
1 | Black Hat Europe 2015

Fuzzing Android: a recipe for uncovering
vulnerabilities inside system components in

Android

Alexandru Blanda
Intel OTC Romania, Security SQE

ioan-alexandru.blanda@intel.com

Abstract

The paper focuses on a fuzzing approach that can be used to uncover different types of vulnerabilities

inside multiple core system components of the Android OS. The paper will introduce the general idea

behind this approach and how it applies to several real-life targets from the Android OS backed up by

discovered vulnerabilities. The list of components that were targeted and found vulnerable contains: the

Stagefright framework, the mediaserver process, the Android APK install process, the installd daemon,

dex2oat, ART.

A number of topics will be covered, starting with the actual fuzzing process with the data/seed generation

processes and test case execution, the logging and triage mechanisms, addressing challenges such as bug

reproducibility, sorting out unique issues and prioritizing issues based on their severity. The second part of

the paper will take the discussion towards explaining the creation of several tools that have been

developed using this methodology. The actual implementation of the tools will be discussed with focus on

the technical details, as well as the issues discovered, CVE entries released and possible exploitable

patterns.

Brief introduction to fuzzing

This section of the paper describes what fuzz testing is and offers a very brief insight on how fuzzing works.
Fuzzing can be considered, and it is often described as being a black-box software testing technique. At a
very general level, a definition of fuzzing can be summed up as being the process of sending random or
invalid data as input to a system, with the purpose of crashing the system and revealing possible security
vulnerabilities or reliability problems. So, in other words, the purpose of fuzz testing is to find security-
related problems or any other critical defects that could lead to an undesired behavior of the system, such
as denial of service or degradation of service. Special types of programs or frameworks are used to achieve
this objective. These tools are commonly referred to as fuzzers and in the last 10 to 15 years, as fuzzing
has gradually developed, they have gained popularity among software security experts and quality
assurance communities. Manually creating tests for exploring every combination of data, in order to
create suitable test cases would prove to be an impossible task even for medium-complexity applications.
Therefore, fuzz testing seems to be the logical solution, particularly because building a simple fuzzing tool
is in many cases a trivial task. Intelligent fuzzing, that uses knowledge of the structure or logic of the
system that is being tested has proven to be even more effective, and when dealing with complex

2 | Black Hat Europe 2015

protocols or applications this is the only approach considered acceptable. Fuzzing can be used to test any
type of piece of software that accepts some sort of input, no matter the programming language that was
used for developing it. However, it is most suitable for testing code that was written in C/C++, mainly
because it handles its own memory, meaning that fuzzing can bring up exploitable security threats. As we
will see in the following sections of the paper, for the task of fuzzing different system components of
Android, intelligent fuzzing approaches were combined with straight-forward dumb-fuzzing methods to
obtain the desired results.

A fuzzing approach in Android

This section of the paper will go through a set of basic concepts and methods that can be used in fuzzing

campaigns that target OS components in an Android environment. The topics that will be covered in this

part relate to general ways in which a security researcher can go through the various phases of running a

fuzzing campaign on Android.

Data generation
Fuzzing can often be classified as mutational or generational. Mutational fuzzing mainly refers to the

fact that we take an initial valid input and apply different types of mutations before testing it against the

target system. Generational fuzzing, on the other hand, refers to the process of creating the input from

scratch taking into account the specific format of the type of input. Both approaches have advantages in

certain situations.

In this section of the paper I will provide a list of several open-source fuzzing tools have been used for

the projects that will be detailed in the following sections, with a brief description of each:

 Basic fuzzing framework (BFF) – mutational fuzzer targeting software that consumes file input

 Zzuf – application input fuzzer

 Radamsa – general purpose test case generator for fuzzing

 Fuzzbox – fuzzing tool specialized in targeting media codecs

 American Fuzzy Lop (AFL) – instrumentation driven file format fuzzer

The way the malformed data is executed on the device, varies across projects and depends greatly on

system component we are targeting. This topic will be covered in the section detailing how the fuzzing

approach was applied for specific projects.

Logging process
The Android system provides a method for collecting the system debugging information. The logcat

command enables collecting various information from applications and other components of the system

into a circular buffer that can be viewed and more importantly, filtered. There are 7 types of priorities for

messages that end up being displayed using the logcat command: verbose, debug, info, warning, error,

fatal and silent. This information is necessary to understand the way each malformed input can be logged

on a targeted Android device.

