load kernel module

-C, --ufctrace unfiltered call trace(full trace)

-e, --femonitor filtered system event monitoring

-E, --ufemonitor unfiltered system event monitoring

-m, --memfor memory forensics

-M, --vmemfor verbose memory forensics(slow)

-X, =--printhexdump print hex dump in call trace (both filtered and
unfiltered call trace)

root@helios:~/limon_sandbox# python limon.py /root/linux_malwares/tsuna -t 40 -x -m

Below screenshot shows some of the static analysis results after analyzing the malware
in Limon. The malware is 32 bit ELF executable, its dynamically linked and the symbols
are not stripped.

= [STATIC ANALYSIS RESULTS]=

Filetype: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.8, not stripped|
File Size: 28.63 KB (29318 bytes)
md5sum: 1610768b1524e24d840ae25964d02c8e
ssdeep: 384:fJp2sVqQvqRFP514VWPE898bTyJGbOGNTknfXIOYIUQhLxJs+C3P0CtZ8ax0h/49:BpRkQiVHAbTYJIGbO1fXI+9wIf5+R4wC
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 6O 0O 00 60 0O 00 00 60
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: Ox1
Entry point address: 0x8048e10
Start of program headers: 52 (bytes into file)
Start of section headers: 23172 (bytes into file)
Flags: 0x0
Size of this header: (bytes)
Size of program headers: 32 (bytes)
Number of program headers:
Size of section headers: (bytes)
Number of section headers:
Section header string table index:

When a malware is submitted to Limon, Limon determines the ssdeep hash (fuzzy hash)
and compares the fuzzy hash with the master list of fuzzy hashes of previously
submitted samples. In this case the malware fuzzy hash has 100% match with the
previously submitted sample, indicating that it is the same malware sample and the

malware sample was also run against YARA rules to determine malware capabilities. As
shown in the below screenshot it looks like malware has IRC capabilities.

ssdeep comparison:
/root/linux_malwares/tsuna matches /root/linux reports/ssdeep master.txt:/root/lin test/tsuna (100)

Strings:
Ascii strings written to /root/linux_reports/tsuna/strings_ascii.txt
Unicode strings written to /root/linux_reports/tsuna/strings unicode.txt

Packers:

Malware Capabilities and classification using YARA rules:
[irc, bankers]

When the malware is submitted to Limon, it determines the md5 hash of the sample and
uses the md5sum to search the VirusTotal using its public api. In this case the sample is
detected by AV vendors as Tsunami.

Virustotal:

AVG ==>

AhnLab-V3 ==>

AntiVir ==> BDS/Katien.R

Antiy-AVL ==>

Avast ==> ELF:Tsunami-B

Avast5 ==> ELF:Tsunami-B

BitDefender ==> Generic.Malware.G!IFg.2C2A4AA5
CAT-QuickHeal ==>

ClamAV ==> Trojan.Tsunami.B

Commtou

Comodo

DrWeb ==>

Emsisoft ==> Backdoor.Linux.Tsunami!IK
F-Prot =

F-Secure ==> Generic.Malware.G!IFg.2C2A4AA5
Fortinet ==>

GData ==> Generic.Malware.G!IFg.2C2A4AA5
Ikarus ==> Backdoor.Linux.Tsunami
Jiangmin ==>

K7AntiVirus ==>

Kaspersky ==> Backdoor.Linux.Tsunami.gen
McAfee ==> Linux/DDoS-Kaiten
McAfee-GW-Edition ==> Linux/DDoS-Kaiten
Microsoft ==>

NOD32 ==>

Norman ==>

PCTools ==> Malware.Linux-Backdoor

Symbol information shows references to network related system calls indicating the
network capability of the malware.

Symbol table '.dynsym' contains 56 entries:

