
P A G E

CORE SECURITY

Exploiting Adobe Flash Player in the era of Control Flow Guard

Francisco Falcon (@fdfalcon)

Black Hat Europe 2015

November 12-13, 2015

P A G E

About me

2

P A G E

About me

• Exploit Writer for Core Security.

• From Argentina.

• Interested in the usual stuff: reverse engineering, vulnerability

research, exploitation…

3

P A G E

Agenda

4

P A G E

Agenda

• Overview of Control Flow Guard.

• CVE-2015-0311: Flash Player UncompressViaZlibVariant UAF

• Leveraging Flash Player’s JIT compiler to bypass CFG

• How Microsoft hardened Flash Player’s JIT compiler

• Data-only attacks against Flash Player

• Gaining unauthorized access to the camera & microphone

• Gaining unauthorized read access to the local filesystem

• Arbitrary code execution without shellcode nor ROP

• Demos

• Conclusions/Q&A

5

P A G E

Overview of Control Flow Guard

6

P A G E

Overview of CFG

• Control Flow Guard checks that the target address of an

indirect call is one of the locations identified as “valid” at

compile time.

• Compiler support: Visual Studio 2015

• OS support:

• Windows 8.1 Update 3

• Windows 10

7

P A G E

Overview of CFG

• Windows 8 / 8.1 / 10: Flash Player is integrated into the OS.

• Compiled by Microsoft using CFG-aware Visual Studio 2015.

• Recommended readings:

• “Windows 10 Control Flow Guard Internals” by MJ0011, Power of

Community 2014 conference.

• “Exploring Control Flow Guard in Windows 10” by Jack Tang, Trend
Micro.

8

P A G E

29000+ guarded indirect calls in Flash Player

9

P A G E

CVE-2015-0311 Overview

1 0

P A G E

CVE-2015-0311 Overview

• Use-After-Free in Adobe Flash Player when decompressing a

ByteArray with corrupted zlib data.

• Buggy function is UncompressViaZlibVariant()
(core/ByteArrayGlue.cpp)

• Buggy function frees a buffer while leaving a reference to it in

the ApplicationDomain.currentDomain.domainMemory

global property.

1 1

P A G E

CVE-2015-0311 Overview

• Memory hole left by the freed buffer can be reclaimed to

allocate another object.

• We end up allocating a Vector object in that memory hole.

• domainMemory is supposed to reference an uint8_t[] array.

• Instead it’s pointing to a Vector object.

1 2

P A G E

CVE-2015-0311 Overview

1 3

P A G E

CVE-2015-0311 Overview

1 4

P A G E

CVE-2015-0311 Overview

Exploitation approach before CFG (e.g. Windows 7):

• Overwrite the length of the Vector with 0xffffffff Æ read

from/write to any memory address

• overwrite vtable field of the Vector object with address of

ROP chain

• call the_vector.toString() Æ start ROP chain!

1 5

P A G E

CVE-2015-0311 Overview

Exploitation approach after CFG (e.g. Windows 8.1 Update 3):

• Overwrite the length of the Vector with 0xffffffff Æ read

from/write to any memory address

• overwrite vtable field of the Vector object with address of

ROP chain

• call the_vector.toString() Æ attempt to hijack execution flow

is detected, application exits before gaining code execution

1 6

P A G E

Before…

1 7

P A G E

… and after

1 8

___guard_check_icall_fptr points to ntdll!LdrpValidateUserCallTarget

P A G E

Control flow hijacking attempt detected!

1 9

Int 29h: nt!_KiRaiseSecurityCheckFailure [http://www.alex-ionescu.com/?p=69]

P A G E

Approaches

2 0

P A G E

 Approaches

• Overwrite a return address on the stack.

• Take advantage of non-CFG module in the same process.

• Find indirect calls that weren’t guarded for some reason.

2 1

P A G E

 Approaches

So, ideally we want …

• An Indirect call…

• … that isn’t protected by CFG

• … that can be explicitly triggered in a straightforward way

• … which has a CPU register pointing nearby our data when the

controlled function pointer is called.

 2 2

P A G E

 Approaches

• Control Flow Guard protects indirect calls that could be

identified at compile time.

• Are there any indirect calls in Flash Player which are not

generated at compile time?

2 3

P A G E

 Approaches

• Control Flow Guard protects indirect calls that could be

identified at compile time.

• Are there any indirect calls in Flash Player which are not

generated at compile time?

• Æ Yes, there are!

2 4

P A G E

 Flash JIT compiler

• Flash Player JIT compiler to the rescue!