Using the “log” Android shell command, a user can construct messages with various priorities that can be

artificially inserted into the logcat buffer. In the case of this fuzzing approach, each corrupt input that is

tested against a system component on an Android device, is artificially logged with a fatal priority, so if an

3 | Black Hat Europe 2015

actual fatal message would appear, the input causing that fatal message would be displayed immediately

above it. This enables us to pinpoint which input was responsible for triggering a certain issue. Below is

an example on how to get this type of log:

As mentioned earlier, to insert a message with a predefined priority in the logcat buffer we use the log

command:

It is important to note that the messages that will be inserted into the log buffer need to contain

information regarding ways to reproduce the issues that may occur during testing. The type of information

that should be contained will be better explained in the following sections that contain actual examples

of logs.

Triage mechanism
The role of the triage mechanism is to quickly sort out the unique issues that may occur after a fuzzing

campaign that generates a large number of crashes. A tombstone is a file generated in /data/tombstones,

on the device, after each system crash and contains the backtrace for the crash, the signal that caused the

issue and other useful information extracted from the logcat message buffer. It also contains the program

counter (PC) at which the crash occurred inside the affected component. Each crash can be uniquely

identified using the PC value of the crash. For a better understanding, please see below an extract of a

tombstone that was generated by a malformed media file:

$ adb shell logcat –v time *:F

01-16 17:46:12.240 F/<Component> (PID): <test_case_index> *** <reproducibility_info>

01-16 17:46:19.676 F/<Component> (PID): <test_case_index> *** <reproducibility_info>

01-16 17:46:24.328 F/<Component> (PID): <test_case_index> *** <reproducibility_info>

17:46:24.405 F/libc (8321): Fatal signal 11 (SIGSEGV) at 0x18 (code=1), thread 831

(process_name)

01-16 17:46:25.128 F/<Component> (PID): <test_case_index> *** <reproducibility_info>

01-16 17:46:55.933 F/<Component> (PID): <test_case_index> *** <reproducibility_info>

$ adb shell log -p F –t <Component> <test_case_index> *** <reproducibility_info>

pid: 3438, tid: 3438, name: stagefright >>> stagefright <<<

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr deadbaad

Abort message: 'invalid address or address of corrupt block 0x8004d748 passed to

dlfree'

 eax b3ee0ff8 ebx b7b18f38 ecx b7b1d900 edx b3ee0ff8

 esi 8004d748 edi af6d4dee

 xcs 00000073 xds 0000007b xes 0000007b xfs 00000000 xss 0000007b

 eip b7a7202c ebp bffff418 esp bffff3d0 flags 00010286

backtrace:

 #00 pc 0001402c /system/lib/libc.so (dlfree+1948)

 #01 pc 0000d630 /system/lib/libc.so (free+32)

 #02 pc 000dcf1c /system/lib/libstagefright.so

(android::MediaBuffer::~MediaBuffer()+108)

 #03 pc 000dd6eb /system/lib/libstagefright.so

(android::MediaBuffer::release()+267)

 #04 pc 000ddf7b /system/lib/libstagefright.so

(android::MediaBufferGroup::~MediaBufferGroup()+187)

4 | Black Hat Europe 2015

The general idea behind the implementation of the triage mechanism can be observed below:

Analyzing and debugging crashes in Android
There are a number of methods and tools that can be used for figuring out what is happening with a

system crash in Android.

The most relevant information contained in a tombstone is the stack trace for the crash, the signal that

caused the crash, the code for the signal, the fault address and the program counter value (PC). For

example for a segmentation fault signal we can have a code 1 (SEGV_MAPERR), which means that the

address is not mapped to the object or code 2 (SEGV_ACCERR), which means we have invalid permissions

for the mapped object.

Dmesg is another option for debugging crashes on Android. It is a common command in Unix-like

operating systems that prints the message buffer of the kernel. Below is an example of 2 messages

generated by crashes that affected the Stagefright media framework in Android. The messages are related

to a user-mode read resulting in no page being found and a user-mode write resulting in no page being

found.

Below you can find an explanation on how to translate the error codes for the messages in dmesg:

GDB can also be used in an Android environment as a more reliable debugging solution. To accomplish

this you need to set up GDBserver on the device. This can be done by attaching GDBserver to the process

that needs to be debugged by providing the PID of that process or directly calling the binary that needs to

be debugged using GDBserver.

