
NCC Group Whitepaper

Going AUTH the Rails on a Crazy Train
A Dive into Rails Authentication and Authorization
November 13, 2015 – Version 1.1

Prepared by
Tomek Rabczak — Senior Security Consultant at NCC Group

Jeff Jarmoc — Lead Product Security Engineer at Salesforce

Abstract
Ruby on Rails is one of the most popular web application frameworks in use today.

It's especially popular among startups, but also powers large sites such as Github,

Airbnb, Hulu, Square, Indiegogo, Kickstarter, and Basecamp.1 Penetration Testers

and Application Security Engineers are very likely to encounter Rails applications, so

a solid familiarity with common Rails issues is warranted.

In this paper, we explore Ruby on Rails Authentication andAuthorization patterns and

pitfalls. Authentication and Authorization are particularly interesting because while

most applicationswill need these features, the Ruby on Rails framework provides little

native support for them. Our experience as Software Security Consultants has shown

us first hand how this often leads developers to hastily implement poorly thought

out mechanisms. We've often seen similar authentication and authorization imple-

mentation issues time and time again in a wide variety of applications. We hope that

through this paper, the reader will gain an understanding of common authentication

and authorization problems in Rails applications, and be better prepared to exploit

or improve such applications, as their role may dictate.

We also introduce a new tool, Boilerman, developed by one of this paper's authors

to ease the process of auditing Rails applications for common authorization flaws.

http://skillcrush.com/2015/02/02/37-rails-sites/
http://skillcrush.com/2015/02/02/37-rails-sites/
https://github.com/tomekr/boilerman

Table of Contents

1 Introduction . 4

1.1 The Rails Way . 4

1.2 Structure of a Rails Application . 4

1.2.1 The Rails Filesystem . 5

2 Authentication and Authorization . 6

3 Authentication . 7

3.1 Roll Your Own . 7

3.1.1 Writing it . 7

3.1.2 # TODO . 9

3.2 Use a Gem . 9

3.2.1 Common Authentication Gems . 10

3.2.2 Installing Devise . 11

3.2.3 Devise Routes . 12

3.2.4 Using Devise . 12

3.3 Session Management . 13

3.3.1 Cookie Store . 13

3.3.1.1 Session Serialization . 14

3.3.2 ActiveRecord Store . 15

3.3.3 Session timeout . 16

3.4 Lost/Forgotten Password Recovery . 16

3.4.1 Poor Recovery Mechanisms . 17

3.4.2 Strong Recovery Mechanisms . 17

3.5 Devise Password Recovery . 18

3.5.1 Devise Security History . 20

3.5.2 Devise Type Confusion . 20

3.5.2.1 Rails Magic . 21

3.5.2.2 Metasploit Module . 22

3.5.2.3 Patch Status . 23

4 Authorization . 24

4.1 Vertical Authorization in Rails . 24

4.2 Horizontal Authorization in Rails . 26

4.3 Routing . 26

4.4 Controller Hierarchy . 27

4.5 The Different Flavors of Rails Filters . 28

4.5.1 Less common flavors . 28

4.6 Authorization Gems . 28

4.6.1 CanCan(Can) . 29

4.6.2 Pundit . 30

4.7 Patterns to watch out for . 32

4.7.1 Finder methods called directly on the model . 33

4.7.2 Action whitelisting before_action only: [:action1, action2] 33

4.7.3 Lightweight Controllers . 34

2 | Going AUTH the Rails on a Crazy Train NCC Group

4.7.4 Authorization Logic in Views . 35

4.7.5 Skipping of filters . 35

5 Boilerman . 37

5.1 Installation . 37

5.2 How to use Boilerman . 38

5.3 Conclusion . 43

3 | Going AUTH the Rails on a Crazy Train NCC Group

1 Introduction

1.1 The Rails Way

When learning about Rails development, it won't take long to come across the expression 'The Rails Way.'

It's been the title of a series of books2 about3 Rails4 and is a term frequently used in other books5 and

blogposts6 about Rails. But what is this 'Rails Way?'

David Heinemeier Hansson,* the creator of Rails, described his design philosophy of Rails in a blogpost titled

Rails is omakase.7 In the post, he describes Rails as 'Omakase,' a term which is borrowed from Japanese

cooking, and translates to "I'll leave it up to you." To order a meal omakase is to delegate your menu choices

to the chef, trusting that they are better equipped to make a decision than you yourself are. This too, is

generally true of the Ruby on Rails framework. Rails provides a common set of libraries for common tasks,

and there is generally one way, 'The Rails Way', to accomplish a given task.

This stands in contrast to other application frameworks which DHH describes as 'à la carte software envi-

ronments.' In these frameworks, the developer must choose how to implement various functions such as

database queries, web page templating, and request routing. This is also the case when it comes to security

controls such as output encoding, Cross-Site Request Forgery prevention, and session management.

``
Rails is not that. Rails is omakase. A team of chefs picked out the ingredients, designed

the APIs, and arranged the order of consumption on your behalf according to their idea

of what would make for a tasty full-stack

David Heinemeier Hansson ''
Some criticize the Rails approach as limiting, or of favoring certain use cases at the expense of others. Be

that as it may, the common format of Rails applications means different applications share many common

patterns, easing the process of auditing security posture and enforcing consistent controls.

1.2 Structure of a Rails Application

Rails follows the Model View Controller (MVC) architecture.8 MVC divides an application into three compo-

nents:

Models represent objects used by the application. In Rails, models usually inherit fromActiveRecord9 which

provides an Object-relational mapping (ORM) layer, transparently backing them with database repre-

sentations. ActiveRecord takes measures to limit the likelihood of SQL injection attacks through it's

most common finder methods.

Views are responsible for what the end user sees. In Rails, views are handled by ActionView10 which applies

ERB (HTML with embedded Ruby) templating, and provides a number of helper methods to build and

format responses. ActionView also performs HTML output encoding, reducing the opportunities for

Cross-Site Scripting attacks significantly.

Controllers providemost of the application logic. Requests are processed by Controllers, which take actions

on models and respond with views. In Rails, Controllers are implemented by ActionController.11

ActionController's security features include default enforcement of Cross-Site Requst Forgery tokens,

and protection from Mass Assignment by restricting what model attributes can be updated.

*Often simply 'DHH'.

4 | Going AUTH the Rails on a Crazy Train NCC Group

http://www.amazon.com/Rails-Way-Obie-Fernandez/dp/0321445619
http://www.amazon.com/Rails-Way-Addison-Wesley-Professional-Ruby/dp/0321601661
http://www.amazon.com/Rails-Way-Addison-Wesley-Professional-Ruby/dp/0321944275
https://www.railstutorial.org/book
http://andrzejonsoftware.blogspot.com/2014/04/be-careful-with-rails-way.html
http://david.heinemeierhansson.com/2012/rails-is-omakase.html
https://en.wikipedia.org/wiki/Omakase
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://api.rubyonrails.org/classes/ActiveRecord.html
http://api.rubyonrails.org/classes/ActionView.html
http://api.rubyonrails.org/classes/ActionController.html

1.2.1 The Rails Filesystem

The filesystem of a Rails application reflects its MVC architecture. After creating a new Rails application by

running the command rails new sample_app , a directory called sample_app is created which contains

all files related to the new application. Within this tree we see several directories and files, a few of the more

notable ones are discussed below.

sample_app/

app/

models/

views/

controllers/

...

config/

routes.rb

...

Gemfile

Gemfile.lock

Rails sample_app Directory Tree

The app directory contains further subdirectories which hold files defining the application's model, view,

and controller classes. As noted earlier, these are typically implemented through ActiveRecord, ActionView,

and ActionController respectively.

The config directory storesmanydifferent files defining configuration variables usedby the application and

its libraries. Perhapsmost interesting when auditing an application is the routes.rb file. This file defines all

the application's routes, tying controller actions to user accessible URLs. It's therefore key in understanding

the exposed surface of the application.

The Gemfile defines a list of Ruby Gems upon which the application depends, and the versions which

satisfy its requirement. In contrast, the Gemfile.lock provides a record of the exact version of a given gem

which were found by Bundler12 when the application was installed. This allows for creating an exact copy

of the application environment by copying Gemfile.lock along with the rest of the application code. This

is useful for cloning an application between deployment environments, or ensuring that various instances

share common versions of gems.

Many other files are created but a full description is beyond the scope of this document. For our purposes,

familiarity with the basic structure outlined above is sufficient to begin exploring application functionality.

5 | Going AUTH the Rails on a Crazy Train NCC Group

http://bundler.io/

2 Authentication and Authorization

The remainder of this paper discusses authentication and authorization patterns and pitfalls in Rails. We'll

discuss each in its own section. It's important to note that while these are related concepts, authentication

and authorization are two distinctly different concepts.

Authentication is solely the process of identifying the user. If you find yourself working with code that seeks

to answer the question 'Who is the user?' you're dealing with authentication. Authorization is the process of

determining what that user is allowed to do in the context of the application. Authorization logic implicitly

requires that we've already authenticated the user to establish their identity, but is otherwise an entirely

separate process.

Thinking of authentication and authorization as two discreet processes is the first step to designing reason-

ably secure systems. In the authors' experience, when developers mix the two concepts, it's a huge red flag

and often an indicator of an application which will exhibit security flaws.

6 | Going AUTH the Rails on a Crazy Train NCC Group

3 Authentication

Rails provides little native support for authentication. HTTP Basic and Digest authentication are both sup-

ported, but neither is sufficient for the majority of use cases. These methods of authentication require trans-

mission of credentials with every request, prevent the application from storing password digests securely,

and formanymore reasons. Wewon't discuss them in detail, but their shortcomings are well known. Realisti-

cally, we'll need something stronger which in Rails leaves us with two choices; rolling our own authentication

system, or using an off-the-shelf gem.

3.1 Roll Your Own

The first option is to 'roll your own' authentication system. Often, developers believe their requirements

are so unusual and application specific, that writing their own system is faster and easier. This is the view

espoused by the Ruby on Rails Tutorial which in Chapter 6, 'Modeling Users' states:

``
For one, practical experience shows that authentication on most sites requires extensive

customization, and modifying a third-party product is often more work than writing

the system from scratch. In addition, off-the-shelf systems can be “black boxes", with

potentially mysterious innards; when you write your own system, you are far more likely

to understand it. Moreover, recent additions to Rails (Section 6.3) make it easy to write a

custom authentication system. Finally, if you do end up using a third-party system later

on, you'll be in a much better position to understand and modify it if you've first built one

yourself.

Ruby on Rails Tutorial ''
However, this approach has some downsides which we believe outweigh the benefits of this approach.

• When writing our own authentication system, we're essentially re-inventing the wheel. Sure, there's a

chance we can do better than what's come before, but given the complexities it's far more likely that we'll

introduce flaws that have previously been identified and corrected in other systems.