• JIT-generated code does contain indirect calls.

• Since this code is generated at runtime, it doesn’t benefit

from Control Flow Guard.

2 5

P A G E

 Flash JIT compiler

Flash JIT compiler has been proven helpful for exploitation in the

past:

• “Pointer inference and JIT spraying” by Dion Blazakis (2010)

• “Flash JIT - Spraying info leak gadgets” by Fermín Serna (2013)

2 6

P A G E

Leveraging the JIT compiler to bypass CFG

• ByteArray object containing our ROP chain

• ByteArray object + 0x8 = pointer to VTable object

[core/VTable.h]

2 7

P A G E

Leveraging the JIT compiler to bypass CFG

• VTable object contains lots of pointers to MethodEnv objects

[core/MethodEnv.h]:

2 8

P A G E

Leveraging the JIT compiler to bypass CFG

• This is the MethodEnv object stored at VTable_object + 0xD4:

• Second DWORD is a function pointer (0x601C0A70).

• This function pointer is called through an UNGUARDED

INDIRECT CALL from JIT-generated code!

2 9

P A G E

Leveraging the JIT compiler to bypass CFG

• UNGUARDED INDIRECT CALL from JIT-generated code:

• Can be reliably triggered by calling the toString() method on

the ByteArray object containing our ROP chain.

3 0

P A G E

Exploitation

• We know how to easily trigger an indirect call that isn’t
guarded by CFG.

• We need to put a pointer to a fake MethodEnv object at

VTable_object + 0xD4.

• Additional benefit: we get ECX to point to our ROP chain at

the moment the unguarded CALL EAX is executed Æ easy to

pivot the stack

3 1

P A G E 3 2

Expected state

P A G E 3 3

Modified state

P A G E

Exploitation

Overwriting VTable_object + 0xd4 with a pointer to the fake

MethodEnv object (ROP chain) from ActionScript:

(address_of_rop_chain is shifted 3 times to the right because it has type uint, and

AVM stores uint values shifted 3 times to the left and OR’ed with 6 [Integer tag])

3 4

P A G E

Exploitation

Finally, we call the toString() method on the ByteArray object

(which at this point was already stored at this.the_vector[0] in

order to leak its address)

3 5

P A G E

Current status

• Microsoft killed this CFG bypass technique in

Flash 18.0.0.194 (KB3074219, June 2015)

• Google has hardened the Vector object

In Flash 18.0.0.209 (July 2015); additional

improvements in Flash 18.0.0.232 (August

2015).

3 6

P A G E

How Microsoft hardened Flash Player’s JIT compiler

3 7

P A G E

JIT hardening

• Main JIT hardening measures:

• When JIT code is the source of an indirect call Æ JIT compiler

now emits a call to the CFG validation function before

indirect calls.

• When JIT code is the destination of an indirect call Æ Uses

new memory management flags (PAGE_TARGETS_INVALID,

PAGE_TARGETS_NO_UPDATE) and functions

(SetProcessValidCallTargets).

3 8

P A G E 3 9

No more unguarded indirect calls in JIT code

P A G E

JIT hardening

From the “Memory Protection Constants” article in MSDN:

• Default behavior for executable pages allocated via

VirtualAlloc is to mark all locations in that memory region as

valid call targets for CFG.

• Default behavior for VirtualProtect, when changing

protection to executable, is to mark all locations in that

memory region as valid call targets for CFG.

• Applies to PAGE_EXECUTE, PAGE_EXECUTE_READ,

PAGE_EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY

permissions.

4 0

P A G E

JIT hardening

4 1

• VirtualAlloc(..., PAGE_EXECUTE_*, ...) Æ all locations within

that region are valid call targets for CFG.

• VirtualProtect(..., PAGE_EXECUTE_*, ...) Æ all locations within

that region are valid call targets for CFG.

• Looks like a decision to avoid breaking non CFG-aware JIT

compilers.

P A G E

JIT hardening

4 2

• Non CFG-aware JIT compilers pseudo-code:

• VirtualAlloc(..., PAGE_READWRITE, ...)

• Write code to that memory region

• VirtualProtect(…, PAGE_EXECUTE_READ, …)
• Call JIT’ed code

P A G E

JIT hardening

4 3

• Windows 10 introduced two new memory protection

constants for VirtualAlloc/VirtualProtect.