1. Parse the logs and identify the input that caused a crash

2. Re-test using the faulty input

3. For each input tested:

a. Grab the generated tombstone

b. Parse the tombstone and get the PC value

c. Check to see if the PC value has been previously encountered

d. Save the tombstone and the test case (reproducibility info) if the issue

is new

<6>[73801.130320] stagefright[12469]: segfault at 14 ip 00000000f72a5fff sp

00000000fff98710 error 4 in libstagefright.so[f71c6000+1b5000]

<6>[73794.579462] stagefright[12455]: segfault at c ip 00000000f728bcfe sp

00000000ff9d6f90 error 6 in libstagefright.so[f71e8000+1b5000]

/*

 * Page fault error code bits:

 *

 * bit 0 == 0: no page found 1: protection fault

 * bit 1 == 0: read access 1: write access

 * bit 2 == 0: kernel-mode access 1: user-mode access

 * bit 3 == 1: use of reserved bit detected

 * bit 4 == 1: fault was an instruction fetch

 */

5 | Black Hat Europe 2015

The Android device should be connected to a local machine where you run GDB as follows:

Additionally, to load the symbols for the shared libraries you can use:

When you have access to the source code of the component you are fuzzing, it may be useful if you could

link a crash to an actual section of the code, in order to better understand what is happening. The easiest

way to achieve this is by using the addr2line Linux command. You need to get the program counter value

from the tombstone file that was generated when the crash occurred and pass it to the addr2line

command. The following example uses the PC value from the tombstone example shown in a previous

section and should return the source code file and line number where the crash occurs.

Fuzzing the media Framework in Android

The main idea behind this project is to create corrupt but structurally valid media files, direct them to the

appropriate software components in Android to be decoded and/or played and monitor the system for

potential issues (i.e. system crashes) that may lead to exploitable vulnerabilities. Custom developed

Python scripts are used to send the malformed data across a distributed infrastructure of Android devices,

log the findings and monitor for possible issues, in an automated manner. The actual decoding of the

media files on the Android devices is done using the Stagefright command line interface. The results are

sorted out, in an attempt to find only the unique issues, using a custom built triage mechanism.

Audio and video as attack vectors
There are a number of reasons why audio and video can be considered as very attractive attack vectors,

both on systems such as desktop and laptop computers and on mobile devices. Since one of the main

purpose of this paper is to present the steps taken to perform a fuzzing campaign on the media framework

of the Android OS, the focus will be on the reasons that make these attack vectors attractive on mobile

devices:

$ gdbserver :5039 --attach <process_pid>

 OR

$ gdbserver :5039 /path/to/executable <options> (ex: gdbserver :5039

/system/bin/stagefright -a file.mp3)

$ adb forward tcp:5039 tcp:5039

$ gdb

 (gdb) target remote :5039 (from the gdb shell)

 (gdb) continue (to resume process execution)

(gdb) set solib-absolute-prefixdb

/path/to/tree/out/target/product/<product_id>/symbols/

(gdb) set solib-search-path

/path/to/tree/out/target/product/<product_id>/symbols/system/lib/

$ addr2line -f -e

/path/to/tree/out/target/product/<product_id>/symbols/system/lib/libstagefright.so

000dcf1c

6 | Black Hat Europe 2015

 The file formats involved in playing media content are binary streams that contain complex data.

The parsing of this data by specialized components in the media framework can often result in

memory corruption issues or other related problems.

 The large variety of different audio and video players, each one possibly using different codecs

and plugins create an attractive habitat for potential attackers.

 The user’s perception that audio and video files are harmless can have a decisive role, as they will

usually not have second thoughts when downloading and playing media content from untrusted

sources.

 Playing audio or video streams can be invoked without the user’s explicit consent (i.e. when the

media file is played inside a web page, media file is sent through a MMS)

The Stagefright framework
The Stagefright framework is responsible for the algorithmic logic of the media parsing system in Android.

The general architecture of this framework can be observed in the following figure:

The Stagefright player is only a client to the real media player: AwesomePlayer. It is this component that

implements the functionalities of connecting video and audio caption sources with the corresponding

decoders, playing the media files required by the user and synchronizing video with audio captions. The

MediaExtractor component calls for the appropriate data parsers given the media file types that need to

be read (i.e MP3, MPEG4). Finally, to prepare for playback, AwesomePlayer uses the OMXCodec

component, in order to set up the decoders to use for each data source.

