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Abstract 

The paper focuses on a fuzzing approach that can be used to uncover different types of vulnerabilities 

inside multiple core system components of the Android OS. The paper will introduce the general idea 

behind this approach and how it applies to several real-life targets from the Android OS backed up by 

discovered vulnerabilities. The list of components that were targeted and found vulnerable contains: the 

Stagefright framework, the mediaserver process, the Android APK install process, the installd daemon, 

dex2oat, ART. 

A number of topics will be covered, starting with the actual fuzzing process with the data/seed generation 

processes and test case execution, the logging and triage mechanisms, addressing challenges such as bug 

reproducibility, sorting out unique issues and prioritizing issues based on their severity. The second part of 

the paper will take the discussion towards explaining the creation of several tools that have been 

developed using this methodology. The actual implementation of the tools will be discussed with focus on 

the technical details, as well as the issues discovered, CVE entries released and possible exploitable 

patterns. 

Brief introduction to fuzzing 
 

This section of the paper describes what fuzz testing is and offers a very brief insight on how fuzzing works. 
Fuzzing can be considered, and it is often described as being a black-box software testing technique. At a 
very general level, a definition of fuzzing can be summed up as being the process of sending random or 
invalid data as input to a system, with the purpose of crashing the system and revealing possible security 
vulnerabilities or reliability problems. So, in other words, the purpose of fuzz testing is to find security-
related problems or any other critical defects that could lead to an undesired behavior of the system, such 
as denial of service or degradation of service. Special types of programs or frameworks are used to achieve 
this objective. These tools are commonly referred to as fuzzers and in the last 10 to 15 years, as fuzzing 
has gradually developed, they have gained popularity among software security experts and quality 
assurance communities. Manually creating tests for exploring every combination of data, in order to 
create suitable test cases would prove to be an impossible task even for medium-complexity applications. 
Therefore, fuzz testing seems to be the logical solution, particularly because building a simple fuzzing tool 
is in many cases a trivial task. Intelligent fuzzing, that uses knowledge of the structure or logic of the 
system that is being tested has proven to be even more effective, and when dealing with complex 
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protocols or applications this is the only approach considered acceptable. Fuzzing can be used to test any 
type of piece of software that accepts some sort of input, no matter the programming language that was 
used for developing it. However, it is most suitable for testing code that was written in C/C++, mainly 
because it handles its own memory, meaning that fuzzing can bring up exploitable security threats. As we 
will see in the following sections of the paper, for the task of fuzzing different system components of 
Android, intelligent fuzzing approaches were combined with straight-forward dumb-fuzzing methods to 
obtain the desired results.  

A fuzzing approach in Android 
 

This section of the paper will go through a set of basic concepts and methods that can be used in fuzzing 

campaigns that target OS components in an Android environment. The topics that will be covered in this 

part relate to general ways in which a security researcher can go through the various phases of running a 

fuzzing campaign on Android. 

Data generation 
Fuzzing can often be classified as mutational or generational. Mutational fuzzing mainly refers to the 

fact that we take an initial valid input and apply different types of mutations before testing it against the 

target system. Generational fuzzing, on the other hand, refers to the process of creating the input from 

scratch taking into account the specific format of the type of input. Both approaches have advantages in 

certain situations.   

In this section of the paper I will provide a list of several open-source fuzzing tools have been used for 

the projects that will be detailed in the following sections, with a brief description of each: 

 Basic fuzzing framework (BFF) – mutational fuzzer targeting software that consumes file input 

 Zzuf – application input fuzzer 

 Radamsa – general purpose test case generator for fuzzing 

 Fuzzbox – fuzzing tool specialized in targeting media codecs 

 American Fuzzy Lop (AFL) – instrumentation driven file format fuzzer 

The way the malformed data is executed on the device, varies across projects and depends greatly on 

system component we are targeting. This topic will be covered in the section detailing how the fuzzing 

approach was applied for specific projects. 

Logging process 
The Android system provides a method for collecting the system debugging information. The logcat 

command enables collecting various information from applications and other components of the system 

into a circular buffer that can be viewed and more importantly, filtered. There are 7 types of priorities for 

messages that end up being displayed using the logcat command: verbose, debug, info, warning, error, 

fatal and silent. This information is necessary to understand the way each malformed input can be logged 

on a targeted Android device.  