Num: Value Size Type Bind Vis Name
: 00000000 0 NOTYPE LOCAL DEFAULT
00000000 29 FUNC GLOBAL DEFAULT __errno_location@GLIBC 2.0 (2)
00000000 49 FUNC GLOBAL DEFAULT sprintf@GLIBC 2.0 (2)
00000000 141 FUNC GLOBAL DEFAULT popen@GLIBC 2.1 (3)
00000000 96 FUNC GLOBAL DEFAULT srand@GLIBC 2.0 (2)
00000000 108 FUNC GLOBAL DEFAULT connect@GLIBC 2.0 (2)
00000000 49 FUNC GLOBAL DEFAULT getpid@GLIBC 2.0 (2)
00000000 0 NOTYPE WEAK DEFAULT __gmon_start
00000000 192 FUNC GLOBAL DEFAULT vsprintf@GLIBC 2.0 (2)
00000000 555 FUNC GLOBAL DEFAULT inet network@GLIBC 2.0 (2)
: 00000000 108 FUNC GLOBAL DEFAULT recv@GLIBC 2.0 (2)
: 00000000 34 FUNC GLOBAL DEFAULT inet addr@GLIBC 2.0 (2)
: 00000000 198 FUNC GLOBAL DEFAULT strncpy@GLIBC 2.0 (2)
: 00000000 112 FUNC GLOBAL DEFAULT write@GLIBC 2.0 (2)
: 00000000 108 FUNC GLOBAL DEFAULT sendto@GLIBC 2.0 (2)
: 00000000 55 FUNC GLOBAL DEFAULT listen@GLIBC 2.0 (2)
: 00000000 50 FUNC GLOBAL DEFAULT toupper@GLIBC 2.0 (2)
: 00000000 369 FUNC GLOBAL DEFAULT fgets@GLIBC 2.0 (2)
: 00000000 88 FUNC GLOBAL DEFAULT memset@GLIBC 2.0 (2)
: 00000000 441 FUNC GLOBAL DEFAULT __libc start main@GLIBC 2.0 (2)
: 00000000 7 FUNC GLOBAL DEFAULT ntohl@GLIBC 2.0 (2)
: 00000000 14 FUNC GLOBAL DEFAULT htons@GLIBC 2.0 (2)
: 00000000 251 FUNC GLOBAL DEFAULT free@GLIBC 2.0 (2)
: 00000000 108 FUNC GLOBAL DEFAULT accept@GLIBC 2.0 (2)
BC S S O] 58 FUNC GLUBAL DEFAULI 10CTLEGLLIBL 2.0 (2)
: 00000000 55 FUNC GLOBAL DEFAULT socket@GLIBC 2.0 (2)
I YOVYOVOY 53Y FUNC GLUBAL DEFAULI tclose@uLIBL 2.1 (3)

OCoOoONOOUTA, WNREFEO

Strings from the malware sample shows references to the C2 ip and references to http
and IRC commands

80.243.54.131

NOTICE %s :Unable to comply.

/usr/dict/words

%S : USERID : UNIX : %s

NOTICE %s :GET <host> <save as>

NOTICE %s :Unable to create socket.

http://

NOTICE %s :Unable to resolve address.

NOTICE %s :Unable to connect to http.

GET /%s HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.75 [en] (X11; U; Linux 2.2.16-3 1686)
Host: %s:80

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: is0-8859-1,*,utf-8

NOTICE %s :Receiving file.

NOTICE :Saved as %s

NOTICE :Spoofs: %d.%d.%d.%d

NOTICE :Spoofs: %d.%d.%d.%d - %d.%d.%d.%d
NOTICE :Kaiten wa goraku

NOTICE :NICK <nick>

NOTICE :Nick cannot be larger than 9 characters.

Strings extracted from the malware also shows the references to the attacks commands
of the malware, from the strings it looks like the malware has DOS/DDOQOS capabilities.

NOTICE :Tsunami heading for %s.

NOTICE :UNKNOWN <target> <secs>

NOTICE :Unknowning %s.

NOTICE :MOVE <server>

NOTICE %s :TSUNAMI <target> <secs> Special packeter that wont be blocked by
most firewalls

NOTICE %s :PAN <target> <port> <secs> An advanced syn flooder that will kill
most network drivers

NOTICE :UDP <target> <port> <secs> = A udp flooder

NOTICE :UNKNOWN <target> <secs> Another non-spoof udp flooder
NOTICE :NICK <nick> Changes the nick of the client
NOTICE :SERVER <server> Changes servers

NOTICE :GETSPOOFS Gets the current spoofing

NOTICE :SPOOFS <subnet> Changes spoofing to a subnet

NOTICE :DISABLE Disables all packeting from this client
NOTICE :ENABLE Enables all packeting from this client
NOTICE :KILL Kills the client

NOTICE %s :GET <http address> <save as> = Downloads a file off the web and saves
it onto the hd

NOTICE :VERSION = Requests version of client

NOTICE :KILLALL Kills all current packeting

NOTICE :HELP Displays this

NOTICE :IRC <command> Sends this command to the server
NOTICE :SH <command> = Executes a command

NOTICE :Killing pid %d.