Figure 1. Stagefright media framework

7 | Black Hat Europe 2015

Executing the fuzzing campaign
The stagefright command line interface is used to actually decode each malformed media file on the

tested Android devices. It can be custom built from the Android tree to be included in any Android image

that is flashed on a device, and has the main capabilities to decode/encode a media file, force the usage

of a software or hardware codec and a playback functionality for audio files. The full list of capabilities for

this tool are listed below:

The actual fuzzing of the initial media files is done locally on the machine which connects the Android

devices that are being tested. This process is regularly done using the Basic Fuzzing Framework, zzuf or

Fuzzbox, which are open-source straight-forward to use tools. The malformed files are then sent to the

device, where they are decoded using the stagefright command line interface. During the fuzzing

campaign logs are generated using the format specified in the previous section. Below is an example of

this type of log collected during a fuzzing campaign targeting the Stagefright framework with the media

files mutated using BFF:

Fuzzing the application install process in Android

For this particular project, fuzzing has been used to modify different components of an APK (Android

Application Package) using multiple approaches and check how this affects the install process in Android.

root@android:/ # stagefright -h

usage: stagefright

-h(elp)

-a(udio)

-n repetitions

-l(ist) components

-m max-number-of-frames-to-decode in each pass

-p(rofiles) dump decoder profiles supported

-t(humbnail) extract video thumbnail or album art

-s(oftware) prefer software codec

-r(hardware) force to use hardware codec

-o playback audio

-w(rite) filename (write to .mp4 file)

-x display a histogram of decoding times/fps (video only)

-S allocate buffers from a surface

-T allocate buffers from a surface texture

-d(ump) filename (raw stream data to a file)

-D(ump) filename (decoded PCM data to a file)

04-14 05:02:07.698 F/Stagefright(20222): - sp_stagefright *** 958 -

Filename:zzuf.32732.c8jZzT.mp4

04-14 05:02:13.382 F/Stagefright(20255): - sp_stagefright *** 959 -

Filename:zzuf.26772.zh7c8g.mkv

04-14 05:02:13.527 F/libc (20256): Fatal signal 11 (SIGSEGV), code 1, fault addr 0x0

in tid 20256 (stagefright)

04-14 05:02:20.820 F/Stagefright(20270): - sp_stagefright *** 960 -

Filename:zzuf.12260.ayDuIA.mpg

04-14 05:02:21.259 F/Stagefright(20281): - sp_stagefright *** 961 -

Filename:zzuf.6488.F8drye.mp4

8 | Black Hat Europe 2015

The main fuzzing targets inside an APK are the compiled app code which is represented by the classes.dex

file packaged inside the APK and the AndroidManifest.xml file.

The fact that the install process in Android, more specifically the installd process, runs with high system

privileges, made this component a very attractive target for fuzzing since any issues found during testing

can have a greater impact from a system security perspective.

This section will offer an overview of the Android processes that are being used inside the project.

Furthermore, the section offers an insight of the two different approaches that were used for the two

Android versions that were taken into consideration: KitKat and Lollipop. The actual fuzzing process will

be treated as a separate topic.

Overview of the application install process in Android
PackageInstaller is the default application responsible for installing other applications in Android. Package

installer calls for the InstallAppProgress activity to receive the instructions from the user. This activity calls

the Package Manager Service to install the package using the installd daemon which runs with system

privileges and has the main functionality of receiving requests from the Package Manager Service. Going

through the commands called during the installation of an application the most interesting from a fuzzing

perspective are the run_dexopt(KitKat) and run_dex2oat(ART) methods which call for the dexopt and

dex2oat command line binaries on the device. These will be the main targets for the fuzzing campaigns

related to this project.

The main entry point in the system is considered to be the APK that allows an application to be installed

on an Android based device. The 4 components that are of interest to us are: the classes.dex, the manifest

file, the META-INF folder and the optional lib folder. The classes.dex and manifest file are important since

these can be considered as the main fuzzing targets. The META-INF folder contains the signing information

for a specific APK, and because after modifying and repackaging an APK it is mandatory to resign the

application so it can be installed on a device this is a critical component. The optional lib folder that

contains the compiled native Android libraries specific for a certain application can be considered as an

alternative attack vector. The components of a generic APK are listed in the figure below.

Figure 2. APK components

9 | Black Hat Europe 2015

Code that is written for the Android platform is compiled into .dex (Dalvik Executable) files that are in turn

zipped into an APK file. Dex files act in a similar manner as .class java files, but are used inside a virtual

machine.

The following image depicts the general format of a .dex file.

The main fields composing a dex file, not taking into consideration the header which will be explained

more into detail later on, are as follows :

 string_ids – the string identifiers list contains identifiers for all the strings used in the .dex file. This
table stores the length and offsets for each of these strings.

 type_ids – contains identifiers for for all types (classes, arrays, or primitive types) included in this
dex file. (i.e int, String[], com.google.Type)

 proto_ids – identifiers for all prototypes referred to by this dex file (i.e int fn(double), void fn()).

 field_ids – stores the data for pre-initialized fields in a class (i.e integer.MAX_VALUE)

 method_ids – contains identifiers for all the methods referred to by the .dex file, that are defined
in the file or not

 class_defs – contains the class definitions list for all classes that are either defined in this dex file
or that have a method or field accessed by code from the .dex file

 data – this section contains the data needed for all the tables listed above.

