
Hey Man,
Have You Forgotten to Initialize

Your Memory?

@guhe120

@holynop

Agenda

• Background

• From Uninitialized memory bug to RCE

– CVE-2015-1745

• Bypass EPM Sandbox

– CVE-2015-1743

Who are we?

 Security Researchers
 86 Vulnerability

Acknowledgements from
Microsoft (Dozens from
Apple/Adobe…)

 Microsoft mitigation bypass
reward

 Pwn2Own 2015
 Syscan/BlackHat/HITCON/

Syscan360/POC
 Qihoo 360 – The largest

Internet Security Company in
China

Background

Background

• This year’s IE target is a bit difficult
– 64-bit process

– Bypass EPM without restart/relogin

– New Mitigations: Isolated Heap, Deferred Freed, CFG

– EMET

– Rule announced before Chinese new year holiday

From Uninitialized memory
bug to RCE

CVE-2015-1745

Uninitialized Memory Bug

Uninitialized heap memory:
int *unitialized_heap_buffer = (int *)malloc(10 * sizeof(int));
Int unitialized_value = unitialized_heap_buffer [0];

Unitialized stack variable:
int unitialized_stack_buffer[10];
Int unitialized_value = unitialized_stack_buffer[10];

• One category of memory corruption bugs

“Uninitialized memory data is used in program,

leading to unpredictable result”

• Common bugs in code
• Enemy of ASLR
• Not that often, brings us nice exploits

– CVE-2012-1889 (IE msxml bug, poc exploit by VUPEN)
– CVE-2014-8440 (Flash uncompress bug, exploited in the wild)
– CVE-2015-0090 (Windows ATMFD font driver uninitialized

kernel pool pointer, by Mateusz Jurczyk)

Uninitialized Memory Bug

10

Uninitialized memory bug
 - the left bag

• Found by fuzzing

• Credit @holynop

• uninitialized CAttrValue in CAttrArray

• A CAttrValue can be accessed before initialize

CVE-2015-1745

• DOM elements can have attributes
element. setAttribute(‘foo’, ‘bar’); // set attribute

element. getAttribute(‘foo’); // get attribute

• CAttrValue

 - inner data structure for an attribute

• CAttrArray

 - array to store CAttrValues

CAttrValue in IE

• CAttrValue can contain value of variant

• vtType filed indicates data type

CAttrValue internal

Class CAttrValue {

 Byte b1;

 Byte vtType;

 WORD w1;

 DWORD dispid;

 Union {

 ULONG *pulong;

 BSTR bstr;

 VARIANT *variant;

 …

 } value;

}

https://msdn.microsoft.com/zh-cn/library/windows/desktop/ms221170(v=vs.85).aspx

enum VARENUM {

 VT_EMPTY = 0,

 VT_NULL = 1,

 VT_I2 = 2,

 VT_I4 = 3,

 VT_R4 = 4,

 VT_R8 = 5,

 VT_CY = 6,

 VT_DATE = 7,

 ...

}

https://msdn.microsoft.com/zh-cn/library/windows/desktop/ms221170(v=vs.85).aspx
https://msdn.microsoft.com/zh-cn/library/windows/desktop/ms221170(v=vs.85).aspx
https://msdn.microsoft.com/zh-cn/library/windows/desktop/ms221170(v=vs.85).aspx

 CAttrValue in Memory

var div = document.createElement('div');

div.setAttribute('aaa', '111');

The Bug

// 1. Set some Attributes in document.all[8]

document.all[8].clearAttributes()

document.all[8].setAttribute("aaa", 0xa);

document.all[8].setAttribute("bbb", 0xb);

document.all[8].setAttribute("bbb1", 0xc);

document.all[8].setAttribute("bbb2", 0xd);

document.all[8].setAttribute("bbb3", 0xe);

// 2. Set some Attributes in document.body

document.body.clearAttributes()

document.body.setAttribute("aaa", document.body.childNodes);

document.body.setAttribute("ccc","666666666666666666666666666");

// 3. Call mergeAttributes, a new CAttrArray will be allocated to store the merged attributes,

// one entry in the new allocated CAttrArray is not initialized

document.body.mergeAttributes(document.all[8], false);

document.body.mergeAttributes(document.all[8], false);

Allocate a new CAttrArray which have 9 CAttrValues

CAttrArray

CAttrArray[4] is skiped during the merge (because of the bug), and will be uninitialized

MergeAttributes

Exploit Plan

Leak memory address

Create fake attribute to gain arbitrary read

Create fake array to gain arbitrary RW

Bypass CFG/EMET

Win

Control Memory

• The very first thing we have to do is to control
the data in the uninitialized memory

• How?