• PAGE_TARGETS_INVALID (0x40000000)

• PAGE_TARGETS_NO_UPDATE (0x40000000)

https://msdn.microsoft.com/en-

us/library/windows/desktop/aa366786%28v=vs.85%29.aspx

P A G E

JIT hardening

4 4

• PAGE_TARGETS_INVALID (to be used with VirtualAlloc): Sets
all locations in the pages as invalid targets for CFG. Used
along with any execute page protection. Any indirect call to
locations in those pages will fail CFG checks.

P A G E

JIT hardening

4 5

• PAGE_TARGETS_NO_UPDATE (to be used with

VirtualProtect): Pages in the region will not have their CFG
information updated while the protection changes. For
example, if the pages in the region were allocated using
PAGE_TARGETS_INVALID, then the invalid information will be
maintained while the page protection changes. This flag is
only valid when the protection changes to an executable type
(PAGE_EXECUTE_*).

P A G E

JIT hardening

SetProcessValidCallTargets

Provides CFG with a list of valid indirect call targets and specifies
whether they should be marked valid or not. The valid call target
information is provided as a list of offsets relative to a virtual
memory range (start and size of the range).

• https://msdn.microsoft.com/en-

us/library/windows/desktop/dn934202%28v=vs.85%29.aspx

4 6

P A G E

JIT hardening

4 7

P A G E 4 8

Read-only function pointer

P A G E

JIT hardening

4 9

• CFG-aware JIT compilers (e.g. Flash on Windows 10) pseudo-

code:

• VirtualAlloc(..., PAGE_READWRITE, ...)

• Write code to that memory region

• VirtualProtect(PAGE_EXECUTE_READ|PAGE_TARGETS_NO_UPDATE)

• SetProcessValidCallTargets()

• Call JIT’ed code

P A G E 5 0

P A G E 5 1

P A G E 5 2

P A G E

Alternative payloads

5 3

P A G E 5 4

What if hijacking the

execution flow of the

program becomes really,

really hard?

P A G E

Data-only attacks

• Data-only attacks to the rescue!

• Forget about gaining execution by injecting native shellcode

or using ROP; let’s hack the vulnerable software by modifying

its internal state instead!

5 5

P A G E

Data-only attacks: related work

• “Easy local Windows Kernel exploitation” (César Cerrudo,

Black Hat 2012)

• “Write once, pwn anywhere” (a.k.a. Vital Point Strike,

tombkeeper, Black Hat 2014)

• “Data-only Pwning Microsoft Windows Kernel: Exploitation
of Kernel Pool Overflows on Microsoft Windows 8.1” (Nikita
Tarakanov, Black Hat 2014)

5 6

P A G E

Data-only attacks

Data-only payloads to be discussed in this section:

• Gaining access to the camera and microphone without user

authorization.

• Escalating the sandbox under which the SWF file is loaded:

from the restricted REMOTE sandbox to the privileged LOCAL
TRUSTED sandbox.

• Executing arbitrary commands without code injection or ROP.

5 7

P A G E

The SecuritySettings object

• Flash Player holds a SecuritySettings object in heap memory

• Some interesting fields:

• SecuritySettings_object + 0x4 (size:4): sandboxType

• SecuritySettings_object + 0x49 (size:1): is_camera_activated

• Although located on the heap, this SecuritySettings object can

be easily found by using a global (static) variable as the

starting point -

5 8

P A G E

The SecuritySettings object

Locating the SecuritySettings object in memory:

1. Find this global variable in Flash.ocx (named global_status by

me):

5 9

P A G E

The SecuritySettings object

Locating the SecuritySettings object in memory:

2. Follow some pointers...

global_status Æ

 + 0x0 Æ

 + 0x78 Æ

 + 0x30 Æ

 + 0x9C Æ SecuritySettings object!

[This chain of pointers may vary across Flash versions, operating systems (Win
8.1 vs 10) and architecture (32-bit vs 64-bit)]

6 0

P A G E

Gaining (unauthorized) access to the camera & mic

6 1

P A G E

Gaining (unauthorized) access to the camera & mic

• When a SWF Flash file tries to access the camera or

microphone, the user is prompted with this dialog:

6 2

P A G E

Gaining (unauthorized) access to the camera & mic

From the flash.media.Camera ActionScript class:

6 3

P A G E

Gaining (unauthorized) access to the camera & mic

6 4

P A G E

Gaining (unauthorized) access to the camera & mic

Steps to activate the camera without user authorization:

1. Find the SecuritySettings object in memory.

2. Set the byte at SecuritySettings_object + 0x49 to 1!

Activating the camera also grants access to the microphone -

6 5

P A G E

Gaining (unauthorized) access to the camera & mic

Activating the camera from ActionScript code:

6 6

P A G E

Gaining (unauthorized) access to the camera & mic

Capture a frame from the camera and upload it to our server!