The header section, which is of particular importance for this project given the fact that a tampered dex

file header can determine the system to stop parsing the file at a very early stage of the install process,

contains the following fields:

 Magic (8 bytes) – “dex\n\035\0”

 Checksum (4 bytes) – Adler32 checksum for the file, from bytes offset 12

 Signature (20 bytes) – SHA-1 of file, from bytes offset 32

Figure 3. DEX file sections

10 | Black Hat Europe 2015

 File size (4 bytes)

 Header size (4 bytes) – constant value “112”

 Endian tag (4 bytes) – constant value “78563412” or reverse

 Link_size (4 bytes) – size of link section

 Link_off (4 bytes) – offset of link section

 Map_off (4 bytes) – offset of map list

 String_ids_size (4 bytes) – count of strings in the string ID list

 String_ids_off (4 bytes) – file offset of string ID list

 Type_ids_size (4 bytes) – count of types in the type ID list

 Type_ids_off (4 bytes) – file offset of type ID list

 Proto_ids_size (4 bytes) – count of items in the method prototype ID list

 Proto_ids_off (4 bytes) – file offset of method prototype ID list

 Fields_ids_size (4 bytes) – count of items in the field ID list

 Fields_ids_off (4 bytes) – file offset of field ID list

 Method_ids_size (4 bytes) – count of items in the method ID list

 Method_ids_off (4 bytes) – file offset of method ID list

 Class_defs_size (4 bytes) – count of items in the class definitions list

 Class_defs_off (4 bytes) – file offset of class definitions list

 Data_size (4 bytes) – size of data section in bytes (this value is actually the size of the map section
plus the actual data section size)

 Data_off (4 bytes) – file offset of data section

Executing the fuzzing campaign
Two separate approaches have been identified for the 2 OS versions taken into consideration: KitKat and

Lollipop.

Android KitKat
Although dexopt can be called as a standalone binary from the shell of an Android device, it cannot be

used for the fuzzing purposes of this project, given the fact that it requires a large number of arguments

that can't be passed from a shell environment. The solution in this case was to use the regular process of

an APK installation. So the idea was to take large sets of valid APKs, fuzz the classes.dex files inside each

application, repackage the APK and then try to install it on a device, to check how this malformed input is

handled by the system at install time.

These are the steps taken for each APK that is being installed on a target device:

1. Extract classes.dex file from seed APK

 unzip –d </local/path/> </apk/path/>

2. Fuzz extracted dex file

 <fuzz> –s <seed> classes.dex > fuzzed.dex

3. Remove original .dex file from initial APK

 aapt r <original_apk> classes.dex

4. Repackage APK with fuzzed APK

 aapt a <original_apk> classes.dex

5. Create local keystore

11 | Black Hat Europe 2015

 keytool -genkey -v -keystore keystore.keystore -alias keystore -keyalg RSA -keysize

2048 -validity 10000

6. Remove META-INF directory from APK

 zip --delete </apk/path/> META-INF/*

7. Resign the APK using local keystore

 jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore </keystore/path>

</apk/path> <keystore_alias

The figure below represents an extract of a log produced during a fuzzing campaign ran against a number

of Android devices running KitKat. The logging mechanism has been explained in detail in the first section

of the paper:

Android Lollipop
As opposed to dexopt, the dex2oat binary can be used as a standalone command line tool for the fuzzing

purposes of this project. The command line binary requires to take a minimum of 2 parameters: an input

dex file and the resulting oat file. An example of some of the more common usage options for the dex2oat

binary can be observed below:

The general idea in the case of fuzzing on Android Lollipop would be to have an initial set of .dex files that
have been previously extracted from valid APK files. For each of the valid .dex files in the initial set, a
number of fuzzed combinations will be generated using the Radamsa tool and then passed as input files