Using the “log” Android shell command, a user can construct messages with various priorities that can be 

artificially inserted into the logcat buffer. In the case of this fuzzing approach, each corrupt input that is 

tested against a system component on an Android device, is artificially logged with a fatal priority, so if an 
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actual fatal message would appear, the input causing that fatal message would be displayed immediately 

above it. This enables us to pinpoint which input was responsible for triggering a certain issue. Below is 

an example on how to get this type of log: 

 

 

 

 

 

As mentioned earlier, to insert a message with a predefined priority in the logcat buffer we use the log 

command: 

 

It is important to note that the messages that will be inserted into the log buffer need to contain 

information regarding ways to reproduce the issues that may occur during testing. The type of information 

that should be contained will be better explained in the following sections that contain actual examples 

of logs. 

Triage mechanism 
The role of the triage mechanism is to quickly sort out the unique issues that may occur after a fuzzing 

campaign that generates a large number of crashes. A tombstone is a file generated in /data/tombstones, 

on the device, after each system crash and contains the backtrace for the crash, the signal that caused the 

issue and other useful information extracted from the logcat message buffer. It also contains the program 

counter (PC) at which the crash occurred inside the affected component. Each crash can be uniquely 

identified using the PC value of the crash. For a better understanding, please see below an extract of a 

tombstone that was generated by a malformed media file:  

 

 

 

 

 

 

 

 

 

 

$ adb shell logcat –v time *:F 

 

01-16 17:46:12.240 F/<Component> (PID):  <test_case_index> *** <reproducibility_info>  

01-16 17:46:19.676 F/<Component> (PID):  <test_case_index> *** <reproducibility_info>  

01-16 17:46:24.328 F/<Component> (PID):  <test_case_index> *** <reproducibility_info>  

17:46:24.405 F/libc (8321): Fatal signal 11 (SIGSEGV) at 0x18 (code=1), thread 831 

(process_name) 

01-16 17:46:25.128 F/<Component> (PID):  <test_case_index> *** <reproducibility_info>  

01-16 17:46:55.933 F/<Component> (PID):  <test_case_index> *** <reproducibility_info> 

 

 

$ adb shell log  -p F –t <Component> <test_case_index> *** <reproducibility_info> 

pid: 3438, tid: 3438, name: stagefright  >>> stagefright <<< 

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr deadbaad 

Abort message: 'invalid address or address of corrupt block 0x8004d748 passed to 

dlfree' 

    eax b3ee0ff8  ebx b7b18f38  ecx b7b1d900  edx b3ee0ff8 

    esi 8004d748  edi af6d4dee 

    xcs 00000073  xds 0000007b  xes 0000007b  xfs 00000000  xss 0000007b 

    eip b7a7202c  ebp bffff418  esp bffff3d0  flags 00010286 

 

backtrace: 

    #00  pc 0001402c  /system/lib/libc.so (dlfree+1948) 

    #01  pc 0000d630  /system/lib/libc.so (free+32) 

    #02  pc 000dcf1c  /system/lib/libstagefright.so 

(android::MediaBuffer::~MediaBuffer()+108) 

    #03  pc 000dd6eb  /system/lib/libstagefright.so 

(android::MediaBuffer::release()+267) 

    #04  pc 000ddf7b  /system/lib/libstagefright.so 

(android::MediaBufferGroup::~MediaBufferGroup()+187) 
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The general idea behind the implementation of the triage mechanism can be observed below: 

 

 

 

 

 

Analyzing and debugging crashes in Android 
There are a number of methods and tools that can be used for figuring out what is happening with a 

system crash in Android.  

The most relevant information contained in a tombstone is the stack trace for the crash, the signal that 

caused the crash, the code for the signal, the fault address and the program counter value (PC). For 

example for a segmentation fault signal we can have a code 1 (SEGV_MAPERR), which means that the 

address is not mapped to the object or code 2 (SEGV_ACCERR), which means we have invalid permissions 

for the mapped object. 

Dmesg is another option for debugging crashes on Android. It is a common command in Unix-like 

operating systems that prints the message buffer of the kernel. Below is an example of 2 messages 

generated by crashes that affected the Stagefright media framework in Android. The messages are related 

to a user-mode read resulting in no page being found and a user-mode write resulting in no page being 

found. 

 

 

 

Below you can find an explanation on how to translate the error codes for the messages in dmesg: 

 

 

 

 

 

GDB can also be used in an Android environment as a more reliable debugging solution. To accomplish 

this you need to set up GDBserver on the device. This can be done by attaching GDBserver to the process 

that needs to be debugged by providing the PID of that process or directly calling the binary that needs to 

be debugged using GDBserver. 