– Alloc -> Free -> Alloc -> Control

Some Content
Alloc b1

Free b1

Alloc b2

Content left by b1 (not cleared)

Content left by b1

Access
Uninitialized
Memory

Controlled !

Control Memory

Key Points to Control

• b1 and b2 should be in the same heap

• Content of b1 should not be cleared after b1 is freed
– MemoryProtect::Free 

– SysFreeString 

• Content of b2 should not be set to zero when
allocate b2
– cmalloc 

– HEAP_ZERO_MEMORY in HeapAlloc 

– CAttrValue array allocated via HeapAlloc with out
HEAP_ZERO_MEMORY - Lucky! 

Control with What?

• Now we can control the content of a
CAttrValue – With what?

CAttrValue type

Set To some
pointer related type
(string, object, int_ptr,…)

value
Point to string data, object, …

0x????????

But in 64-bit process, simple heap-spraying does not work

In 32-bit IE, we can do a heap-spray,
then point it to somewhere like 0x0c0c0c0c

Assume a successful heap-spraying on 32-bit needs 200M bytes,
Then on 64-bit you need to spray more than 50G bytes

Heap-spray?

We need an
information Leak
First

 Information Leak on 64-bit

• Directly leak address of interested data
 – If you are lucky enough to have such a bug 

• Leak address of some data in the same heap

 + Some kind of Heap Fengshui

 = we can guess the address of interested data

…

0x30 bytes string

• Allocate some (300 +) Attribute Arrays
• Each Attribute Array contains 9 attributes
 (same with the uninitialized CAttrArray after mergeAttributes)

• The 4th attribute in the array points to a string
 which is 0x30 bytes in memory

AAAAAAAAA…
xxx[i].ccc = str

Leak Step 1

…

0x30 bytes string

• Free half of these Attribute Arrays
• The content of the freed Attribute Arrays
 will not be cleared

AAAAAAAAA…

Freed

Leak Step 2

uninit …

0x30 bytes string

• Trig the bug, allocate vulnerable CAttrArray with
 uninitialized CAttrValue
• The 4th CAttrValue will be a string attribute
 that points to the 0x30 bytes string

AAAAAAAAA…

document.body.getAttribute(“ccc”) gets a String attribute

Leak Step 3

uninit …

0x30 bytes string

• Free the 0x30 bytes string
• Spray runtimestyle objects to reuse the memory
• Read the uninitialized CAttrValue out to leak a
 pointer to the runtimestyle style attribute array

AAAAAAAAA…

runtimestyle

Runtime Style Array

leak document.body.getAttribute(“ccc”)
Gets a String attribute

Leak Step 4

Runtime Style Array IntArray IntArray IntArray

About 0x20000 bytes
Allocate After Runtime Style Array

IntArray

The relative spray:
runtimestyle_array_addr + 0x2000000
 = address of one of the IntArrays

Leak Step 5

• We leaked the address of an IntArray in memory

• What we can do with this?
We can make uninitialized CAttrValue points into the array

Means we can make fake CAttrValue of any types!

• Let’s party!

 Result of the Leak Stage

Fake Attribute Value

• We trig the bug for the second time
– Using string to control the uninitialized CAttrValue

Tips:

We use JS 5.8 string

whose content will not be cleared after it is freed

32

Uninitialized CAttrValue
(controlled by string data)

type

0x0c == VT_VARIANT

value

Point to leaked IntArray

Fake Variant data in
IntArray

Allocate String

free

Trig the bug

Freed String
(data remained)

Attribute Array

Fake Attribute Value

TYPE Value

Leaked Javascript Array

Variant

Fake Attribute Value

 VT_VARIANT

• Variant is a data structure that can represent

 various types of data

– Int, Boolean, Long, …

– IntPtr, UintPtr,…

– Array

– Object

 Achieve Arbitrary Read

• Make a fake UINT_PTR variant

TYPE

0x4013 = VT_BYREF | VT_UI4
Means pointer to uint32

Pointer to uint32

Point it to any address that
we want to read

function readUI4(addr_high, addr_low) {

 ……

 arr_arr[arr_arr_index][0] = 0x00004013

 arr_arr[arr_arr_index][2] = addr_low

 arr_arr[arr_arr_index][3] = addr_high

 return parseInt(document.all[9].getAttribute("ccc"))