• There's a lotmore to authentication systems than simply storing and checking credentials. In later sections,

we'll discuss some of the other needed features in greater detail.

Our experience shows that developers who write authentication systems, much like cryptosystems, may not

be well versed in the nuance and the history of attack. Therefore, we recommend integrating an existing

authentication system rather than writing your own. While it's true that some integration effort is required,

authentication is a fairly routine action, so configuration of strong authentication systems will be minimal.

Writing an authentication system from scratch is a solid learning exercise, and will certainly help the devel-

oper to understand some of the nuances of authentication flows. We do not recommend writing your own

authentication system for production use without careful consideration and review. However, as an exercise

we'll next look at what would be required to write an authentication system from scratch in Rails.

3.1.1 Writing it

We said before that Rails provides little support for authentication. However, since Rails 3.1 the Active-

Model::SecurePassword class and associated has_secure_password helper method are available. These

features do not fully implement a complete authentication system, but provide a basic facility for adding

secure password storage to a model.

For example, assume a class called User with a schema that includes two strings called name and

password_digest . With a class that includes a password_digest attribute, we can easily create a secure

7 | Going AUTH the Rails on a Crazy Train NCC Group

https://en.wikipedia.org/w/index.php?title=Digest_access_authentication§ion=5#Disadvantages
https://www.railstutorial.org/
https://www.railstutorial.org/book/modeling_users#sec-user_model
http://api.rubyonrails.org/classes/ActiveModel/SecurePassword.html
http://api.rubyonrails.org/classes/ActiveModel/SecurePassword.html
http://api.rubyonrails.org/classes/ActiveModel/SecurePassword/ClassMethods.html#method-i-has_secure_password

password storage mechanism by invoking the has_secure_password helper:

class User < ActiveRecord::Base

has_secure_password

end

A Basic User Model

That small bit of code adds virtual attributes password and password_confirmation which we can use to

set the user's password:

user = User.new(:name => "Jeff", :password => "hunter2", :password_confirmation => "hunter2")

user.save # => true

The password_confirmation attribute is optional, but if included must match the password value. This

makes the function suitable for use in user-facing views allowing for account creation or password changes.

Notice that password and password_confirmation attributes don't map directly to the database schema.

Instead, they're consumed by `has_secure_password` which utilizes the 'BCrypt' gem to create a digest of

the password, which is then stored in the password_digest column.

The application must also include gem 'bcrypt' in its Gemfile and should configure an appropriate

workfactor by setting BCrypt::Engine::DEFAULT_COST in the environment config file. If a workfactor isn't

configured, the current default is 10 which is a reasonable work factor in many environments, though could

be improved on some systems. For more about secure password storage and choosing an appropriate

workfactor, you may wish to reference our recent blog post on the subject.

We're also provided with an authenticate method on our User model. When called with a password's

plain text value as a parameter, BCrypt is invoked to process the password and compare its digest to the

User.password_digest using a secure comparison function. If the values match, the User object is re-

turned otherwise, false is returned. For example:

user.authenticate("hunter2") # => user

user.authenticate("CorrectHorseBatteryStaple") # => false

Since the User class is backed by ActiveRecord, we can also use any of the available ActiveRecord finders

to locate a given instance. This allows us to search for a user by name and attempt to authenticate them in

a single line of code.

User.find_by_name("jeff").authenticate("hunter2") # => user

In many applications, we'll see a sessions controller implement a create method, which processes the

user's authentication request and performs a similar query using user-supplied values. If successful, we

update the session with the user.id , thus allowing it to be referenced by authorization checks elsewhere

in the application.

8 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/codahale/bcrypt-ruby
https://github.com/codahale/bcrypt-ruby/blob/master/lib/bcrypt/engine.rb#L5
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2015/march/enough-with-the-salts-updates-on-secure-password-schemes/

def create

user = User.find_by_name(params[:name]).authenticate(params[:password])

if user

session[:user_id] = user.id

redirect_to '/'

else

redirect_to '/login'

end

end

app/controllers/sessions_controller.rb

3.1.2 # TODO

In the last section, we saw how simple it can be to write a small authentication function in Rails. But this

authentication function is far from a complete authentication system. Just a few of the necessary features

that remain to be developed include:

1. Creating / Registering new user accounts

2. Allowing users to change their own passwords

3. Enforcing account name/email uniqueness

4. Enforcing password complexity

5. Session Management

• Allowing users to log off

• Timing out inactive sessions

6. Allowing the user to recover from a lost/forgotten password.

7. Possibly other authentication schemes

• API Tokens

• Multifactor Authentication

• OAUTH

• SAML

• etc.

8. Email confirmation

As the complexity of such an authentication system grows, so too does the chance for error. Developers

tend to be primarily concerned about the business use cases of their application. Ancillary features like au-

thentication, which are required but aren't the main purpose of the application, often don't get the attention

they require to implement in a reasonably secure fashion.

3.2 Use a Gem

The alternative is to use an off the shelf RubyGem that provides a ready made authentication system. This

provides some immediate benefits:

9 | Going AUTH the Rails on a Crazy Train NCC Group

https://en.wikipedia.org/wiki/RubyGems

• Core code is generally well vetted by a larger community of users.

• Past community experience and security events spur ongoing improvements.

• Subtle weaknesses may be entirely avoided, even without being aware of their specifics.

However, there are some downsides:

• Vulnerabilities affect far more applications, whichmay increasemotivation for malicious actors to research

weaknesses.

• Ongoing updating and maintainence of the installed code is required, as with any dependency.

• Integration effort is still required and can introduce vulnerabilities.

On balance, it is our opinion that the benefits of deploying a well known authentication system and config-

uring it for the environment offset the possible risks.

3.2.1 Common Authentication Gems

While there are a wide number of Gems available to handle different authentication cases, few have seen

much adoption in the larger Ruby on Rails community. Some of the most notable are:

• Devise - Far and away the most popular authentication system for Rails. Its modular design and wealth of

plugins make it easy to adapt to nearly any application's requirements.

• Omniauth - A multi-provider authentication gem, primarily geared toward OAuth authentication with 3rd

party authenticators. It can be integrated into Devise, allowing for side-by-side password and OAuth

authentication with a common interface.

• DoorKeeper - Turns your application into an OAuth provider. This is most frequently used to provide API

access, or to authorize 3rd party applications.

• Authlogic - A simpler authentication solution, far less common than Devise, which relies on a somewhat

unique session model.

Since Devise is by far the most popular gem, it's also the solution which we're most likely to encounter when

reviewing Rails application security. For that reason, we'll discuss it in further detail.

10 | Going AUTH the Rails on a Crazy Train NCC Group

https://rubygems.org/gems/devise/versions/3.5.2
https://rubygems.org/gems/omniauth
http://oauth.net/
https://rubygems.org/gems/doorkeeper
https://rubygems.org/gems/authlogic

3.2.2 Installing Devise

The installation process for Devise is simple and well documented. A brief overview will be sufficient for the

common case.

First, add Devise to the application's Gemfile :

gem 'devise'

From the command line we install our bundle to load the gem, then run Devise's installation process to

include it in the application.

bundle install

rails generate devise:install

At this point, we should review the Devise initializer, found in config/initializers/devise.rb . This

file contains most configuration settings for Devise, including module settings and configuration options. If

using or auditing an application with Devise, you should at minimum familiarize yourself with this file and

the options it contains.

Next, we add devise to a model in our application by running its generator. If the model exists Devise will

extend it, otherwise it creates a new model. Let's create a new User model for authentication:

rails generate devise User

Now, let's look at the User model in the application to see what Devise has created.

class User < ActiveRecord::Base

Include default devise modules. Others available are:

:confirmable, :lockable, :timeoutable and :omniauthable

devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable, :validatable

end

app/models/user.rb

Here we see a default Devise generated User model, backed by ActiveRecord, which includes the devise

helper method being called. The symbols passed to devise indicate what modules are used. Most of the

names are fairly descriptive, and details of each of the ten default modules can be found linked at the very

top of the Devise homepage. It may be necessary to enable or disable modules to suit our needs.

Oncewe've configuredDevise settings and adjusted themodule configuration for ourmodel, we can update

our database with the required fields by invoking rake from a shell.

rake db:migrate

Assuming our module configuration includes flows that rely on email, we'll need to configure ActionMailer

so Rails can send emails with appropriately formatted links. This is necessary for modules such as

:recoverable for forgotten password recovery, or :confirmable to confirm email account ownership.

config.action_mailer.default_url_options = { host: 'localhost', port: 3000 }

config/environments/<ENVIRONMENT>.rb

11 | Going AUTH the Rails on a Crazy Train NCC Group

http://devise.plataformatec.com.br/#getting-started
http://devise.plataformatec.com.br/

Restart the application and Devise should be functional.

3.2.3 Devise Routes

Devise will add a number of routes in order to handle requests to its various modules. If we look in the

application's config/routes.rb we'll see only a minimal change.

Rails.application.routes.draw do

devise_for :users

end

To get a more complete picture of our routes, we can run rake routes . A default installation will expose

the following:

(in /tmp/devise_sample)

Prefix Verb URI Pattern Controller#Action

new_user_session GET /users/sign_in(.:format) devise/sessions#new

user_session POST /users/sign_in(.:format) devise/sessions#create

destroy_user_session DELETE /users/sign_out(.:format) devise/sessions#destroy

user_password POST /users/password(.:format) devise/passwords#create

new_user_password GET /users/password/new(.:format) devise/passwords#new

edit_user_password GET /users/password/edit(.:format) devise/passwords#edit

PATCH /users/password(.:format) devise/passwords#update

PUT /users/password(.:format) devise/passwords#update

cancel_user_registration GET /users/cancel(.:format) devise/registrations#cancel

user_registration POST /users(.:format) devise/registrations#create

new_user_registration GET /users/sign_up(.:format) devise/registrations#new

edit_user_registration GET /users/edit(.:format) devise/registrations#edit

PATCH /users(.:format) devise/registrations#update

PUT /users(.:format) devise/registrations#update

DELETE /users(.:format) devise/registrations#destroy

We see that Devise has created a number of routes mapped to its own controllers to handle various actions

per our module configuration. The configuration of routes can be modified if needed by modifying the

devise_for parameters in config/routes.rb . Since Devise is implemented as a Rails Engine, the view

templates are contained within the gem. To modify these, we'll need to tell Devise to generate views in our

application tree where we can edit them. Similarly, if we need to modify controller logic, we can generate

controllers, though this is less frequently needed.

There's much more that can be configured in Devise to suit nearly any use case, but we now have a reason-

able overview of the common cases.