 

1. Parse the logs and identify the input that caused a crash 

2. Re-test using the faulty input 

3. For each input tested:  

a. Grab the generated tombstone 

b. Parse the tombstone and get the PC value 

c. Check to see if the PC value has been previously encountered 

d. Save the tombstone and the test case (reproducibility info) if the issue 

is new 

<6>[73801.130320] stagefright[12469]: segfault at 14 ip 00000000f72a5fff sp 

00000000fff98710 error 4 in libstagefright.so[f71c6000+1b5000] 

 

<6>[73794.579462] stagefright[12455]: segfault at c ip 00000000f728bcfe sp 

00000000ff9d6f90 error 6 in libstagefright.so[f71e8000+1b5000] 

/* 

 * Page fault error code bits: 

 * 

 *   bit 0 ==    0: no page found         1: protection fault 

 *   bit 1 ==    0: read access           1: write access 

 *   bit 2 ==    0: kernel-mode access   1: user-mode access 

 *   bit 3 ==                             1: use of reserved bit detected 

 *   bit 4 ==                             1: fault was an instruction fetch 

 */ 
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The Android device should be connected to a local machine where you run GDB as follows: 

 

 

 

Additionally, to load the symbols for the shared libraries you can use: 

 

 

 

When you have access to the source code of the component you are fuzzing, it may be useful if you could 

link a crash to an actual section of the code, in order to better understand what is happening. The easiest 

way to achieve this is by using the addr2line Linux command. You need to get the program counter value 

from the tombstone file that was generated when the crash occurred and pass it to the addr2line 

command. The following example uses the PC value from the tombstone example shown in a previous 

section and should return the source code file and line number where the crash occurs. 

 

 

 

Fuzzing the media Framework in Android 
 

The main idea behind this project is to create corrupt but structurally valid media files, direct them to the 

appropriate software components in Android to be decoded and/or played and monitor the system for 

potential issues (i.e. system crashes) that may lead to exploitable vulnerabilities. Custom developed 

Python scripts are used to send the malformed data across a distributed infrastructure of Android devices, 

log the findings and monitor for possible issues, in an automated manner. The actual decoding of the 

media files on the Android devices is done using the Stagefright command line interface. The results are 

sorted out, in an attempt to find only the unique issues, using a custom built triage mechanism. 

Audio and video as attack vectors 
There are a number of reasons why audio and video can be considered as very attractive attack vectors, 

both on systems such as desktop and laptop computers and on mobile devices. Since one of the main 

purpose of this paper is to present the steps taken to perform a fuzzing campaign on the media framework 

of the Android OS, the focus will be on the reasons that make these attack vectors attractive on mobile 

devices:  

$ gdbserver :5039 --attach <process_pid> 

    OR 

$ gdbserver :5039 /path/to/executable <options> (ex: gdbserver :5039 

/system/bin/stagefright -a file.mp3) 

$ adb forward tcp:5039 tcp:5039 

$ gdb  

    (gdb) target remote :5039 (from the gdb shell) 

    (gdb) continue (to resume process execution) 

(gdb) set solib-absolute-prefixdb  

/path/to/tree/out/target/product/<product_id>/symbols/ 

 

(gdb) set solib-search-path 

/path/to/tree/out/target/product/<product_id>/symbols/system/lib/ 

$ addr2line -f -e 

/path/to/tree/out/target/product/<product_id>/symbols/system/lib/libstagefright.so 

000dcf1c   
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 The file formats involved in playing media content are binary streams that contain complex data. 

The parsing of this data by specialized components in the media framework can often result in 

memory corruption issues or other related problems.  

 The large variety of different audio and video players, each one possibly using different codecs 

and plugins create an attractive habitat for potential attackers.  

 The user’s perception that audio and video files are harmless can have a decisive role, as they will 

usually not have second thoughts when downloading and playing media content from untrusted 

sources.  

 Playing audio or video streams can be invoked without the user’s explicit consent (i.e. when the 

media file is played inside a web page, media file is sent through a MMS)  

The Stagefright framework 
The Stagefright framework is responsible for the algorithmic logic of the media parsing system in Android. 

The general architecture of this framework can be observed in the following figure: 

The Stagefright player is only a client to the real media player: AwesomePlayer. It is this component that 

implements the functionalities of connecting video and audio caption sources with the corresponding 

decoders, playing the media files required by the user and synchronizing video with audio captions. The 

MediaExtractor component calls for the appropriate data parsers given the media file types that need to 

be read (i.e MP3, MPEG4). Finally, to prepare for playback, AwesomePlayer uses the OMXCodec 

component, in order to set up the decoders to use for each data source.  