06-26 17:43:05.568 F/dexopt (14769): - sp_lib.py - APK_id = com.imangi.templerun.apk

seed = radamsa -s 1927

06-26 17:43:29.732 F/dexopt (14881): - sp_lib.py - APK_id = com.imangi.templerun.apk

combination = radamsa -s 2086

06-26 17:43:54.620 F/dexopt (14988): - sp_lib.py - APK_id = com.imangi.templerun.apk

seed = radamsa -s 5011

06-26 17:44:19.763 F/dexopt (15105): - sp_lib.py - APK_id = com.imangi.templerun.apk

seed = radamsa -s 1543

06-26 17:44:43.524 F/dexopt (15215): - sp_lib.py - APK_id = com.imangi.templerun.apk

seed = radamsa -s 9090

06-26 17:44:44.079 F/libc (15227): Fatal signal 11 (SIGSEGV) at 0xaa4c04f8 (code=1),

thread 15227 (mangi.templerun)

06-26 17:45:09.950 F/dexopt (15338): - sp_lib.py - APK_id = com.imangi.templerun.apk

seed = radamsa -s 8098

06-26 17:45:33.771 F/dexopt (15451): - sp_lib.py - APK_id = com.imangi.templerun.apk

seed = radamsa -s 1069

06-26 17:45:59.802 F/dexopt (15570): - sp_lib.py - APK_id = com.imangi.templerun.apk

seed = radamsa -s 8925

Usage: dex2oat [options]...

-j<number>: specifies the number of threads used for compilation.

--dex-file=<dex-file>: specifies a .dex file to compile.

--zip-fd=<file-descriptor>: specifies a file descriptor of a zip file

 containing a classes.dex file to compile.

--zip-location=<zip-location>: specifies a symbolic name for the file

--oat-file=<file.oat>: specifies the oat output destination via a filename.

--oat-fd=<number>: specifies the oat output destination via a file descriptor.

--oat-location=<oat-name>: specifies a symbolic name for the file corresponding

 to the file descriptor specified by --oat-fd.

...

...

...

12 | Black Hat Europe 2015

to the dex2oat binaries. In case of a crash, the .dex file responsible for the crash should be repackaged
inside the parent APK with the purpose of checking if the found issues can be reproducible in a normal
usage scenario, which is represented by the installation of the APK on a device.

An example of log generated after a fuzzing campaign on an Android device running the L version can be
observed in the figure below:

Actual fuzzing methods
The most challenging part of this project is related to the fact that the Android system employs a large

number of verifications and checks against the .dex files that are sent to be installed on the device.

Because of this reason several fuzzing methods have been tried to overcome this obstacle. Below are

some examples of error messages that stand in the way of a successful fuzzing campaign:

Regarding the actual fuzzing process, 3 alternatives have been identified and used for this project. These

are as follows:

 Completely random fuzzing (applies to dex2oat)

 Random fuzzing and partial header reconstruction (applies to dex2oat & dexopt)

 Targeted fuzzing and complete header reconstruction (applies to dex2oat & dexopt)

09-29 11:32:20.460 F/dex2oat (8041): - sp_libd.py - dex_id = com.evernote.apk seed =

radamsa -s 1012528

09-29 11:32:33.405 F/dex2oat (8054): - sp_libd.py - dex_id = com.evernote.apk seed =

radamsa -s 6186726

09-29 11:32:46.277 F/dex2oat (8066): - sp_libd.py - dex_id = com.evernote.apk seed =

radamsa -s 7338683

09-29 11:32:49.121 F/libc (15227): Fatal signal 11 (SIGSEGV) at 0xaa4c0302 (code=1),

thread 15227 (evernote)

09-29 11:32:57.249 F/dex2oat (8079): - sp_libd.py - dex_id = com.evernote.apk seed =

radamsa -s 231131

09-29 11:33:08.528 F/dex2oat (8093): - sp_libd.py - dex_id = com.evernote.apk seed =

radamsa -s 4456070

01-03 13:24:13.511 I/dex2oat (5671): dex2oat --dex-file=test7.dex --oat-

file=output.oat

01-03 13:24:13.125 W/dex2oat (5671): Failed to open .dex from file 'test7.dex': verify

 dex file 'test7.dex': Bad checksum (790931db, expected 745631bc)

01-03 13:24:13.115 E/dex2oat (5671): Failed to open some dex files: 1

01-03 13:24:13.447 I/dex2oat (5671): dex2oat took 255.693ms (threads: 4)

01-03 03:22:23.581 I/dex2oat (5671): dex2oat --dex-file=test7.dex --oat-

file=output.oat

01-03 03:22:23.635 W/dex2oat (5671): Failed to open .dex from file 'test7.dex': verify

 dex file 'test7.dex': Bad file size (143221ab, expected 435611cd)

01-03 03:22:23.635 E/dex2oat (5671): Failed to open some dex files: 1

01-03 03:22:23.837 I/dex2oat (5671): dex2oat took 255.693ms (threads: 4)