3.2.4 Using Devise

Once Devise is installed and configured, using it in an application is simple. To ensure a given controller

requires authentication, we include a before_action callback in the controller. The name includes the

model to which Devise was installed, so if we have multiple models (ie. User and Admin) we can also

require different levels of authentication. For example, to require authentication against the User model

we created earlier, a controller need only include:

12 | Going AUTH the Rails on a Crazy Train NCC Group

http://guides.rubyonrails.org/engines.html
http://devise.plataformatec.com.br/#configuring-views
http://devise.plataformatec.com.br/#configuring-controllers
http://devise.plataformatec.com.br/#configuring-controllers

before_action :authenticate_user!

Our recommendation is to include this callback in the ApplicationController found in

controllers/application_controller.rb . This is the primary controller in the applications from

which other controllers should then inherit. Configuring our callback here will cause authentication

to be required across all controllers throughout the application. To handle actions which are

anonymously accessible by design, we can explicitly configure the apppropriate controller to

skip_before_filter :authenticate_user! on actions to which anonymous access is allowed.

For example:

skip_before_filter :authenticate_user!, :only => [:public_action1, :public_action2]

Allowing Anonymous Access to Public Actions

This whitelist approach greatly reduces the liklihood of authorization bypass vulnerabilities by uniformly en-

forcing authentication except where explicitly configured otherwise. All pages are authenticated by default.

Devise also provides some helper methods to use in our application. Again, the names are dependant on

the name of the model for which Devise is enabled. For our User model example they will be:

• user_signed_in? returns a boolean – true if a user is authenticated, false otherwise.

• current_user returns the User object of the currently authenticated user.

• user_session returns the session object associated with the currently authenticated user.

These helpers and callbacks provide the foundations uponwhich a strong authorization scheme can bebuilt.

3.3 Session Management

Whether an application implements its own authentication system or uses a 3rd party gem it'll need to

interact with the application's session. Like most web applications, Ruby on Rails uses a sesssion to persist

data betwen each HTTP request. This allows us to build a stateful application atop the stateless HTTP

protocol. As they relate to authentication flow, session management has the following steps:

1. Exchange user provided credentials for a token (HTTP Cookie)

2. On subsequent requests, identify the user's session by their token.

3. Invalidate the token when needed.

• When the user logs out.

• When the session reaches its maximum lifetime or idle time.

In all cases, the user's browser receives cookie which is presented to the server to identify their

session. However, there are a few options for where session state is stored in Rails. Which type an

application uses is configured in config/initializers/session_store.rb by setting the value of

Rails.application.config.session_store .

3.3.1 Cookie Store

The default session store scheme starting with Rails 3 is the cookie_store . Using this session store mech-

anism, session data is serialized, encoded with base64, and signed. This value is passed to the user as their

13 | Going AUTH the Rails on a Crazy Train NCC Group

session cookie. This provides a stateful interface, without server overhead caused by needing to maintain

state server-side.

The key used togenerate and validate signatures is stores in config/secrets.yml with thename secret_token

in the appropriate environment heading. By validating the signature, Rails can ensure the cookie has not

been tampered with.

However, there are some caveats to be aware of:

• Cookies can be a maximum of 4K. However, sessions should only contain identifiers, such as a user_id ,

rather than full objects, such as an object of class User . As such, this poses little practical concern.

• Exposure of the secret_token will allow malicious users to craft their own session objects. If the session

object stores the user_id of the current user, which is very common, an attacker can impersonate any

user they wish by crafting their own session object.

• Replay attacks are possible if values in the session are trusted without validation. For example, storing

an account.balance which is decremented when a user makes a purchase could give rise to an attack

allowing replay of an older token with a higher balance generated by the server prior to the transaction.

This makes consideration for the type of data stored in a session important.

• Unless accounted for through othermeans, users can havemultiple active sessions concurrently. Depend-

ing on the application, this can be a security vulnerability.

• Invalidating sessions is problematic. When a user explicitly logs out of the application, we can ask their

browser to clear the cookie, but if it's been captured and stored elsewhere it will still be seen as valid.

Embedding an expiry time within the session and updating it per-request can limit this lifetime, but to

expire sessions which are kept active also requires validation of its create time.

• Signed and serialized objects can be read from the cookie without knowledge of the signing key. If

the application stores sensitive data in the session object, this may present an information disclosure

vulnerability or facilitate further attacks.

To address the exposure of data in a session object to the user, versions of Rails greater than 4.0 introduce a

secret_key_base variable in config/secrets.yml . When this variable is set, its value is used to encrypt

the serialized session object in addition to signing. This eliminates the possibility of reading session data

without the key, but otherwise does not change the overall cookie_store security posture.

It's important to ensure that applications which use the cookie_store include a

secret_key_base instead of or in addition to a secret_token .

3.3.1.1 Session Serialization When a session object is converted to a cookie, it must be serialized. This is

performed through a serializer, configurable in config/initializer/session_store.rb . On Rails 4.1 or

later, the relevant setting will default to using the :json serializer.

Rails.application.config.action_dispatch.cookies_serializer = :json

config/initializer/session_store.rb

14 | Going AUTH the Rails on a Crazy Train NCC Group

Prior to version 4.1, this setting defaults to using the :marshal serializer. When processing a session

cookie to deserialize the session object, Rails will vaidate the signature, decrypt if applicable, and call `Mar-

shal.load()` on the user-supplied cookie value. A 'security considerations' section inMarshal's documentation

explains the problem:

``
By design, ::load can deserialize almost any class loaded into the Ruby process. In

many cases this can lead to remote code execution if the Marshal data is loaded from an

untrusted source.

Marshal Documentation ''
Marshal.load() was the ultimate function invoked through Rails' XML and JSON parsers in older versions.

This led to the well known deserialization vulnerabilities CVE-2013-0156 and CVE-2013-0333. Since signing

limits an attacker's abilty to craft a malicious session cookie which will reach the deserializer, the situation

isn't as dire. Still, :json is preferable. Again, Marshal's 'security considerations' is descriptive:

``
If you need to deserialize untrusted data, use JSON or another serialization format that

is only able to load simple, `primitive' types such as String, Array, Hash, etc. Never allow

user input to specify arbitrary types to deserialize into.

Marshal Documentation ''
Exposure of the secret keys used to serialize :marshal sessions will allow

arbitrary remote code execution

A third serializer setting, :hybrid , is intended for backwards compatability. With :hybrid serialization

configured, the application will issue session cookies serialized using :json but will accept either :json

or :marshal serialized cookies. This means that applications configured with :hybrid sessions remain

vulnerable, as :marshal is still reachable.

3.3.2 ActiveRecord Store

Another session storage option is known as ActiveRecord store. Again, the relevant configuration is in

config/initializers/session_store.rb which is set to :active_record_store . While included in

older versions of Rails, ActiveRecord store is no longer shipped as part of the core framework in version 4.0

and later. A gem which enables ActiveRecord store is still available.

ActiveRecord store creates a sessions table in the server's database. In this system, the user's browser is

provided only a cryptographically random token which serves as their session cookie. When the application

receives a request, it queries the database and loads the session identified by that object. From a security

standpoint, this has many benefits as compared to cookie sessions:

1. Sessions can be easily revoked by deleting the relevant entry from the database.

2. ActiveRecord provides `created_at` and `updated_at` timestamps, making session timeouts easier to

manage.

15 | Going AUTH the Rails on a Crazy Train NCC Group

http://ruby-doc.org/core-2.2.0/Marshal.html
http://ruby-doc.org/core-2.2.0/Marshal.html
http://ruby-doc.org/core-2.2.0/Marshal.html#module-Marshal-label-Security+considerations
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/http/rails_xml_yaml_code_exec.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/http/rails_json_yaml_code_exec.rb
http://ruby-doc.org/core-2.2.0/Marshal.html#module-Marshal-label-Security+considerations
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/http/rails_secret_deserialization.rb
https://github.com/rails/activerecord-session_store

3. Enforcement of session concurrency limits is significant simpler.

4. Attack surface exposed to users is significantly reduced.

• No risk of session information disclosure.

• No possibility of deserialization vulnerabilities.

• No possibility of cryptographic attacks.

The downside is that in an ActiveRecord session configuration, the application must perform a database

query for each request. This is the rationale behind its removal from Rails. This can pose a significant

performance burden for large applications, an issue which is exacerbated by distributed and load balanced

applications. Recent performance improvements to ActiveRecord may reduce the impacts, and in many

applications the performance overhead may not pose a significant concern.

Other storagemechanismswhich function similar toActiveRecord storebut use higher performancememory-

caching and key-value storage systems are available. Rails includes a native MemCacheStore. Gems such

as Dalli and redis-session-store can be used to back Rails sessions with Memcached and Redis, respectively.

3.3.3 Session timeout

Regardless of the session type, applicationsmust be cautious to expire sessions periodically. Sessions which

do not expire greatly increase the impact of session hijacking and fixation attacks. Rails allows us to configure

the lifetime of the session cookie.

config/initializiers/session_store.rb should include an

:expire_after symbol set to a reasonable lifetime for the session cookie

such as 2.hours .

If a cookie is obtained maliciously, the attacker can ignore this lifetime. Applications should also ensure that

the session object itself contains an expiry time, and the server enforces that restriction. This will reduce

exposure of data and application access resulting from a compromised session cookie.

Applications must take steps to protect session cookies from compromise. In recent versions of Rails,

session cookies can easily be set Secure and HTTPOnly . By including config.force_ssl = true in

config/environments/<ENVIRONMENT>.rb ` the application will require SSL, and will also set these cookie

security flags. :httponly => true and :secure => true can also be passed in the session_store

initializer.

3.4 Lost/Forgotten Password Recovery

It's unavoidable that for any authentication system that relies on secret knowledge, these secrets will be for-

gotten. Therefore, any authentication systemwhich relies on passwords, needs some provision for restoring

access to the legitimate user should they be unable to login. For some applications, this may be a manual

process of proving your identity to an administrator outside the application flow, but such a process won't

scale. Most applications will have some automated process allowing users to restore access to their account.

These systems can often be exploited as a means of gaining illicit access to an application, and so they

require careful thought.

16 | Going AUTH the Rails on a Crazy Train NCC Group

http://api.rubyonrails.org/classes/ActiveSupport/Cache/MemCacheStore.html
https://github.com/mperham/dalli
https://github.com/roidrage/redis-session-store
http://memcached.org/
http://redis.io/

3.4.1 Poor Recovery Mechanisms

There are no shortage of poor mechanisms for recovering accounts. Recovery mechanisms become a de-

facto secondary means of authentication, and must be treated as such. Too often they are significantly

weakened when compared to the primary mechanism. Technical problems, including failure to protect

sensitive data at rest as password-equivilants, abound. The problems with many systems are less technical,

and more ingrained in the mechanism by which they operate.

Perhaps the most popular is the 'secret question' system. When the account is created the user provides

some piece of information known to them, which they can use to 'confirm' their identity at a later date.