 

 

Figure 1. Stagefright media framework 
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Executing the fuzzing campaign  
The stagefright command line interface is used to actually decode each malformed media file on the 

tested Android devices. It can be custom built from the Android tree to be included in any Android image 

that is flashed on a device, and has the main capabilities to decode/encode a media file, force the usage 

of a software or hardware codec and a playback functionality for audio files. The full list of capabilities for 

this tool are listed below: 

 

 

 

 

 

 

 

 

 

The actual fuzzing of the initial media files is done locally on the machine which connects the Android 

devices that are being tested. This process is regularly done using the Basic Fuzzing Framework, zzuf or 

Fuzzbox, which are open-source straight-forward to use tools. The malformed files are then sent to the 

device, where they are decoded using the stagefright command line interface. During the fuzzing 

campaign logs are generated using the format specified in the previous section. Below is an example of 

this type of log collected during a fuzzing campaign targeting the Stagefright framework with the media 

files mutated using BFF: 

 

 

 

 

 

 

Fuzzing the application install process in Android 
 

For this particular project, fuzzing has been used to modify different components of an APK (Android 

Application Package) using multiple approaches and check how this affects the install process in Android. 

root@android:/ # stagefright -h 

usage: stagefright 

-h(elp) 

-a(udio) 

-n repetitions 

-l(ist) components 

-m max-number-of-frames-to-decode in each pass 

-p(rofiles) dump decoder profiles supported 

-t(humbnail) extract video thumbnail or album art 

-s(oftware) prefer software codec 

-r(hardware) force to use hardware codec 

-o playback audio 

-w(rite) filename (write to .mp4 file) 

-x display a histogram of decoding times/fps (video only) 

-S allocate buffers from a surface 

-T allocate buffers from a surface texture 

-d(ump) filename (raw stream data to a file) 

-D(ump) filename (decoded PCM data to a file) 

04-14 05:02:07.698 F/Stagefright(20222): - sp_stagefright *** 958 - 

Filename:zzuf.32732.c8jZzT.mp4  

04-14 05:02:13.382 F/Stagefright(20255): - sp_stagefright *** 959 - 

Filename:zzuf.26772.zh7c8g.mkv  

04-14 05:02:13.527 F/libc    (20256): Fatal signal 11 (SIGSEGV), code 1, fault addr 0x0 

in tid 20256 (stagefright) 

04-14 05:02:20.820 F/Stagefright(20270): - sp_stagefright *** 960 - 

Filename:zzuf.12260.ayDuIA.mpg  

04-14 05:02:21.259 F/Stagefright(20281): - sp_stagefright *** 961 - 

Filename:zzuf.6488.F8drye.mp4  
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The main fuzzing targets inside an APK are the compiled app code which is represented by the classes.dex 

file packaged inside the APK and the AndroidManifest.xml file. 

The fact that the install process in Android, more specifically the installd process, runs with high system 

privileges, made this component a very attractive target for fuzzing since any issues found during testing 

can have a greater impact from a system security perspective. 

This section will offer an overview of the Android processes that are being used inside the project. 

Furthermore, the section offers an insight of the two different approaches that were used for the two 

Android versions that were taken into consideration: KitKat and Lollipop. The actual fuzzing process will 

be treated as a separate topic. 

Overview of the application install process in Android 
PackageInstaller is the default application responsible for installing other applications in Android. Package 

installer calls for the InstallAppProgress activity to receive the instructions from the user. This activity calls 

the Package Manager Service to install the package using the installd daemon which runs with system 

privileges and has the main functionality of receiving requests from the Package Manager Service. Going 

through the commands called during the installation of an application the most interesting from a fuzzing 

perspective are the run_dexopt(KitKat) and run_dex2oat(ART) methods which call for the dexopt and 

dex2oat command line binaries on the device. These will be the main targets for the fuzzing campaigns 

related to this project. 

The main entry point in the system is considered to be the APK that allows an application to be installed 

on an Android based device. The 4 components that are of interest to us are: the classes.dex, the manifest 

file, the META-INF folder and the optional lib folder. The classes.dex and manifest file are important since 

these can be considered as the main fuzzing targets. The META-INF folder contains the signing information 

for a specific APK, and because after modifying and repackaging an APK it is mandatory to resign the 

application so it can be installed on a device this is a critical component. The optional lib folder that 

contains the compiled native Android libraries specific for a certain application can be considered as an 

alternative attack vector. The components of a generic APK are listed in the figure below. 

 

Figure 2. APK components 
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Code that is written for the Android platform is compiled into .dex (Dalvik Executable) files that are in turn 

zipped into an APK file. Dex files act in a similar manner as .class java files, but are used inside a virtual 

machine.  

The following image depicts the general format of a .dex file. 