The screenshots below shows the dynamic analysis results. The malware was
successfully executed by Limon, after execution the malware creates a child process
(with pid 2674). The child process tries to read a file /usr/dict/words which does not
exist. From the name of the file it looks like it’s a dictionary file which malware uses for
some kind of password cracking. Also the malware creates a network socket, establishes
a connection with the C2 ip on port 5566 and writes some content on the socket.

CALL TRACE ACTIVITIES

2673 execve("/root/malware analysis/tsuna", ["/root/malware analysis/tsuna"], [/* 50 vars */]) = 0
2673 open("/usr/lib/vmware-tools/libconf/lib/t1ls/1686/sse2/cmov/1libc.so0.6", 0 RDONLY|O CLOEXEC) = -1
ENOENT (No such file or directory)

2673 open("/usr/lib/vmware-tools/libconf/lib/t1ls/1686/sse2/1libc.so0.6", 0 RDONLY |0 CLOEXEC)

ENOENT (No such file or directory)

2673 open("/usr/lib/vmware-tools/libconf/lib/t1ls/1686/cmov/libc.so0.6", 0 RDONLY |0 CLOEXEC)

2673 clone(child stack=0, flags=CLONE CHILD CLEARTID|CLONE CHILD SETTID|SIGCHLD, child tidptr=0) =
2674
2674 open("/usr/dict/words", O RDONLY) -1 ENOENT (No such file or directory)
2674 open("/usr/dict/words", 0 RDONLY) = -1 ENOENT (No such file or directory)
2674 open("/usr/dict/words", 0 RDONLY) = -1 ENOENT (No such file or directory)
2674 socket(PF_INET, SOCK STREAM, IPPROTO TCP) = 3
2674 connect(3, {sa family=AF INET, sin port=htons(5566), sin addr=inet addr("86.243.54.131")}, 16)
= -1 EINPROGRESS (Operation now in progress)
2674 connect(3, {sa family=AF INET, sin port=htons(5566), sin addr=inet addr("860.243.54.131")}, 16)
=10
2674 write(3, "NICK YXXES\nUSER OAQL localhost localhost :VKHLC\n", 48) = 48
| 00000 4e 49 43 4b 20 59 58 58 45 53 0a 55 53 45 52 20 NICK YXX ES.USER |
| 00010 4f 41 51 4c 20 6¢c 6f 63 61 6¢c 68 6f 73 74 20 6¢c OAQL loc alhost 1 |
| 00020 6f 63 61 6¢c 68 6f 73 74 20 3a 56 4b 48 4c 43 Oa ocalhost :VKHLC. |

The packet capture shows the IRC communication made by the malware to the C2 ip on
port 5566. The malware is an IRC bot.

© ® - Q T 4L BB sl E0EX @
Filter: | tep.stream eq 0 ~ | Expression... Clear save
No. Time Source Destination Protocol Length Info
42015-10-06 14:26:59.821156 80.243.54.131 192.168.1.150 TCP 74 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460 SACK_PERM=1

52015-10- . B 1=
6 2015- 4 .822661
7 2015~ .822670
8 2015- .822740
9 2015- .823803

80.243.54.131 TCP
192.168.1.156
192 1681150

66 370025566 [ACK] Seq=1 Ack=1 Win=14600 Len=0 TSval=4294912246 TSecr=16
74 [TCP Spurious Retransmission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=2§
74 ITCP Snurions Retransmission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28
9025566 [ACK] Seq=1 Ack=1 Win=14600 Len=0 TSval=4
mission] 5566-37002 [SYN, ACK] Seq=6 Ack=1 Win=28]