Such information is only a reliable authenticator to thedegree the information is private. Questions like 'What

is your Mother's Maiden Name?' or 'What city were you born in?' can often be answered by researching a

user's social media profile. Other questions like 'What is your favorite sports team?' or 'What is your favorite

color?' can be easily guessed from a relatively small list of candidates; there are only so many sports teams,

after all. The situation only worsens the more sites share the same 'secrets', exposing that information to a

broader circle of administrators, customer service representatives, etc. In an effort to improve the variety of

questions, someapplicationswill allow the user to generate their ownquestion and answer. This often results

in significantly weaker questions as users become frustrated when asked to provide more information.

Another commonly seen and equally poor practice is to provide a 'password hint' which can be displayed to

the user to give them a clue what their password is. Unfortunately, users will sometimes enter their password

itself as the hint, completely compromising the security of their own account. If we prohibit that practice, we

may end up with riddles describing their password or other phrases that rhyme with it, etc. Such hints will

make it easier for the user to recall their password, but so too they ease the process of a third party guessing

it. In extreme cases, password hints can even compromise the benefits of password digestsmaking guessing

their plain-text values a simple game.13

3.4.2 Strong Recovery Mechanisms

While there are many weak recovery mechanisms, there are far fewer that stand up to scrutiny. The solution

we favor takes the following form:

1. User visits site, clicks 'forgot password' link.

2. User provides their username.

3. The application looks up the user's account to verify existence and validity.

4. The application generates a random token using a cryptographically secure random number genera-

tor and a long enough value to prevent brute force.

5. The token is saved to the database, along with an association to the user's account, and a timestamp

indicating when it was generated.

6. The token is sent to the user via some out-of-band mechanism; Email, SMS, etc.

7. The application responds and inform the user that a message has be sent to the account they re-

quested.

• **NOTE** The system should take care not to disclose whether or not the given username was valid,

to avoid a usrname enumeration vulnerability.

8. Upon receiving the token, the user visits the site and provides it, often by following a link in an email.

17 | Going AUTH the Rails on a Crazy Train NCC Group

http://zed0.co.uk/crossword/

9. The application looks up the token to confirm its validity, verifies its timestamp is within an expiry

threshold, and allows the user to reset their password.

10. Finally, the token is deleted from the database, preventing reuse.

11. If the user logs in at any point using their normal credentials, outstanding tokens associated with their

account should immediately be revoked.

Such a system provides no information to the unverified user, while leveraging their access to an already

known means of contact to provide them a time-limited means of changing their password. Tokens cannot

be used more than once, and only within a short interval.

The security of this systemdepends upon the security of that out-of-band communicationmechanism. While

imperfect, this is far better than most alternatives. Even manual contact with a customer service agent

may allow for social engineering ploys and human error while posing additional expense and descreasing

customer satisfaction. The problem of forgotten passwords is just one reason we should continue to seek

improved solutions to authentication.

3.5 Devise Password Recovery

In Devise, password recovery is accomplished through use of the :recoverable module. Recall that when

we discussed Devise earlier, we saw it enabled by defaul in our Devise-created User model.

class User < ActiveRecord::Base

Include default devise modules. Others available are:

:confirmable, :lockable, :timeoutable and :omniauthable

devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable, :validatable

end

app/models/user.rb

There are several controllers which relate to the :recoverable module.

(in /tmp/devise_sample)

Prefix Verb URI Pattern Controller#Action

user_password POST /users/password(.:format) devise/passwords#create

new_user_password GET /users/password/new(.:format) devise/passwords#new

edit_user_password GET /users/password/edit(.:format) devise/passwords#edit

PATCH /users/password(.:format) devise/passwords#update

PUT /users/password(.:format) devise/passwords#update

We see that these routes all call various actions in the PasswordsController . The Devise source code14

for which is freely available and can be found within the gem itself. Quickly reviewing the code shows us

the purpose of each action. Each of the controllers performs some actions on the class to which the module

is applied. The source for the model mixins associated with recoverable can be found in lib/devise/mod-

els/recoverable.rb15 In our case, these actions will be performed on our User class, since that's the model

we've enabled Devise on.

• passwords#new - Presents the user with a form asking for the User ID of their account. The form posts

this address to the route associated with passwords#create

• passwords#create - Sends instructions to the user to reset their password by calling

User.send_reset_password_instructions

18 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/plataformatec/devise/blob/7df57d5081f9884849ca15e4fde179ef164a575f/app/controllers/devise/passwords_controller.rb
https://github.com/plataformatec/devise/blob/18a8260535e5469d05ace375b3db3bcace6755c1/lib/devise/models/recoverable.rb
https://github.com/plataformatec/devise/blob/18a8260535e5469d05ace375b3db3bcace6755c1/lib/devise/models/recoverable.rb

• passwords#edit - This is the action the email a user receives directs them to. It accepts a parameter in

the GET request called reset_password_token and confirms it matches a valid token in the database. If

it does, it provides a form asking the user to enter and confirm the new password value they would like.

When the user submits the form, the resulting information is sent to passwords#update as parameters

in the HTTP body.

• passwords#update - The is where the password update actually occurs. The primary action taken is a

call to User.reset_password_by_token() .

If we look in recoverable.rb we see what occurs there, along with some helpful comments.

1 # Attempt to find a user by its reset_password_token to reset its

2 # password. If a user is found and token is still valid, reset its password and automatically

3 # try saving the record. If not user is found, returns a new user

4 # containing an error in reset_password_token attribute.

5 # Attributes must contain reset_password_token, password and confirmation

6 def reset_password_by_token(attributes={})

7 original_token = attributes[:reset_password_token]

8 reset_password_token = Devise.token_generator.digest(self, :reset_password_token, original_token)

9

10 recoverable = find_or_initialize_with_error_by(:reset_password_token, reset_password_token)

11

12 if recoverable.persisted?

13 if recoverable.reset_password_period_valid?

14 recoverable.reset_password(attributes[:password], attributes[:password_confirmation])

15 else

16 recoverable.errors.add(:reset_password_token, :expired)

17 end

18 end

devise/lib/devise/models/recoverable.rb

The actual comparison of of the provided token and the actual token occurs with the comparison to the value

returned from Devise.token_generator.digest on line 8. The remaining code validates that the object

is recoverable, and that the token was issued within the maximum lifetime.

def digest(klass, column, value)

value.present? && OpenSSL::HMAC.hexdigest(@digest, key_for(column), value.to_s)

end

devise/lib/devise/token_generator.rb

This code looks up a key associated with the column in which the recovery token digests are stored. It then

uses this same key to create an HMAC digest of the reset token passed to it, and returns the result. This is

noteworthy, because it means that in this version of Devise, the reset tokens themselves are note stored in

the server, which keeps only an HMAC digest of them and calculates the HMAC of the submitted value. This

means that even a compromise of the server's database would not provide valid reset tokens. Put another

way, they're protecting reset tokens in much the same way as passwords; certainly a good approach!

Some other recent changes show care given to this process that may not be taken among in-house devel-

oped solutions. For example, reset tokens are cleared when the associated object's password changes,16 or

its email changes.17

However, things haven't always been this well thought out, as we'll see in our next section.

19 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/plataformatec/devise/commit/31901bc862db60878130fcd9cbf9c4895d41b2d2
https://github.com/plataformatec/devise/commit/e641b4b7b97159054b7d92fb14df557ac18ae6f4

3.5.1 Devise Security History

Wenotedearlier thatDevise stores password reset tokens only asHMACdigests. However, thiswasn't always

the case as we see from a commit18 dated August of 2013. In fact, Devise has a strong history of improving

security, sometimes in response to vulnerabilities discovered by researchers. From newest to oldest here's

some of the highlights from the Devise change log.19

Unreleased/HEAD Adds an option to send an email to users when their password changes, potentially alert-

ing them to a compromised account.

3.5.1 Removes active password reset tokens upon email address or password change. Improves handling

of 'remember me' tokens when integrators improperly extend the base functionality.

3.1.2 Addresses an email enumeration bug.

3.1.0 Stores password reset tokens as HMACs instead of plain-text tokens, eliminating the possibility they

can be stolen from the database.

3.0.1 Addresses a CSRF token fixation flaw.

2.2.3 Fixes a type confusion vulnerability in password reset functionality that allows compromise of accounts.

Despite these issues, our view is not that Devise has a poor security security track record. In fact, it's quite

the opposite. Most of these issues are subtle, and only impact security in specific scenarios. The fact that the

Devise team has a demonstrable history of addressing such issues and improving security speaks to their

commitment to security of the product. If there's any message to take away from this, it's that authentication

systems are complex, the bugs subtle, and avoiding problems is challenging. Developers who integrate

Devise into their applications benefit from an increasingly strong security posture through ongoing updates

and improvements. The key take away is to track the state of dependencies, and follow a regular process

for updating on an ongoing basis.

3.5.2 Devise Type Confusion

The last vulnerability in the above list, relating to password reset, is likely the most significant vulnerablity

Devise has faced in its history. It's also not unique to Devise, and thus makes an interesting case study. In

this section, we'll discuss the details of this vulnerability, including means of exploitation and how the core

bug may manifest itself in other applications.

This bug was first disclosed by Joernchen of Phenoelit.20 His blogpost from February of 2013 explains the

issue well, but we'll briefly review.

If we simplify the Devise password reset mechanism we discussed earlier, and account for some of the

changes that have taken place since, we can construct some pseudo-code that simplifies it. This code is

similar to mechanisms the authors have seen developed independently by others who have written their

own password reset systems.

1 def reset

2 user = User.find_by_token(params[:user][:reset_password_token])

3 if user

4 user.change_password(params[:user][:password], \

5 params[:user][:confirm_password])

6 end

7 end

Simplified Password Reset Pseudocode

20 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/plataformatec/devise/commit/143794d701bcd7b8c900c5bb8a216026c3c68afc
https://github.com/plataformatec/devise/blob/6ed6e09bf3f8b4e32f16dfe253c89ea6bc0bf525/CHANGELOG.md
http://www.phenoelit.org/blog/archives/2013/02/05/mysql_madness_and_rails/index.html
http://www.phenoelit.org/blog/archives/2013/02/05/mysql_madness_and_rails/index.html

From our earlier discussions of password reset mechanisms, the code should be pretty clear. This con-

troller action takes three parameters from the user's request; :reset_password_token , :password , and

:confirm_password . The first is the token that was sent to the user out of band, while the others contain

the new password, for verification that there weren't any typos.

In line 2, the controller fetches the User object for which the :reset_password_token applies. Assuming

a user is returned, lines 3-6 perform the reset of their password to the desired value. At a glance, this all

looks proper assuming that tokens are generated securely, and can't be guessed. The problem, as Joern

discovered, relates to a behavior of the underlying database.