 

The main fields composing a dex file, not taking into consideration the header which will be explained 

more into detail later on, are as follows : 

 string_ids – the string identifiers list contains identifiers for all the strings used in the .dex file. This 
table stores the length and offsets for each of these strings. 

 type_ids – contains identifiers for for all types (classes, arrays, or primitive types) included in this 
dex file. (i.e int, String[], com.google.Type) 

 proto_ids – identifiers for all prototypes referred to by this dex file (i.e int fn(double), void fn() ). 

 field_ids – stores the data for pre-initialized fields in a class (i.e integer.MAX_VALUE) 

 method_ids – contains identifiers for all the methods referred to by the .dex file, that are defined 
in the file or not 

 class_defs – contains the class definitions list for all classes that are either defined in this dex file 
or that have a method or field accessed by code from the .dex file 

 data – this section contains the data needed for all the tables listed above. 
 

The header section, which is of particular importance for this project given the fact that a tampered dex 

file header can determine the system to stop parsing the file at a very early stage of the install process, 

contains the following fields: 

 Magic (8 bytes) – “dex\n\035\0” 

 Checksum (4 bytes) – Adler32 checksum for the file, from bytes offset 12 

 Signature (20 bytes) – SHA-1 of file, from bytes offset 32 

Figure 3. DEX file sections 
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 File size (4 bytes) 

 Header size (4 bytes) – constant value “112” 

 Endian tag (4 bytes) – constant value “78563412” or reverse 

 Link_size (4 bytes) – size of link section 

 Link_off (4 bytes) – offset of link section 

 Map_off (4 bytes) – offset of map list  

 String_ids_size (4 bytes) – count of strings in the string ID list 

 String_ids_off (4 bytes) – file offset of string ID list 

 Type_ids_size (4 bytes) – count of types in the type ID list 

 Type_ids_off (4 bytes) – file offset of type ID list 

 Proto_ids_size (4 bytes) – count of items in the method prototype ID list 

 Proto_ids_off (4 bytes) – file offset of method prototype ID list 

 Fields_ids_size (4 bytes) – count of items in the field ID list 

 Fields_ids_off (4 bytes) – file offset of field ID list 

 Method_ids_size (4 bytes) – count of items in the method ID list 

 Method_ids_off (4 bytes) – file offset of method ID list 

 Class_defs_size (4 bytes) – count of items in the class definitions list 

 Class_defs_off (4 bytes) – file offset of class definitions list 

 Data_size (4 bytes) – size of data section in bytes (this value is actually the size of the map section 
plus the actual data section size) 

 Data_off (4 bytes) – file offset of data section  
 

Executing the fuzzing campaign 
Two separate approaches have been identified for the 2 OS versions taken into consideration: KitKat and 

Lollipop. 

Android KitKat 
Although dexopt can be called as a standalone binary from the shell of an Android device, it cannot be 

used for the fuzzing purposes of this project, given the fact that it requires a large number of arguments 

that can't be passed from a shell environment. The solution in this case was to use the regular process of 

an APK installation. So the idea was to take large sets of valid APKs, fuzz the classes.dex files inside each 

application, repackage the APK and then try to install it on a device, to check how this malformed input is 

handled by the system at install time. 

These are the steps taken for each APK that is being installed on a target device: 

1. Extract classes.dex file from seed APK 

 unzip –d  </local/path/> </apk/path/> 

2. Fuzz extracted dex file 

 <fuzz> –s <seed> classes.dex > fuzzed.dex 

3. Remove original .dex file from initial APK 

 aapt r <original_apk> classes.dex 

4. Repackage APK with fuzzed APK 

 aapt a <original_apk> classes.dex 

5. Create local keystore 
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 keytool -genkey -v -keystore keystore.keystore -alias keystore -keyalg RSA -keysize 

2048 -validity 10000 

6. Remove META-INF directory from APK 

 zip --delete </apk/path/> META-INF/* 

7. Resign the APK using local keystore 

 jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore </keystore/path> 

</apk/path> <keystore_alias 

The figure below represents an extract of a log produced during a fuzzing campaign ran against a number 

of Android devices running KitKat. The logging mechanism has been explained in detail in the first section 

of the paper: 

 

 

 

 

 

 

 

 

 

 

 

Android Lollipop 
As opposed to dexopt, the dex2oat binary can be used as a standalone command line tool for the fuzzing 

purposes of this project. The command line binary requires to take a minimum of 2 parameters: an input 

dex file and the resulting oat file. An example of some of the more common usage options for the dex2oat 

binary can be observed below: 

 

 

 

 

 

 

 

The general idea in the case of fuzzing on Android Lollipop would be to have an initial set of .dex files that 
have been previously extracted from valid APK files. For each of the valid .dex files in the initial set, a 
number of fuzzed combinations will be generated using the Radamsa tool and then passed as input files 