}

• A crazy idea - Make a fake JavaScript IntArray
– Copy necessary fields (vftable, members,…) from a real

IntArray with the arbitrary read primitive to our fake array

– Except that our fake array have a large length (0x7fffffff) 

 Achieve Arbitrary Write

• The go-to way in IE exploitation

– Corrupt the length filed of a javascript array

TYPE

0x09 = VT_DISPATCH
Means object with Idispatch Interface

Pointer to fake IntArray object

Fake IntArray
Length = 0x7fffffff

Real
Array

The javascript array
we leaked previously

Copy data from normal array to fake array
with the arbitrary read primitive

 Achieve Arbitrary Write

Bypass CFG & EMET

• If you have arbitrary memory R/W, CFG/EMET
is not a big problem

 Several Ways to Bypass CFG

• Call valid APIs

• Find stack address

• Overwrite the stack

• Use direct calls

• No execution flow control

• Legacy modules which are not compiled with
CFG

Done?

Not yet…

Bypass EPM Sandbox

CVE-2015-1743

 Enhanced Protect Mode

• Enhanced sandbox mode which is not enabled
by default in IE11

• Great sharing and study materials by James
Forshaw
– <<Legacy Sandboxing: Escaping IE11 Enhanced Protected Mode>>

– https://github.com/tyranid/IE11SandboxEscapes

• Uses Windows 8 AppContainer to further
restrict what sandboxed process can do

 Enhanced Protect Mode

CVE-2015-1743

• TOCTOU bug in IE Install Service Broker

• Credit @pgboy

• What is the Broker Service?
– Broker interface provided by Medium Integrity processes

– So that protected mode process (like IE sandboxed process)
can access to some restricted resource

IEAxInstallBroker

• Broker service for IE to install Add-ons

 (ActiveX Controls)

IIeAxiInstaller2

3 Steps to install a exe file:
VerifyFile -> InstallFile -> RegisterExeFile

IIeAxiInstaller2Ptr installer;

…

installer‐>VerifyFile(…);

installer‐>InstallFile(…);

installer‐>RegisterExeFile(…);

Install File

a.exe

3. RegisterExeFile

Signature Valid?
Medium Integrity Level?

NO
Fail

1. VerifyFile

2. InstallFile Copy a.exe to MyFolder

CreateProcess(“MyFolder\a.exe”)

 Install A.exe to MyFolder

TOCTOU Problem

• File validated in step1

• In step3, before actually executing the file,
it does not validate it again!

Exploit Plan

iexplore.exe
(any valid signed file)

3. RegisterExeFile

Verify OK

1. VerifyFile

2. InstallFile Copy iexplore.exe to MyFolder

CreateProcess(“MyFolder\iexplore.exe”)

MyFolder

Another Problem

• We need to overwrite the file in the
destination folder

• IE sandboxed process can only write to
AppContainer folder

• If the file is dropped and executed in
low-integrity level folder, it will also be
low-integrity process

• We need to be able to write an executable file
to a medium-integrity folder

Flash Broker

Flash Broker

• Have broker interfaces to write file

• Can only write to pre-defined folders
– C:\Users\xxx\AppData\Roaming\Adobe (Not low integrity!)

No Exe

CreateProcess Will Check EXE File Automatically

• CreateProcess (“1.tmp”)

• CreateProcess (“1.jpg”)

Bypass

 The Last Defense Line

• In BrokerWriteFile, it checks whether you are
trying to write a PE file by checking the
Dos sianature ((‘MZ’)) and PE signature (‘PE’)

Bypass

• Don’t write Dos signature (‘MZ’) at the first time

• Later, use BrokerSetFilePointer to get back,
and write Dos signature (‘MZ’)

Done?

Yes

Demo

Special Thanks To

• Blackhat

• Zero Day Initiative

• Guys in 360 vulcan Team

- MJ0011

- pgboy1988

...

Join Us

• Bug Hunting

• Vulnerability Exploitation

• APT Analysis and Discovery

• 360vulcan@360safe.com

 Black Hat Sound Bytes

• Exploit skills in 64-bit browser
• Using Uninitialized bug to achieve RCE
• Using TOCTOU bug to bypass sandbox

Thank you!