When the application is backed by MySQL, there's some unusual equality logic that makes this seemingly

benign code extremely dangerous. Consider the query below:

mysql> select "foo" from dual where 1="1string";

+-----+

| foo |

+-----+

| foo |

+-----+

1 row in set, 1 warning (0.00 sec)

MySQL Equality Typecasting

In this query, we see the integer '1' compared to the string '1string'. Shockingly, MySQL typecasts the string

to an integer before performing the comparison. Since '1' equals '1', the comparison evaluates as true and

in our sample query the select statement returns "foo". This behavior applies to any string that begins with

an integer, when compared to that same integer.

mysql> select "foo" from dual where 0="string";

+-----+

| foo |

+-----+

| foo |

+-----+

1 row in set, 1 warning (0.00 sec)

Even More Unexpected MySQL Typecasting

Even more unusual is the case where the integer '0' is compared to a string that does not

begin with an integer. Again, MySQL typecasts the string, but this time it evalutes true against

'0'. Let's put this in the context of queries generated by ActiveRecord when performing the

User.find_by_token(params[:user][:reset_password_token]) query seen in our pseudocode

above.

SELECT "users".* FROM "users" WHERE "users"."token" = ? ORDER BY \

"users"."id" ASC LIMIT 1 [["token", "Q2ixrCpSS72SB2tvNrB2"]]

Example MySQL Query

In the above snippet,† we see a query for a user where the token equals the user-supplied string. But what

if instead of a string, this were the integer '0'? If we could manipulate the parameters, such that we passed

the integer '0', the query would return the first user who had an outstanding token that did not begin with

an integer. But can that be done?

†This is a real query, from a log of a test instance run locally.

21 | Going AUTH the Rails on a Crazy Train NCC Group

<foo>bar</foo>

<fizz type“=”integer>1</fizz>

Example of XML Typecasting

3.5.2.1 Rails Magic Luckily for us,‡ There's some Rails Magic that can

help. Often, developers expect that the params hash which provides

user input will only contain String s. This is the most common case, but

there are execeptions. Since the CVE-2013-0156 XML YAML deserialization

vulnerablity,21 Rails typecasting has been fairly well known. By specifying

the XML type of an attribute included in an HTTP body, we can influence

Rails to interpret the input of that type.

In this example, we end up with a params hash that looks like

params => {"foo"=>"bar", “fizz"=>1}

Notice that the value of 'fizz' contains an integer. This is what we need to exploit the type confusion. Since

this vulnerability was discovered, Rails has disabled XML parsing by default. On Rails 4.0 and later, the

actionpack-xml_parser gem22 is needed to provide support for XML. So we instead turn to JSON.

{"user":{\

"password":"GAMEOVER",\

"password_confirmation":"GAMEOVER"“,reset_password_token":0}\

}

The effect is similar. The JSON format allows us to easily encode integers and is supported natively by all

versions of Rails.

3.5.2.2 Metasploit Module To ease testing of the vulnerability, one of the authors of this paper produced

a Metasploit Module23 targetting the issue. Despite the fact that the vulnerability affects the token without

identifying a specific account, the exploit can be fairly well targetted. To exploit a specific account, some

further steps are necessary.

• Choose an integer representing the largest integer-prefix on a token which will be targetted.

• Loop through all integers until reaching that maximum value, and send them as reset tokens.

• If the response indicates a password was successfully reset, repeat this value.

• Increment the integer and repeat.

• Once all tokens up to the maximum integer are cleared, send a password reset request for a known user

account. User enumeration vulnerabilities may help in exposing accounts to target.

• Now that the targetted user has an active token, repeat the earlier process to reset their password.

The Metasploit module makes this relatively easy to accomplish. The maximum integer value, choice of

clearing outstanding tokens or not, and URLs associated with affected controllers are all configurable. The

module is also useful, with slightmodifications, for exploiting similar patterns in applications that do not use a

‡... or unluckily, depending on your view.

22 | Going AUTH the Rails on a Crazy Train NCC Group

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0156
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0156
https://github.com/rails/actionpack-xml_parser
https://github.com/rapid7/metasploit-framework/blob/master/modules/auxiliary/admin/http/rails_devise_pass_reset.rb

vulnerable version of Devise. The authors of this paper have seen similar issues arrive in systems developed

by internal teams, unaware of this issue.

msf auxiliary(rails_devise_pass_reset) > exploit

[*] Clearing existing tokens...

[*] Generating reset token for

admin@example.com...

[+] Reset token generated successfully

[*] Resetting password to "w00tw00t"...

[+] Password reset worked successfully

[*] Auxiliary module execution completed

3.5.2.3 Patch Status This vulnerability was as-

signed CVE-2013-023324 and was patched in

Devise some time ago.§ This was accom-

plished through casting the supplied value

to a string prior to calling the query. In

our pseudocode example, the fix is essentially

User.find_by_token(params[:user][:reset_password_token].to_s) with .to_s being the extent

of the change.

For Rails itself, the situation is more complex. The issue was initially patched in 3.2.1225 by a change to

ActiveRecordwhich cast the query parameter type such that it matched the database column type. However,

this caused problems with some functionality, and was reverted in 3.2.13.26 The issue is finally fixed in

ActiveRecord versions 4.2.0 and later.27

This Affects More Than Just Devise

ActiveRecord will still build queries that can allow for exploitation of MySQL's

equality type confusion on all versions prior to 4.2.0.

In 4.2.0 and later, developers can still introduce the issue if instead of using

ActiveRecord's finder methods, they build their own through queries like:

User.where(“token=?”, params[token])

MySQL shows no signs of changing their behavior.a

It's likely this affects other platforms beyond Rails.

aLikely due to compatability concerns.

§Specifically, in versions 2.2.3, 2.1.3, 2.0.5, 1.5.4, and later.

23 | Going AUTH the Rails on a Crazy Train NCC Group

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0233
https://github.com/rails/rails/pull/9208
https://github.com/rails/rails/issues/9292
https://github.com/rails/rails/pull/16069

4 Authorization

Earlier, we noted that the authentication process is reasonable for establishing user identity. Authorization

is instead focused on establishing and enforcing permissions granted to the use according to that identity.

Authorization within web applications today is often tied to the concept of roles. Let's use the following role

heirarchy as an example of a typical authorization scheme:

• Super Administrator: Full administrative access to the entire application. This role has no limits to the data

and routes it can access.

• Organization Administrator: Administrative access to the subset of data belonging to their organization.

The organization admin of 'FooCorp' should not be able to access any data belonging to 'BarCorp' and

vise versa.

• Team Manager: This role may have read/write access to only the data belonging to their team within

an organization. They should not be able to access other team's data within their organization or other

organizations.

• Employee: This role may have only read access to their team but no other teams within their organization

or other organizations

In this scenario, we see a combination of both vertical and horizontal authorization models.

The term 'Vertical Authorization' is used to describe different levels of access to data within a single organiza-

tion. For example, an Organization Administrator should be able to access all data within their organiztion,

while an employee should only be able to access data associated with their own team.

In contrast, 'Horizontal Authorization' describes differences in permission between various users with the

same role. In our example, an Organization Admin belonging to an organization called 'FooCorp' should

be able to access data of all FooCorp employees, but have no access to any data owned by 'BarCorp.'

The OWASP project summarizes these two types of authorization.28

``
Different clients/users should not see other clients' data (Horizontal authorization).

Authorization can also be used to restrict functionality to a subset of users. "Super users"

would have extra admin functionality that a "regular user" would not have access to

(Vertical authorization).

OWASP Project Wiki ''
The 'Super Administrator' role in our example crosses this horizontal authorization boundary and allows

access to all data, regardless of owning organization or employee. Often, such a role is provided for use

by systems administrators and support staff, and should not be generally available to the public. In some

circumstances, it may be reasonable to control access to these highly privileged accounts by IP restrictions,

or by exposing a seperate application instance for their use which is segmented from public networks.

4.1 Vertical Authorization in Rails

Vertical authorization within Rails is typically implemented through the use of a before_filter or

before_action . The purpose of these is common, but the nomenclature has changed within recent

versions of rails. A controller uses a before_action ¶ as a callback which is executed prior to calling the

controller action. In our case, it's used to enforce authentication and verify authorization, but they're also

sometimes used to set up variables, check the state of the session, etc.

¶Or before filter, the terms are more or less interchangeable for now.

24 | Going AUTH the Rails on a Crazy Train NCC Group

https://www.owasp.org/index.php/Codereview-Authorization
https://github.com/rails/rails/blob/master/actionpack/lib/action_dispatch/middleware/callbacks.rb

1 class SuperAdminController < ApplicationController

2 before_action :require_super_admin

3

4 # An action available for the AdminController

5 # This might be reached via the /admin/all_users path

6 def all_users

7 respond_with User.all.to_json

8 end

9

10 private

11

12 # Redirect to the home page if the user is not an admin

13 def require_super_admin

14 unless current_user.super_admin?

15 redirect_to root_url

16 end

17 end

18 end

Example 'before_action' Enforcing Authorization.

In the example code above, we've created a SuperAdminController with a single action called

all_users that renders all of the users within the application as JSON. At line two we see

before_action :require_super_admin . This tells Rack to run the require_super_admin method

before processing any SuperAdminController action. The require_super_admin method will then check

to see if the user is a super admin. If they are not, they are redirected to the root of the application. If they

are, the controller continues processing the all_users action.

If a filter redirects or renders, the controller actionwill not be run. In addition, further controllers which inherit

from AdminController will also inherit this callback.

NOTE before_filter and before_action are the same thing as can be seen here.30 The

before_filter method includes a deprecation warning that before_filter will be removed in Rails 5.1.

Rack29 is a middleware layer for Rails applications.

25 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/rails/rails/blob/master/actionpack/lib/abstract_controller/callbacks.rb#L189-L191
http://guides.rubyonrails.org/rails_on_rack.html

4.2 Horizontal Authorization in Rails

Horizontal authorization tends to be implemented through the use of ActiveRecord associations.31 These

associations are established through themodel. In the following example, we establish an associationwhere

a User has many Customer Accounts and Customer Accounts belong to a User.

class User < ActiveRecord::Base

has_many :customer_accounts, dependent: :destroy

end

class CustomerAccount < ActiveRecord::Base

belongs_to :user

end

Then when Customer Accounts are created, they are assigned to a User using syntax similar to the following:

class CustomerAccountsController < ApplicationController

def create

@customer_account = current_user.customer_accounts.build(customer_account_params)

@customer_account.save

end

Through the association, we can query only Customer Accounts that belong to the currently logged in user.

class CustomerAccountsController < ApplicationController

def index

@customer_accounts = current_user.customer_accounts

end

This process requires that the current_user object is set in our session. This is typically handled by the

authentication process.