06-26 17:43:05.568 F/dexopt (14769): - sp_lib.py - APK_id = com.imangi.templerun.apk 

seed = radamsa -s 1927  

06-26 17:43:29.732 F/dexopt (14881): - sp_lib.py - APK_id = com.imangi.templerun.apk 

combination = radamsa -s 2086  

06-26 17:43:54.620 F/dexopt (14988): - sp_lib.py - APK_id = com.imangi.templerun.apk 

seed = radamsa -s 5011  

06-26 17:44:19.763 F/dexopt (15105): - sp_lib.py - APK_id = com.imangi.templerun.apk 

seed = radamsa -s 1543  

06-26 17:44:43.524 F/dexopt (15215): - sp_lib.py - APK_id = com.imangi.templerun.apk 

seed = radamsa -s 9090  

06-26 17:44:44.079 F/libc    (15227): Fatal signal 11 (SIGSEGV) at 0xaa4c04f8 (code=1), 

thread 15227 (mangi.templerun) 

06-26 17:45:09.950 F/dexopt (15338): - sp_lib.py - APK_id = com.imangi.templerun.apk 

seed = radamsa -s 8098  

06-26 17:45:33.771 F/dexopt (15451): - sp_lib.py - APK_id = com.imangi.templerun.apk 

seed = radamsa -s 1069  

06-26 17:45:59.802 F/dexopt (15570): - sp_lib.py - APK_id = com.imangi.templerun.apk 

seed = radamsa -s 8925 

Usage: dex2oat [options]... 

-j<number>: specifies the number of threads used for compilation. 

--dex-file=<dex-file>: specifies a .dex file to compile. 

--zip-fd=<file-descriptor>: specifies a file descriptor of a zip file 

      containing a classes.dex file to compile. 

--zip-location=<zip-location>: specifies a symbolic name for the file 

--oat-file=<file.oat>: specifies the oat output destination via a filename. 

--oat-fd=<number>: specifies the oat output destination via a file descriptor. 

--oat-location=<oat-name>: specifies a symbolic name for the file corresponding 

    to the file descriptor specified by --oat-fd. 

... 

... 

... 
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to the dex2oat binaries. In case of a crash, the .dex file responsible for the crash should be repackaged 
inside the parent APK with the purpose of checking if the found issues can be reproducible in a normal 
usage scenario, which is represented by the installation of the APK on a device. 
 
An example of log generated after a fuzzing campaign on an Android device running the L version can be 
observed in the figure below: 
 

 

 

 

 

 

 

Actual fuzzing methods 
The most challenging part of this project is related to the fact that the Android system employs a large 

number of verifications and checks against the .dex files that are sent to be installed on the device. 

Because of this reason several fuzzing methods have been tried to overcome this obstacle. Below are 

some examples of error messages that stand in the way of a successful fuzzing campaign: 

 

  

 

 

 

 

 

 

 

 

Regarding the actual fuzzing process, 3 alternatives have been identified and used for this project. These 

are as follows: 

 Completely random fuzzing (applies to dex2oat) 

 Random fuzzing and partial header reconstruction (applies to dex2oat & dexopt) 

 Targeted fuzzing and complete header reconstruction (applies to dex2oat & dexopt) 

09-29 11:32:20.460 F/dex2oat ( 8041): - sp_libd.py - dex_id = com.evernote.apk seed = 

radamsa -s 1012528  

09-29 11:32:33.405 F/dex2oat ( 8054): - sp_libd.py - dex_id = com.evernote.apk seed = 

radamsa -s 6186726  

09-29 11:32:46.277 F/dex2oat ( 8066): - sp_libd.py - dex_id = com.evernote.apk seed = 

radamsa -s 7338683  

09-29 11:32:49.121 F/libc    (15227): Fatal signal 11 (SIGSEGV) at 0xaa4c0302 (code=1), 

thread 15227 (evernote) 

09-29 11:32:57.249 F/dex2oat ( 8079): - sp_libd.py - dex_id = com.evernote.apk seed = 

radamsa -s 231131  

09-29 11:33:08.528 F/dex2oat ( 8093): - sp_libd.py - dex_id = com.evernote.apk seed = 

radamsa -s 4456070  

 

01-03 13:24:13.511 I/dex2oat ( 5671): dex2oat --dex-file=test7.dex --oat-

file=output.oat  

01-03 13:24:13.125 W/dex2oat ( 5671): Failed to open .dex from file 'test7.dex': verify  

                   dex file 'test7.dex': Bad checksum (790931db, expected 745631bc)  

01-03 13:24:13.115 E/dex2oat ( 5671): Failed to open some dex files: 1  

01-03 13:24:13.447 I/dex2oat ( 5671): dex2oat took 255.693ms (threads: 4) 