6 7

P A G E

From Remote sandbox to Local Trusted sandbox

6 8

P A G E

From Remote sandbox to Local Trusted sandbox

Flash Player loads SWF files into different sandboxes according to

their origin:

• Local-trusted sandbox

• Local-with-network sandbox

• Local-with-filesystem sandbox

• Remote sandbox

6 9

More privileged

Less privileged

P A G E

From Remote sandbox to Local Trusted sandbox

Current sandbox can be queried via the flash.system.Security.sandboxType

property:

7 0

P A G E

From Remote sandbox to Local Trusted sandbox

• The current sandbox is hold in a field of the same

SecuritySettings object shown before.

• sandboxType = 0: Remote

• sandboxType = 1: Local-with-filesystem

• sandboxType = 2: Local-with-network

• sandboxType = 3: Local-trusted

7 1

P A G E

From Remote sandbox to Local Trusted sandbox

• The current sandbox is hold in a field of the same

SecuritySettings object shown before.

• Moving from the limited Remote sandbox to the privileged

Local Trusted sandbox is as simple as this:

1. Find the SecuritySettings object in memory.

2. Set the dword at SecuritySettings_object + 0x4 to 3!

7 2

P A G E

From Remote sandbox to Local Trusted sandbox

Moving from the limited Remote sandbox to the privileged Local
Trusted sandbox from ActionScript code:

7 3

P A G E

From Remote sandbox to Local Trusted sandbox

• Escalating to the Local Trusted sandbox grants our SWF file

access to both local files and the network.

• So we can exfiltrate arbitrary files through Flash!

7 4

P A G E

From Remote sandbox to Local Trusted sandbox

Reading a local file:

7 5

P A G E

From Remote sandbox to Local Trusted sandbox

Uploading the contents of the local file to our server:

7 6

P A G E

Executing commands without shellcode nor ROP

7 7

P A G E

Executing commands without shellcode nor ROP

• Control Flow Guard checks that the target address of an

indirect call is one of the locations identified as valid.

• It is possible to abuse legit, “safe” locations to do something
useful from an attacker’s perspective…

• …for example, to execute arbitrary commands without even
injecting code nor using ROP.

• Technique overlapped with Yuki Chen, who presented it first

at the SyScan 2015 conference.

7 8

P A G E

Executing commands without shellcode nor ROP

• The WinExec function from the kernel32.dll library is

recognized as a valid destination for indirect calls at compile

time.

• Nothing stops us from replacing the vtable of an object with a

fake vtable containing a pointer to kernel32!WinExec, since

this function is a totally legit destination for indirect calls.

• If we are also able to control/overwrite the first argument that

is passed to the virtual method being invoked, that means

that we can do WinExec(“some_program.exe”)!

7 9

P A G E

Executing commands without shellcode nor ROP

• When calling the toString() method on a Vector object, the

2nd function pointer of its vtable is called, receiving the

dword stored at Vector_object + 0x8 as its first argument.

• We can use our write primitive to overwrite the memory at

the address pointed by Vector_object + 0x8 with a string of

the command we want to execute (e.g. “calc”).

8 0

P A G E

Executing commands without shellcode nor ROP

• We use our read primitive to leak the address of the

kernel32!WinExec function. We store this address at our

fake_vtable + 0x4.

• Then we use our write primitive to replace the vtable pointer

of the Vector object with the address of our fake vtable.

• Finally, we invoke the toString() method of the crafted Vector

object, which results in a totally legit call to WinExec(“calc”).
We get code execution without even having injected native

shellcode nor using ROP!

8 1

P A G E

Original state

8 2

P A G E

Crafted state

8 3

P A G E

Demo Time!

8 4

P A G E

Conclusions

8 5

P A G E

Black Hat Sound Bytes

• All in all, CFG may be an effective mitigation to raise the costs

of exploiting memory corruption vulnerabilities, as long as:

• every module in the process is CFG-aware.

• code generated at runtime is properly protected

• JIT compilers are likely to undermine the effectiveness of CFG

in other software, unless special effort is made to harden

them.

• Data-only attacks are really hard to detect/prevent. We may

see an increase of this kind of attacks as modification of

control flow becomes harder.

8 6

P A G E

Thank you!

8 7

Questions?

@fdfalcon ffalcon@coresecurity.com