4.3 Routing

Rails establishes all of its routes via the config/routes.rb file. Here all URL paths are mapped to some

kind of controller and action. Let's take a look at the following example routes file:

1 # The root/home page of the site

2 root to: 'visitors#index'

3

4 # resources sets up default set of CRUD routes (e.g. index, create, update,

5 # destroy, etc.)

6 resources :customer_accounts

7 resources :users

8

9 # custom routes

10 post '/customer_accounts/:id/place_on_hold', to: 'customer_accounts#place_on_hold'

11 get '/customer_accounts/accounts_on_hold', to: 'customer_accounts#accounts_on_hold'

Example config/routes.rb File

Line 2 shows where the root of our application is. This is the controller and action that gets run when you

visit http://www.myrailsapp.com/. At lines 6 and 7, the route definition utilizes the resources helper. This

helper sets up a number of common CRUD routes for a given controller and model pair. See CRUD, Verbs,

and Actions32 for more on this. The last set of routes on lines 10 and 11 specify custom path strings with

mappings to the controller and action that should be called when that path is visited. For more information

on Rails routing, see the official Rails guide, Rails Routing from the Outside In.33 For a technical dive into the

code for how routing works in Rails, see Andrew Berl's post on Routing.34

26 | Going AUTH the Rails on a Crazy Train NCC Group

http://guides.rubyonrails.org/association_basics.html
http://www.myrailsapp.com/
http://guides.rubyonrails.org/routing.html#crud-verbs-and-actions
http://guides.rubyonrails.org/routing.html#crud-verbs-and-actions
http://guides.rubyonrails.org/routing.html
http://andrewberls.com/blog/post/rails-from-request-to-response-part-2--routing

4.4 Controller Hierarchy

Every new Rails application contains a single controller by default.** This is the ApplicationController.

class ApplicationController < ActionController::Base

Prevent CSRF attacks by raising an exception.

For APIs, you may want to use :null_session instead.

protect_from_forgery with: :exception

end

app/controllers/application_controller.rb

If we generate a Posts controller with an index action:

rails generate controller Posts index

We can now to see the Rails controller hierarchy start to build. Looking at the PostsController , we see

that it inherits from the ApplicationController .

class PostsController < ApplicationController

def index

end

end

app/controllers/posts_controller.rb

Figure 1: Controller hierarchy36

Next, the ApplicationController itself inherits from the internal

Rails controller ActionController::Base .

And ActionController::Base itself inherits froma fewother classes

seen in Figure 1.

The important concept to note here is that by default all new

controllers inherit from ApplicationController . This means that

any actions or filters declared within the ApplicationController

will automatically be available in new controllers unless otherwise

specified.

See the Rails guide for ActionController and Andrew Berl's technical

dive into the code behind ActionController.

**Technically there is also Rails::InfoController, Rails::WelcomeController, and Rails::MailersController but these are hidden.

27 | Going AUTH the Rails on a Crazy Train NCC Group

http://guides.rubyonrails.org/action_controller_overview.html
http://andrewberls.com/blog/post/rails-from-request-to-response-part-3--actioncontroller
http://andrewberls.com/blog/post/rails-from-request-to-response-part-3--actioncontroller

4.5 The Different Flavors of Rails Filters

Rails filters can also include several modifiers to control which actions they apply on.

before_action :authorize_user, only: [:action1, :action2, …]

before_action :authorize_user, except: [:action1, :action2, …]

before_action :authorize_user, if: method_call

before_action :authorize_user, unless: method_call

skip_before_action :authorize_user, only: [:action1, :action2, …

skip_before_action :authorize_user, except: [:action1, :action2, …]

The options only and accept accept any array of actions to which they be applied or conversely not

applied.

Similarly, if and unless accept amethod argument and apply when the result is true or false , respec-

tively.

4.5.1 Less common flavors

There are a few other filter modifiers which are far less commonly seen.

class ApplicationController < ActionController::Base

before_action do |controller|

unless controller.send(:logged_in?)

flash[:error] = "You must be logged in to access this section"

redirect_to new_login_url

end

end

end

Specifying a Block Inline

This example specifies a block inline with the filter. The effect is similar to an if: modifier, but the block is

anonymous and does not need to be declared as a method.

Specifying a class

class ApplicationController < ActionController::Base

before_action LoginFilter

end

class LoginFilter

def self.before(controller)

unless controller.send(:logged_in?)

controller.flash[:error] = "You must be logged in to access this section"

controller.redirect_to controller.new_login_url

end

end

end

Specifying a Class

Here we specify a class as the modifier. The before method of that class is run as our filter.

4.6 Authorization Gems

Unlike authentication, authorization tends to require a good deal of customized logic which causes develop-

ment teams to roll their own authorizationmore often. However, there are a good number37 of authorization

gems available for Rails. The two most popular that we've come across during our Rails assessments are

Pundit38 and CanCanCan,39 formerly CanCan,40 which was forked into CanCanCan to provide support for

Rails 4. Both of these gemsmake testing a bit easier by centralizing the role definitions into a single location.

28 | Going AUTH the Rails on a Crazy Train NCC Group

https://www.ruby-toolbox.com/categories/rails_authorization
https://github.com/elabs/pundit
https://github.com/CanCanCommunity/cancancan
https://github.com/ryanb/cancan

4.6.1 CanCan(Can)

``
CanCan is an authorization library for Ruby on Rails which restricts what resources a given

user is allowed to access. All permissions are defined in a single location (theAbility class)

and not duplicated across controllers, views, and database queries.

''Let's take a look at the example Ability file from the CanCanCan wiki:

class Ability

include CanCan::Ability

def initialize(user)

user ||= User.new # guest user (not logged in)

if user.admin?

can :manage, :all

else

can :read, :all

end

end

end

This is a basic Ability class that contains an initialization method that expects a user object. Often times

this is the current_user of the request (usually provided by Devise). The main workhorse of this gem is

the can method which defines what the user can or can not do. This method needs two arguments: usually

this is one of the 7 RESTful methods41 (e.g. create, read, update, destroy, etc.) and a model. Therefore, a

permission of can [:update, :destroy], [Article, Comment] will allow a user to update and destroy

Article and Comment objects. In Rails, these objects pertain to the rows of the Articles and Comments

database tables.

Although the basic CRUD methods are common enough that they are built in as actions, CanCanCan does

allow you to define custom actions in the ability.rb file. The CanCanCan documentation gives the

following example:

in models/ability.rb

can :assign_roles, User if user.admin?

Note that CanCanCan lets you add a :manage action as well. :manage gives

the user permisions for all defined actions, including any custom actions in the

ability.rb file.

can :assign_roles, User if user.admin?

can :manage, User

The can :manage, User would override the admin check used for

:assign_roles and give all users the ability to assign roles.

29 | Going AUTH the Rails on a Crazy Train NCC Group

http://guides.rubyonrails.org/routing.html#crud-verbs-and-actions

Once abilities are defined, the can? method is used to test and check abilities. The following is an example

from the CanCanCan wiki that would be seen in a view:

<% if can? :create, Project %>

<%= link_to "New Project", new_project_path %>

<% end %>

More often, abilities will be checked in the controllers through the use of code such as:

Checking against instances...

@project = Project.find(params[:id])

can? :destroy, @project

... or checking against the class name of the model itself

can? :destroy, Project

From here, it's a matter of checking the controller actions for the existence of these methods and assessing

the context to ensure the ability checks are correct. For more information on CanCanCan, refer to the

project's Wiki page.42

4.6.2 Pundit

``
Pundit provides a set of helpers which guide you in leveraging regular Ruby classes and

object oriented design patterns to build a simple, robust and scaleable authorization

system.

Pundit Github Page43 ''
Similar to CanCanCan, Pundit attempts to centralize the definitions of permissions in a single location. For

Pundit, this is through policy files located in the app/policies directory. Let's take a look at a policy file for

the User model.

class UserPolicy

attr_reader :current_user, :model

def initialize(current_user, model)

@current_user = current_user

@user = model

end

def index?

@current_user.admin?

end

def show?

@current_user.admin? or @current_user == @user

end

def update?

@current_user.admin?

end

def destroy?

return false if @current_user == @user

@current_user.admin?

end

end

app/policies/user_policy.rb

30 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/CanCanCommunity/cancancan/wiki
https://github.com/elabs/pundit

Pundit has quite a few assumptions about the structure and name of this policy file.

`` • The class has the same name as some kind of model class, only suffixed with the word

"Policy".

• The first argument is a user. In your controller, Pundit will call the current_user method

to retrieve what to send into this argument

• The second argument is some kind of model object, whose authorization you want to

check. This does not need to be an ActiveRecord or even an ActiveModel object, it can

be anything really.

• The class implements some kind of query method, in this case update?. Usually, this

will map to the name of a particular controller action.

Pundit Documentation44 ''
The example policy file above allows admins to view, update, and destroy all users. While allowing users

to destroy and view their own accounts. Checking these defined permissions in controllers is done through

the use of the authorize method.

Pundit gives you the ability to ensure that all of the actions inside of a controller

run the authorize method using the :verify_authorized45 filter.

class UsersController < ApplicationController

before_action :authenticate_user!

after_action :verify_authorized

def index

@users = User.all

end

end

In this code, when rendering the index action the application throws

a Pundit::AuthorizationNotPerformedError in UsersController#index

exception. This will force the developer to add proper authorization checks to the

index action.

31 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/elabs/pundit#policies
https://github.com/elabs/pundit#ensuring-policies-are-used

As nice as the :verify_authorized method is, this should only be relied

on during code development or non state changing actions since this filter

only works in an after_action callback. This means that in a state changing

action, the changes will first be made to the database and then the exception

will be thrown. In the following UsersController example we'd expect the

controller to throw an exception when attempting the destroy action because

the authorize method was never called.

class UsersController < ApplicationController

before_action :authenticate_user!

after_action :verify_authorized

def index

@users = User.all

authorize User

end

def destroy

user = User.find(params[:id])

user.destroy

redirect_to users_path, :notice => "User deleted."

end

end

However, because the exception happens after the action completes, the destroy

action completes and destroys the user in the database. This can be seen in the

following server logs:

Started DELETE "/users/2" for ::1 at 2015-11-04 23:00:45 -0600

Processing by UsersController#destroy as HTML

User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."id" = ?

ORDER BY "users"."id" ASC LIMIT 1 [["id", 1]]

User Load (0.2ms) SELECT "users".* FROM "users" WHERE "users"."id" = ?