 

01-03 03:22:23.581 I/dex2oat ( 5671): dex2oat --dex-file=test7.dex --oat-

file=output.oat  

01-03 03:22:23.635 W/dex2oat ( 5671): Failed to open .dex from file 'test7.dex': verify  

                   dex file 'test7.dex': Bad file size (143221ab, expected 435611cd)  

01-03 03:22:23.635 E/dex2oat ( 5671): Failed to open some dex files: 1  

01-03 03:22:23.837 I/dex2oat ( 5671): dex2oat took 255.693ms (threads: 4) 

 

01-03 04:21:13.181 I/dex2oat ( 5671): dex2oat --dex-file=test7.dex --oat-

file=output.oat  

01-03 04:21:13.235 W/dex2oat ( 5671): Failed to open .dex from file 'test7.dex': verify  

                   dex file 'test7.dex': Invalid header size (7f, expected 70)  

01-03 04:21:13.641 E/dex2oat ( 5671): Failed to open some dex files: 1  

01-03 04:21:13.857 I/dex2oat ( 5671): dex2oat took 255.693ms (threads: 4) 



13 | Black Hat Europe 2015 
 

 

Random fuzzing and partial header reconstruction 
The general idea behind this particular approach can be summed up in the following 2 steps: 
 

 Alter random parts of the .dex file, using the Radamsa tool in a deterministic manner, so in case 
a crash occurs the exact corruption sequence can be retraceable  

 Do a best-effort approach to try to repair the fields from the file header, given the fact that the 
file was modified in a random fashion and little is known of the exact sections that were 
malformed, so that the dex file appears structurally valid to the system 

 
The actual header fields that are being repaired in this alternative are on the one hand the fields that have 
a constant value and nothing needs to be computed: the magic, endian tag and header size fields and on 
the other hand the fields that can be recomputed, although we do not know any information about the 
fields that have been fuzzed: the file size, checksum and SHA-1 fields. A summary of these fields can be 
observed in the image below: 
 
struct header_item dex_header 0h 70h Dex file header

struct dex_magic magic          dex 035 0h 8h Magic value

uint checksum  B3D20217h 8h 4h Alder32 checksum of rest of file

SHA1 signature[20] 6DB8EDA7748259FDC5C9752268506FD339C02CF1Ch 14h SHA-1 signature of rest of file

uint file_size 1430508 20h 4h File size in bytes

uint header_size 112 24h 4h Header size in bytes

uint endian_tag 12345678h 28h 4h Endianness tag

uint link_size 0 2Ch 4h Size of link section

uint link_off 0 30h 4h File offset of link section

uint map_off 1430336 34h 4h File offset of map list

uint string_ids_size 11029 38h 4h Count of strings in the string ID list

uint string_ids_off 112 3Ch 4h File offset of string ID list

uint type_ids_size 2068 40h 4h Count of types in the type ID list

uint type_ids_off 44228 44h 4h File offset of type ID list

uint proto_ids_size 2592 48h 4h Count of items in the method prototype ID list

uint proto_ids_off 52500 4Ch 4h File offset of method prototype ID list

uint field_ids_size 5335 50h 4h Count of items in the field ID list

uint field_ids_off 83604 54h 4h File offset of field ID list

uint method_ids_size 12925 58h 4h Count of items in the method ID list

uint method_ids_off 126284 5Ch 4h File offset of method ID list

uint class_defs_size 1427 60h 4h Count of items in the class definitions list

uint class_defs_off 229684 64h 4h File offset of class definitions list

uint data_size 1155160 68h 4h Size of data section in bytes  
 

Targeted fuzzing and complete header reconstruction 
This is a similar approach to the previous one. The main difference is the fact that the only section of the 
.dex file that is being modified is the data section. The steps used for this approach are as follows: 
 

 Split the original file in 3 parts: the map section, the data section and the initial remaining section 
that also contains the header of the file (using the information provided by the header: section 
sizes and offsets) 

 Fuzz only the data section as a separate file using the Radamsa tool, in a deterministic manner 

 Glue all the chunks back together 
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 Recompute all the fields that have incorrect values after this process. This means that all the fields 
that were modified for the previous alternative will be rewritten as well, but in addition the 
data_size and map_offset fields are recomputed and rewritten since in this case we know exactly 
what has been modified. 

 
This approach has the advantage that it greatly increases the chances of the system perceiving the .dex 
file as structurally valid and therefore achieving a better code coverage for the testing campaign. 

Completely random fuzzing 
This alternative uses a slighter different approach that the previous two. The main idea would be to have 

an initial set of valid .dex files extracted from a number of APK files, which are used to generate malformed 

.dex files using the Basic Fuzzing Framework tool. The malformed input is then sent to the devices under 

test, without having the file header modified in any way.  