80.243.54.
192.168.1.
80.243.54. Stream Content

NICK YXXES

10 2015- .823812 80.243.54. mission] 5566-37002 [SYN, ACK] Seq=@ Ack=1 Win=28|
11 2015- .823877 192.168.1. USER OAQL localhost localhost :VKHLC 02-5566 [ACK] Seq=1 Ack=1 Win=14600 Len= TSval=4|
12 2015- .824830 80.243.54. mission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28|
13 2015- .824837 80.243.54. mission] 5566-37002 [SYN, ACK] Seq=6 Ack=1 Win=28|
14 2015- .824883 D02-+5566 [ACK] Seq=1 Ack=1 Win=14600 Len=0 TSval=4|
15 2015- .825872 80.243. kmission] 5566-37002 [SYN, ACK] Seq=6 Ack=1 Win=28|
16 2015- .825875 80.243.54.13 Emission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28|
17 2015~ .825909 192.168.1. p02-5566 [ACK] Seq=1 Ack=1 Win=14600 Len=0 TSval=4}
18 2015- .826957 80.2. 54.13 mission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28|
19 2015- .826960 80.2 54.13 smission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28]
20 2015~ .826993 192.168.1. 0245566 [ACK] Seq=1 Ack=1 Win=14600 Len=0 TSval=4]
21 2015- .827996 243.54.13 Emission] 5566-+37002 [SYN, ACK] Seq=6 Ack=1 Win=28|
22 2015~ .828000 Ekmission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28|
23 2015- .828030 P02-5566 [ACK] Seq=1 Ack=1 Win=14600 Len=0 TSval=4]
24 2015~ .829043 3 smission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28]
252015~ .829049 80.243.54.13 smission] 5566-37002 [SYN, ACK] Seq=0 Ack=1 Win=28]
26 2015~ .829114 192.168.1. p02-5566 [ACK] Seq=1 Ack=1 Win=14600 Len=6 TSval=4]

*Frame 1: 74 bytes on wire (592 bits), 74 bytes

»Ethernet II, Src: Tp-LinkT_27:3e:42 (14:cc:20:2 ind Save As Print ASCll EBCDIC Hex Dump cArrays © Raw

»Internet Protocol Version 4, Src: 192.168.1.15€
»Transmission Control Protocol, Src Port: 37002

0000
0010
0020
ae83a

14 cc 20 27 3e 42 14 cc
00 3c 44 48 40 00 40 06
36 83 90 8a 15 be 87 6f
39 08 01 dh 00 00 02 04

20 27 3e 42 08 00 45 00
ac bf ce a8 01 96 56 3
6¢c be 00 00 00 00 a0 02
05 ba 04 02 08 0a ff ff

Process listing from the memory analysis results shows the malicious process “tsuna”

running with a pid 2674

2015-10-06 08:56:06 UTC+0000
Oxffff88001c332ded® goa-daemon
2015-10-06 08:56:06 UTC+0000
Oxffff88001a250000 gnome-screensav
2015-10-06 08:56:11 UTC+0000
Oxffff88001a35dbcO aptd

2015-10-06 08:56:52 UTC+0000
Oxffff8800020b800O vmtoolsd
2015-10-06 08:56:59 UTC+0000
Oxffff88001a35aded strace
2015-10-06 08:56:59 UTC+0000
Oxffff88001b992ded® tsuna
2015-10-06 08:56:59 UTC+0000
Oxffff88001a555bcO dnsmasq
2015-10-06 08:57:44 UTC+0000
Oxffff88001efedbcO® dbus-daemon
2015-10-06 08:57:44 UTC+0000
Oxffff88001a5544d0 dbus-daemon-lau
2015-10-06 08:57:44 UTC+0000

0x0000000006ch8000

0x0000000009126000

0x000000000c8cf0OOO

0x000000001a5c7000

0x000000001a3d8000

0x000000000052a000

0x000000001a1a8000

0x000000001ccO7000

0x00000000178b3000

Network connections from the memory analysis shows that the process “tsuna” (with pid
2674) established the connection to the C2 ip on port 5566

NETWORK CONNECTIONS

0
139549 91.189.89.144
137002 80.243.54.131
53 0.0.0.0
53 0.0.0.0

O LISTEN

80 CLOSE WAIT
: 5566 ESTABLISHED

0

O LISTEN

avahi-daemon/677
avahi-daemon/677
avahi-daemon/677
avahi-daemon/677
cupsd/752
ubuntu-geoip-pr/2455
tsuna/2674
dnsmasq/2691
dnsmasq/2691

Conclusion

Linux is growing in its popularity and with multiple devices running Linux it has become
target for malware attacks, so it becomes important to analyze the Linux malware in an
automated way to determine the network and host based indicators. This paper provided
a high level introduction to malware analysis and also introduced a tool “Limon” to
perform static, dynamic and memory analysis of Linux malwares. The paper also covered
the analysis of a Linux malware called “tsunami” using Limon, which helped in
determining the various capabilities of the malware.

References

https://en.wikipedia.org/wiki/Linux malware

https://securelist.social-
kaspersky.com/en/descriptions/iframe/Backdoor.Linux.Tsunami.gen

http://malware.wikia.com/wiki/Tsunami

http://www.intego.com/mac-security-blog/tsunami-backdoor-can-be-used-for-denial-of-
service-attacks/