LIMIT 1 [["id", 2]]

(0.1ms) begin transaction

SQL (0.4ms) DELETE FROM "users" WHERE "users"."id" = ? [["id", 2]]

(0.7ms) commit transaction

Redirected to http://localhost:3000/users

Completed 500 Internal Server Error in 8ms (ActiveRecord: 1.5ms)

Pundit::AuthorizationNotPerformedError

(Pundit::AuthorizationNotPerformedError):

pundit (1.0.1) lib/pundit.rb:103:in `verify_authorized'

activesupport (4.2.4) lib/active_support/callbacks.rb:432:in `block in

make_lambda'

activesupport (4.2.4) lib/active_support/callbacks.rb:239:in `call'

Although there are some potential pitfalls with Pundit, it's still quite easy to use and seems to be on the verge

of overtaking CanCan(Can) as the leading authorization gem. For more information on Pundit, refer to the

project's README.46

4.7 Patterns to watch out for

The following sections aremeant to show codepatterns that we've seen result in authorization vulnerabilities.

However, seeing these patterns does not guarantee a vulnerability. Instead it should constitute some extra

effort in auditing the code around these patterns.

32 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/elabs/pundit#pundi

4.7.1 Finder methods called directly on the model

Instead of using model associations, applications will sometimes use ActiveRe-

cord findermethods (e.g. find , find_by , find_all_by) directly on themodel.

An example of this might be passing in a user-supplied :id parameter to the

CustomerAccount model:

class CustomerAccountsController < ApplicationController

def show

@customer_account = CustomerAccount.find(params[:id])

render json: @customer_account

end

end

Although this code will work perfectly fine for retrieving and rendering a single Customer Account, there is

nothing stopping a user from specifying an arbitrary :id for a Customer Account that does not belong to

the user.

A better pattern would be calling finder methods on associations. Going back to

the show action from the example above:

class CustomerAccountsController < ApplicationController

def show

@customer_account = current_user.customer_accounts.find(params[:id])

end

end

This limits the search to the subset of Customer Accounts that belong to the currently logged in user, re-

gardless of whether the :id is valid for an account outside this scope.

4.7.2 Action whitelisting before_action only: [:action1, action2]

Let's take and expand our SuperAdminController example from earlier. Imagine you have the following

SuperAdminController:

class SuperAdminController < ApplicationController

before_action :require_super_admin, only: [all_users, all_customer_accounts]

def all_users

render json: User.all

end

def all_customer_accounts

render json: CustomerAccount.all

end

private

Redirect to the home page if the user is not an admin

def require_super_admin

unless current_user.super_admin?

redirect_to root_url

end

end

end

33 | Going AUTH the Rails on a Crazy Train NCC Group

From here, a developer wants to add a new feature that would allow admins to

see all open Customer Accounts. This would require adding a new action called

all_open_customer_accounts like so:

class SuperAdminController < ApplicationController

...

def all_open_customer_accounts

render json: CustomerAccount.where(status: "open")

end

...

end

The developer tests the action with their admin account and everything works fine. However, they forgot to

add :open_customer_accounts to the before_action's :only option, resulting in an authorization vulner-

ability, since this action can be invoked without satisfying the require_super_admin callback as intended.

Instead, the use of the :except option to specify only the actions you explicitly do not want to run callbacks

on is preferred.

class SuperAdminController < ApplicationController

before_action :require_super_admin, except: [:health_check]

def all_users

render json: User.all

end

def all_customer_accounts

render json: CustomerAccount.all

end

Used by monitoring service to check if server is up

def health_check

render text: "OK"

end

private

Redirect to the home page if the user is not an admin

def require_super_admin

unless current_user.super_admin?

redirect_to root_url

end

end

end

With this pattern, developers can add new actions to the SuperAdminController or its descendants, which

will pick up the :require_super_admin callback by default.

4.7.3 Lightweight Controllers

As we discussed in the Controller Hierarchy section, any controller that inherits from

ApplicationController inherits all of its filters as well. The main filter that every new application

gets by default is :verify_authenticity_token . This filter is added by the protect_from_forgery line

that is seen at the top of the ApplicationController by default.

Sometimes you'll see controllers that don't inherit from ApplicationController and instead inherit from

34 | Going AUTH the Rails on a Crazy Train NCC Group

the class above ApplicationController , ActionController::Base .

class BackupsController < ActionController::Base

def create_backup

Backup database

end

def remove_backups

Remove specified backup

end

end

In the above example, the developers chose to inherit fromActionController::Base to create a simple backup

controller. In this instance, any authentication/authorization filters from the ApplicationController as well as

the protect_from_forgery filters are lost.

There may be legitimate use cases for this, such as in API controllers, where the developer may wish to

enforce fewer filters. Unusual inheritence patterns can easily give rise to security vulnerabilities, by opting

out of default protections afforded by Ruby on Rails.

For a real world example, see Egor Homakov's post, "CSRF in Doorkeeper" which details a significant Cross-

Site Request Forgery bug in Doorkeeper that was originally found by Sergey Belove.

4.7.4 Authorization Logic in Views

At times, an application will need to render parts of a page based on the resources the currently logged

in user is authorized to view. A common example of this is to show/hide administrative functionality in the

view. This logic would potentially be found in a view in the following form:

<% if current_user.super_admin? %>

Render administrative actions

<% end %>

Here, we need to make sure that the controller corresponding to this view is also properly checking autho-

rization. Although the view is only displayed for super administrators, there is nothing stopping an attacker

from bypassing the client side view and making requests directly to the server.

4.7.5 Skipping of filters

When auditing the use of before filters, special attention should be paid to any uses of

skip_before_filter /skip_before_action . The occurrences of this method should be evaluated

to make sure the filters were indeed meant to be skipped.

35 | Going AUTH the Rails on a Crazy Train NCC Group

http://homakov.blogspot.com/2014/12/blatant-csrf-in-doorkeeper-most-popular.html
http://habrahabr.ru/company/dsec/blog/246025/

An example scenario for this may be a developer adding a new

state changing action to a controller that utilizes a POST method. To

easily test this action using a cURL command, the developer adds

skip_before_filter :verify_authenticity_token to the controller.

After finishing their feature, they forget to remove this exception from their code

and push the code up to production.

class SuperAdminController < ApplicationController

CSRF check is making testing annoying with cURL...

skip_before_action :verify_authenticity_token

...

def new_post_action

...

end

end

The developer has just introduced a Cross-Site Request Forgery vulnerability across the entire controller.

The use of skip_before_action is implicitly circumventing some kind of logic, and it's beneficial to ensure

that the developer intentions were correct.

To make assessing these instances easier, the following grep commands can be used to help find instances

of these methods within the application:

grep -rni --include='*.rb' 'skip_before' .

grep -rniE --include='*.rb' 'before_(action|filter).*(only|except)' .

36 | Going AUTH the Rails on a Crazy Train NCC Group

http://guides.rubyonrails.org/security.html#cross-site-request-forgery-csrf

5 Boilerman

Boilerman is a dynamic analysis tool developed by one of this paper's authors to help in auditing the authen-

tication and authorization filters within a given Rails application. Boilerman itself is an isolated Rails engine

that plugs into existing Rails applications. The source code can be found on the Boilerman Github page.47

In this section we will be going through an example using OWASP's RailsGoat48 application.

``
RailsGoat is a vulnerable version of the Ruby on Rails Framework both versions 3 and 4.

It includes vulnerabilities from the OWASP Top 10, as well as some "extras" that the initial

project contributors felt worthwhile to share. This project is designed to educate both

developers, as well as security professionals.

''To follow along, first setup the RailsGoat application. See the project's Getting Started49 page to set the

application up.††

Once the RailsGoat application is up and running, we can now plug Boilerman into the application.

5.1 Installation

ToplugBoilerman into theRailsGoat application, all weneed todo is add theboilermangem into theGemfile

of the RailsGoat application and generate the Boilerman routes. To do this, go into the RailsGoat root and

open the Gemfile . Add gem 'boilerman' to this file:

...

gem 'crack', '0.3.1'

Pry for Rails, not in dev group in case running via prod/staging @ a training

gem 'pry-rails'

gem 'boilerman'

group :development, :mysql do

...

railsgoat/Gemfile

Now run the bundle install command after which there is a generator available to add the relevant

boilerman routes to the application.

railsgoat git:(master): rails generate boilerman:install

route mount Boilerman::Engine, at: 'boilerman'

You can access the Boilerman URL at '/boilerman

You can now start the RailsGoat application with the rails server and navigate to http://localhost:3000

/boilerman. You should now see the following breakdown of controllers, actions, and filters:

††If you have issues with libv8, 'brew install v8' and try installing libv8 with: 'gem install libv8 -v '3.16.14.11' – –with-system-v8'

37 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/tomekr/boilerman
https://github.com/OWASP/railsgoat
https://github.com/OWASP/railsgoat#getting-started
http://localhost:3000/boilerman
http://localhost:3000/boilerman

Figure 2: Boilerman view after initial install

5.2 How to use Boilerman

Now that we have Boilerman up and running lets take a look at the filters being used across the controllers

of the RailsGoat application. The astute Rails pentester might notice that there is a specific filter missing

from each one of the controller's actions. This would be the :verify_authenticity_token before_action

provided by the protect_from_forgery method in the ApplicationController. Sure enough, if we check

RailsGoat's ApplicationController, we see that the protect_from_forgery method has been commented

out.

class ApplicationController < ActionController::Base

before_action :authenticated, :has_info, :create_analytic, :mailer_options

helper_method :current_user, :is_admin?, :sanitize_font

Our security guy keep talking about sea-surfing, cool story bro.

Prevent CSRF attacks by raising an exception.

For APIs, you may want to use :null_session instead.

#protect_from_forgery with: :exception

...

Now lets take a look at what kind of auth based filters are being run on the various controller

actions. A good place to begin looking for auth-based controller filters is in the Application-

Controller. Looking back at the ApplicationController above, we see the listed before_actions,

before_action :authenticated, :has_info, :create_analytic, :mailer_options . Of interest is

the :authenticated before_action.

38 | Going AUTH the Rails on a Crazy Train NCC Group

def authenticated

path = request.fullpath.present? ? root_url(:url => request.fullpath) : root_url

redirect_to path and reset_session if not current_user

end

Here we see that the filter redirects to path and resets the session if current_user is nil.

def current_user

@current_user ||= (

User.find_by_auth_token(cookies[:auth_token].to_s) ||

User.find_by_user_id(session[:user_id].to_s)

)

end

Going back to Boilerman, if we add "authenticated" to the Without filter list:

Figure 3: "authenticated" added to the Without filter list

39 | Going AUTH the Rails on a Crazy Train NCC Group

We see the controller actions which do not have the :authenticated filter applied to it. Initially we see

some controller actions that you wouldn't except to require authentication:

Figure 4: Filtered controller actions

However, if we scroll down through the relevant controller actions, we notice that the

Api::V1::UsersController does not make use of the :authenticated filter and instead uses

what looks to be another authentication filter, :valid_api_token .

def valid_api_token

authenticate_or_request_with_http_token do |token, options|

TODO :add some functionality to check if the HTTP Header is valid

identify_user(token)

end

end

Now if we add "API" to the controllers list and "valid_api_token" to the without list, we start to see that none

of the controller actions on the Api::V1::MobileController are using this filter.