Although it would be expected that the system to reject from the start the corrupt dex files, as not having 

the proper structure, this alternative made possible the discovery of a number of issues, as it can be seen 

in the results section of the paper. 

Using American Fuzzy Lop in Android 
 

The American Fuzzy Lop (AFL) tool is one of the most popular open-source fuzzing solutions for the Linux 

environment. It is an instrumentation based fuzzing tool developed by Michal Zalewski that can be used 

against binaries that consume different file formats as input. The target binaries need to be compiled with 

afl-gcc, in order to enable the instrumentation of the binaries. There are two fuzzing modes: dumb-mode 

(performs completely random fuzzing on the target) and instrumented mode (detects changes to program 

control flow to find new code paths; works only with binaries that have been instrumented during 

compile-time with afl-gcc). In both of these operating modes the tool detects both hangs and crashes that 

affect the targets and sorts out the unique issues. 

The tool has been originally developed to run on desktop Linux environments such as Ubuntu and Debian, 

but we have been using an Android port of the tool. Thanks to Adrian Denkiewicz of Intel, who ported the 

tool we were able to run AFL directly on Android devices.  

Using AFL for Stagefright fuzzing 
One of the challenges encountered was to completely automate the usage of AFL using an infrastructure 

of Android devices. An overview of the steps taken on each device can be seen below: 

 

 

 

 

 

 

1. Check device prerequisites 

1) Root 

2) Remount 

3) Push afl target binary 

4) Load initial seeds 

5) Set scalling governor 

2. Eliminate crashing test cases from initial seeds on each device 

1) Run AFL in a loop with timeout 

2) Identify crashing test case and delete it from input folder 

3) Restart AFL with timeout -> if crash occurs goto 2) else goto 4) 

4) No crash occurred after the timeout -> AFL successfully started -> kill the 

process 

3. Restart the AFL process with clean input directory and redirect output to /dev/null 
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However, given the large number of devices, there was the need to come up with a way to automate the 

usage of AFL on the entire infrastructure of devices. Some of the processes that needed to be covered 

were: generate and load the seeds that were consumed by AFL, run AFL processes on each device, retrieve 

the results and try to sort the unique issues. For confirming the results given by AFL and triaging the unique 

issues, all the crashes that were generated by AFL were passed through the MFFA tool and if they were 

confirmed as crashes they were sorted using the custom triage mechanism.  

The initial seeds are generated using a functionality of ffmpeg. The format list was constructed in a way 

that covers all possible combinations between the codecs and containers specified in the Android 

Compatibility Definition Document (CDD). After the generation phase, the files are loaded onto the 

devices and the AFL processes are started in the manner described earlier. The results are collected by 

extracting the generated crashes and hangs on each device. To validate the issues, these preliminary 

results are passed as seeds for the MFFA tool that generates the logs that contain the crashes that actually 

reappeared. To uniquely identify the issues, the logs are sent to the triage mechanism. 

This data flow can be observed in the following figure:  

 

 

 

Results and conclusions 
 

The first issues affecting the Stagefright media framework in Android were reported to Google in March 

2014. These initial fuzzing campaigns generated an unexpected number of crashes. Their number was in 

the range of tens of thousands of crashes per week, on a cluster of less than 20 devices. This was the main 

reason that led to the development of the triage mechanism since manual sorting was not an option in 

this case. Out of the initial issues reported to Google, three were considered to be high severity. They 

were included in the Android Partner Security Bulletin from September 2014 and issued CVE numbers in 

November 2014 (CVE-2014-7915,CVE-2014-7916,CVE-2014-7917). These issues are all related to integer 

overflows that affect libstagefright. The fuzzing tool was open-sourced in February 2015 and is available 

on Github under a GNUv2 license. The tool is now being used as a complementary solution along with 

AFL. 

Figure 4. Automating AFL for Stagefright fuzzing 
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The approach based on the usage of AFL led to the discovery of one critical issue: a heap corruption in 

libstagefright which can lead to arbitrary code execution in the mediaserver process. This was assigned 

CVE-2015-3832 and was listed in the first public Nexus security bulletin from August 2015. Several other 

low severity issues were discovered using this approach. These were mainly related to null-pointer-

dereferences and integer division by zero situations and were reported to and fixed by Google. 

The fuzzing campaigns targeting the application install process led to the discovery of one critical issue 

affecting the Lollipop version. In November 2015 CVE-2014-7918 was assigned for this issue. Several low 

priority issues affecting both KitKat and Lollipop were reported and fixed. 
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