01-03 04:21:13.181 I/dex2oat (5671): dex2oat --dex-file=test7.dex --oat-

file=output.oat

01-03 04:21:13.235 W/dex2oat (5671): Failed to open .dex from file 'test7.dex': verify

 dex file 'test7.dex': Invalid header size (7f, expected 70)

01-03 04:21:13.641 E/dex2oat (5671): Failed to open some dex files: 1

01-03 04:21:13.857 I/dex2oat (5671): dex2oat took 255.693ms (threads: 4)

13 | Black Hat Europe 2015

Random fuzzing and partial header reconstruction
The general idea behind this particular approach can be summed up in the following 2 steps:

 Alter random parts of the .dex file, using the Radamsa tool in a deterministic manner, so in case
a crash occurs the exact corruption sequence can be retraceable

 Do a best-effort approach to try to repair the fields from the file header, given the fact that the
file was modified in a random fashion and little is known of the exact sections that were
malformed, so that the dex file appears structurally valid to the system

The actual header fields that are being repaired in this alternative are on the one hand the fields that have
a constant value and nothing needs to be computed: the magic, endian tag and header size fields and on
the other hand the fields that can be recomputed, although we do not know any information about the
fields that have been fuzzed: the file size, checksum and SHA-1 fields. A summary of these fields can be
observed in the image below:

struct header_item dex_header 0h 70h Dex file header

struct dex_magic magic dex 035 0h 8h Magic value

uint checksum B3D20217h 8h 4h Alder32 checksum of rest of file

SHA1 signature[20] 6DB8EDA7748259FDC5C9752268506FD339C02CF1Ch 14h SHA-1 signature of rest of file

uint file_size 1430508 20h 4h File size in bytes

uint header_size 112 24h 4h Header size in bytes

uint endian_tag 12345678h 28h 4h Endianness tag

uint link_size 0 2Ch 4h Size of link section

uint link_off 0 30h 4h File offset of link section

uint map_off 1430336 34h 4h File offset of map list

uint string_ids_size 11029 38h 4h Count of strings in the string ID list

uint string_ids_off 112 3Ch 4h File offset of string ID list

uint type_ids_size 2068 40h 4h Count of types in the type ID list

uint type_ids_off 44228 44h 4h File offset of type ID list

uint proto_ids_size 2592 48h 4h Count of items in the method prototype ID list

uint proto_ids_off 52500 4Ch 4h File offset of method prototype ID list

uint field_ids_size 5335 50h 4h Count of items in the field ID list

uint field_ids_off 83604 54h 4h File offset of field ID list

uint method_ids_size 12925 58h 4h Count of items in the method ID list

uint method_ids_off 126284 5Ch 4h File offset of method ID list

uint class_defs_size 1427 60h 4h Count of items in the class definitions list

uint class_defs_off 229684 64h 4h File offset of class definitions list

uint data_size 1155160 68h 4h Size of data section in bytes

Targeted fuzzing and complete header reconstruction
This is a similar approach to the previous one. The main difference is the fact that the only section of the
.dex file that is being modified is the data section. The steps used for this approach are as follows:

 Split the original file in 3 parts: the map section, the data section and the initial remaining section
that also contains the header of the file (using the information provided by the header: section
sizes and offsets)

 Fuzz only the data section as a separate file using the Radamsa tool, in a deterministic manner

 Glue all the chunks back together

14 | Black Hat Europe 2015

 Recompute all the fields that have incorrect values after this process. This means that all the fields
that were modified for the previous alternative will be rewritten as well, but in addition the
data_size and map_offset fields are recomputed and rewritten since in this case we know exactly
what has been modified.

This approach has the advantage that it greatly increases the chances of the system perceiving the .dex
file as structurally valid and therefore achieving a better code coverage for the testing campaign.

Completely random fuzzing
This alternative uses a slighter different approach that the previous two. The main idea would be to have

an initial set of valid .dex files extracted from a number of APK files, which are used to generate malformed

.dex files using the Basic Fuzzing Framework tool. The malformed input is then sent to the devices under

test, without having the file header modified in any way.

Although it would be expected that the system to reject from the start the corrupt dex files, as not having

the proper structure, this alternative made possible the discovery of a number of issues, as it can be seen

in the results section of the paper.

Using American Fuzzy Lop in Android

The American Fuzzy Lop (AFL) tool is one of the most popular open-source fuzzing solutions for the Linux

environment. It is an instrumentation based fuzzing tool developed by Michal Zalewski that can be used

against binaries that consume different file formats as input. The target binaries need to be compiled with

afl-gcc, in order to enable the instrumentation of the binaries. There are two fuzzing modes: dumb-mode

(performs completely random fuzzing on the target) and instrumented mode (detects changes to program

control flow to find new code paths; works only with binaries that have been instrumented during

compile-time with afl-gcc). In both of these operating modes the tool detects both hangs and crashes that

affect the targets and sorts out the unique issues.