40 | Going AUTH the Rails on a Crazy Train NCC Group

Figure 5: Searching for "API" controllers without a :valid_api_token filter

Skimming the existing list of filters on the actions, it doesn't look like there are any other auth based filters.

Figure 6: Api::V1::MobileController filter results

If we take a look at Api::V1::MobileController , we have two available controller actions, show and

index that seem to contain an authentication bypass.

41 | Going AUTH the Rails on a Crazy Train NCC Group

class Api::V1::MobileController < ApplicationController

skip_before_filter :authenticated

before_filter :mobile_request?

respond_to :json

def show

if params[:class]

model = params[:class].classify.constantize

respond_with model.find(params[:id]).to_json

end

end

def index

if params[:class]

model = params[:class].classify.constantize

respond_with model.all.to_json

else

respond_with nil.to_json

end

end

end

Sure enough, if we visit the index route (http://localhost:3000//api/v1/mobile.json?class=User in an unau-

thenticated browser, we can see that the server responds with a dump of all of the Users if we pass in the

?class=User query string.

Figure 7: RailsGoat returns a dump of all of the User objects

42 | Going AUTH the Rails on a Crazy Train NCC Group

http://localhost:3000//api/v1/mobile.json?class=User

5.3 Conclusion

Before Boilerman, auditing these filters would be a laborious task in which each and every controller in the

application would have to be assessed. Boilerman puts all of this information in one place for you in a query-

able interface. Unlike Brakeman,50 Boilerman does require access to the running instance of the application

with the ability to modify the source code and relaunch the application. ‡‡ Note that Boilerman isn't meant

to replace Brakeman, which is a fantastic static analysis tool that should be used alongside Boilerman (hence

the naming convention for this tool). However, Brakeman can't help in assessing filter based authentication

and authorization and this is the goal of Boilerman.

‡‡In certain restricted environments where access to the host is possible but modification of the application code is not possible, it

may be useful to sideload Boilerman through Rails console. See "Force loading Boilerman into a Rails console" https://github.com/

tomekr/boilerman#force-loading-boilerman-into-a-rails-console

43 | Going AUTH the Rails on a Crazy Train NCC Group

http://brakemanscanner.org/
https://github.com/tomekr/boilerman#force-loading-boilerman-into-a-rails-console
https://github.com/tomekr/boilerman#force-loading-boilerman-into-a-rails-console

References

1http://skillcrush.com/2015/02/02/37-rails-sites/

2http://www.amazon.com/Rails-Way-Obie-Fernandez/dp/0321445619

3http://www.amazon.com/Rails-Way-Addison-Wesley-Professional-Ruby/dp/0321601661

4http://www.amazon.com/Rails-Way-Addison-Wesley-Professional-Ruby/dp/0321944275

5https://www.railstutorial.org/book

6http://andrzejonsoftware.blogspot.com/2014/04/be-careful-with-rails-way.html

7http://david.heinemeierhansson.com/2012/rails-is-omakase.html

8https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

9http://api.rubyonrails.org/classes/ActiveRecord.html

10http://api.rubyonrails.org/classes/ActionView.html

11http://api.rubyonrails.org/classes/ActionController.html

12http://bundler.io/

13http://zed0.co.uk/crossword/

14https://github.com/plataformatec/devise/blob/7df57d5081f9884849ca15e4fde179ef164a575f/app/controllers/

devise/passwords_controller.rb

15https://github.com/plataformatec/devise/blob/18a8260535e5469d05ace375b3db3bcace6755c1/lib/devise/

models/recoverable.rb

16https://github.com/plataformatec/devise/commit/31901bc862db60878130fcd9cbf9c4895d41b2d2

17https://github.com/plataformatec/devise/commit/e641b4b7b97159054b7d92fb14df557ac18ae6f4

18https://github.com/plataformatec/devise/commit/143794d701bcd7b8c900c5bb8a216026c3c68afc

19https://github.com/plataformatec/devise/blob/6ed6e09bf3f8b4e32f16dfe253c89ea6bc0bf525/CHANGELOG.

md

20http://www.phenoelit.org/blog/archives/2013/02/05/mysql_madness_and_rails/index.html

21http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0156

22https://github.com/rails/actionpack-xml_parser

23https://github.com/rapid7/metasploit-framework/blob/master/modules/auxiliary/admin/http/rails_devise_

pass_reset.rb

24http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0233

25https://github.com/rails/rails/pull/9208

26https://github.com/rails/rails/issues/9292

44 | Going AUTH the Rails on a Crazy Train NCC Group

http://skillcrush.com/2015/02/02/37-rails-sites/
http://www.amazon.com/Rails-Way-Obie-Fernandez/dp/0321445619
http://www.amazon.com/Rails-Way-Addison-Wesley-Professional-Ruby/dp/0321601661
http://www.amazon.com/Rails-Way-Addison-Wesley-Professional-Ruby/dp/0321944275
https://www.railstutorial.org/book
http://andrzejonsoftware.blogspot.com/2014/04/be-careful-with-rails-way.html
http://david.heinemeierhansson.com/2012/rails-is-omakase.html
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://api.rubyonrails.org/classes/ActiveRecord.html
http://api.rubyonrails.org/classes/ActionView.html
http://api.rubyonrails.org/classes/ActionController.html
http://bundler.io/
http://zed0.co.uk/crossword/
https://github.com/plataformatec/devise/blob/7df57d5081f9884849ca15e4fde179ef164a575f/app/controllers/devise/passwords_controller.rb
https://github.com/plataformatec/devise/blob/7df57d5081f9884849ca15e4fde179ef164a575f/app/controllers/devise/passwords_controller.rb
https://github.com/plataformatec/devise/blob/18a8260535e5469d05ace375b3db3bcace6755c1/lib/devise/models/recoverable.rb
https://github.com/plataformatec/devise/blob/18a8260535e5469d05ace375b3db3bcace6755c1/lib/devise/models/recoverable.rb
https://github.com/plataformatec/devise/commit/31901bc862db60878130fcd9cbf9c4895d41b2d2
https://github.com/plataformatec/devise/commit/e641b4b7b97159054b7d92fb14df557ac18ae6f4
https://github.com/plataformatec/devise/commit/143794d701bcd7b8c900c5bb8a216026c3c68afc
https://github.com/plataformatec/devise/blob/6ed6e09bf3f8b4e32f16dfe253c89ea6bc0bf525/CHANGELOG.md
https://github.com/plataformatec/devise/blob/6ed6e09bf3f8b4e32f16dfe253c89ea6bc0bf525/CHANGELOG.md
http://www.phenoelit.org/blog/archives/2013/02/05/mysql_madness_and_rails/index.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0156
https://github.com/rails/actionpack-xml_parser
https://github.com/rapid7/metasploit-framework/blob/master/modules/auxiliary/admin/http/rails_devise_pass_reset.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/auxiliary/admin/http/rails_devise_pass_reset.rb
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0233
https://github.com/rails/rails/pull/9208
https://github.com/rails/rails/issues/9292

27https://github.com/rails/rails/pull/16069

28https://www.owasp.org/index.php/Codereview-Authorization

29http://guides.rubyonrails.org/rails_on_rack.html

30https://github.com/rails/rails/blob/master/actionpack/lib/abstract_controller/callbacks.rb#L189-L191

31http://guides.rubyonrails.org/association_basics.html

32http://guides.rubyonrails.org/routing.html#crud-verbs-and-actions

33http://guides.rubyonrails.org/routing.html

34http://andrewberls.com/blog/post/rails-from-request-to-response-part-2--routing

36http://andrewberls.com/images/posts/controller_hierarchy_large.png

37https://www.ruby-toolbox.com/categories/rails_authorization

38https://github.com/elabs/pundit

39https://github.com/CanCanCommunity/cancancan

40https://github.com/ryanb/cancan

41http://guides.rubyonrails.org/routing.html#crud-verbs-and-actions

42https://github.com/CanCanCommunity/cancancan/wiki

43https://github.com/elabs/pundit

44https://github.com/elabs/pundit#policies

45https://github.com/elabs/pundit#ensuring-policies-are-used

46https://github.com/elabs/pundit#pundi

47https://github.com/tomekr/boilerman

48https://github.com/OWASP/railsgoat

49https://github.com/OWASP/railsgoat#getting-started

50http://brakemanscanner.org/

45 | Going AUTH the Rails on a Crazy Train NCC Group

https://github.com/rails/rails/pull/16069
https://www.owasp.org/index.php/Codereview-Authorization
http://guides.rubyonrails.org/rails_on_rack.html
https://github.com/rails/rails/blob/master/actionpack/lib/abstract_controller/callbacks.rb#L189-L191
http://guides.rubyonrails.org/association_basics.html
http://guides.rubyonrails.org/routing.html#crud-verbs-and-actions
http://guides.rubyonrails.org/routing.html
http://andrewberls.com/blog/post/rails-from-request-to-response-part-2--routing
http://andrewberls.com/images/posts/controller_hierarchy_large.png
https://www.ruby-toolbox.com/categories/rails_authorization
https://github.com/elabs/pundit
https://github.com/CanCanCommunity/cancancan
https://github.com/ryanb/cancan
http://guides.rubyonrails.org/routing.html#crud-verbs-and-actions
https://github.com/CanCanCommunity/cancancan/wiki
https://github.com/elabs/pundit
https://github.com/elabs/pundit#policies
https://github.com/elabs/pundit#ensuring-policies-are-used
https://github.com/elabs/pundit#pundi
https://github.com/tomekr/boilerman
https://github.com/OWASP/railsgoat
https://github.com/OWASP/railsgoat#getting-started
http://brakemanscanner.org/

	Introduction
	The Rails Way
	Structure of a Rails Application
	The Rails Filesystem

	Authentication and Authorization
	Authentication
	Roll Your Own
	Writing it
	# TODO

	Use a Gem
	Common Authentication Gems
	Installing Devise
	Devise Routes
	Using Devise

	Session Management
	Cookie Store
	Session Serialization

	ActiveRecord Store
	Session timeout

	Lost/Forgotten Password Recovery
	Poor Recovery Mechanisms
	Strong Recovery Mechanisms

	Devise Password Recovery
	Devise Security History
	Devise Type Confusion
	Rails Magic
	Metasploit Module
	Patch Status

	Authorization
	Vertical Authorization in Rails
	Horizontal Authorization in Rails
	Routing
	Controller Hierarchy
	The Different Flavors of Rails Filters
	Less common flavors

	Authorization Gems
	CanCan(Can)
	Pundit

	Patterns to watch out for
	Finder methods called directly on the model
	Action whitelisting [nccred]before_action only: [:action1, action2]
	Lightweight Controllers
	Authorization Logic in Views
	Skipping of filters

	Boilerman
	Installation
	How to use Boilerman
	Conclusion