The tool has been originally developed to run on desktop Linux environments such as Ubuntu and Debian,

but we have been using an Android port of the tool. Thanks to Adrian Denkiewicz of Intel, who ported the

tool we were able to run AFL directly on Android devices.

Using AFL for Stagefright fuzzing
One of the challenges encountered was to completely automate the usage of AFL using an infrastructure

of Android devices. An overview of the steps taken on each device can be seen below:

1. Check device prerequisites

1) Root

2) Remount

3) Push afl target binary

4) Load initial seeds

5) Set scalling governor

2. Eliminate crashing test cases from initial seeds on each device

1) Run AFL in a loop with timeout

2) Identify crashing test case and delete it from input folder

3) Restart AFL with timeout -> if crash occurs goto 2) else goto 4)

4) No crash occurred after the timeout -> AFL successfully started -> kill the

process

3. Restart the AFL process with clean input directory and redirect output to /dev/null

15 | Black Hat Europe 2015

However, given the large number of devices, there was the need to come up with a way to automate the

usage of AFL on the entire infrastructure of devices. Some of the processes that needed to be covered

were: generate and load the seeds that were consumed by AFL, run AFL processes on each device, retrieve

the results and try to sort the unique issues. For confirming the results given by AFL and triaging the unique

issues, all the crashes that were generated by AFL were passed through the MFFA tool and if they were

confirmed as crashes they were sorted using the custom triage mechanism.

The initial seeds are generated using a functionality of ffmpeg. The format list was constructed in a way

that covers all possible combinations between the codecs and containers specified in the Android

Compatibility Definition Document (CDD). After the generation phase, the files are loaded onto the

devices and the AFL processes are started in the manner described earlier. The results are collected by

extracting the generated crashes and hangs on each device. To validate the issues, these preliminary

results are passed as seeds for the MFFA tool that generates the logs that contain the crashes that actually

reappeared. To uniquely identify the issues, the logs are sent to the triage mechanism.

This data flow can be observed in the following figure:

Results and conclusions

The first issues affecting the Stagefright media framework in Android were reported to Google in March

2014. These initial fuzzing campaigns generated an unexpected number of crashes. Their number was in

the range of tens of thousands of crashes per week, on a cluster of less than 20 devices. This was the main

reason that led to the development of the triage mechanism since manual sorting was not an option in

this case. Out of the initial issues reported to Google, three were considered to be high severity. They

were included in the Android Partner Security Bulletin from September 2014 and issued CVE numbers in

November 2014 (CVE-2014-7915,CVE-2014-7916,CVE-2014-7917). These issues are all related to integer

overflows that affect libstagefright. The fuzzing tool was open-sourced in February 2015 and is available

on Github under a GNUv2 license. The tool is now being used as a complementary solution along with

AFL.

Figure 4. Automating AFL for Stagefright fuzzing

16 | Black Hat Europe 2015

The approach based on the usage of AFL led to the discovery of one critical issue: a heap corruption in

libstagefright which can lead to arbitrary code execution in the mediaserver process. This was assigned

CVE-2015-3832 and was listed in the first public Nexus security bulletin from August 2015. Several other

low severity issues were discovered using this approach. These were mainly related to null-pointer-

dereferences and integer division by zero situations and were reported to and fixed by Google.

The fuzzing campaigns targeting the application install process led to the discovery of one critical issue

affecting the Lollipop version. In November 2015 CVE-2014-7918 was assigned for this issue. Several low

priority issues affecting both KitKat and Lollipop were reported and fixed.

References

Media Fuzzing Framework for Android (MFFA) – https://github.com/fuzzing/MFFA

CVE-2014-7915 – http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7915

CVE-2014-7916 – http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7916

CVE-2014-7917 – http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7917

CVE-2014-7918 – http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7918

CVE-2015-3832 – http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3832

Nexus Security Bulletin (August 2015) – https://groups.google.com/forum/#!topic/android-security-

updates/Ugvu3fi6RQM

https://github.com/fuzzing/MFFA
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7915
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7916
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7917
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7918
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3832
https://groups.google.com/forum/#!topic/android-security-updates/Ugvu3fi6RQM
https://groups.google.com/forum/#!topic/android-security-updates/Ugvu3fi6RQM

