
WATCHING THE WATCHDOG: PROTECTING 
KERBEROS AUTHENTICATION WITH 
NETWORK MONITORING 
 

Authors: 

Tal Be’ery, Sr. Security Research Manager, Microsoft 

Michael Cherny, Sr. Security Researcher, Microsoft 

 

November 2015  

 

 

 

 

 

 

 

 

 

 

 

 

 

©2015 Microsoft Corporation.  All rights reserved.  This document is provided "as-is." Information 

and views expressed in this document, including URL and other Internet Web site references, may 

change without notice. You bear the risk of using it.  Some examples are for illustration only and/or 

are fictitious. No real association is intended or inferred.  

  

This document does not provide you with any legal rights to any intellectual property in any 

Microsoft product. You may copy and use this document for your internal, reference purposes. 



Contents 
Introduction .................................................................................................................................................. 3 

The Kerberos protocol .................................................................................................................................. 4 

Kerberos Message Flow ............................................................................................................................ 4 

The Kerberos TGT ...................................................................................................................................... 5 

Network Monitoring of the Kerberos Protocol ......................................................................................... 6 

Forged Key: The Skeleton Key Malware ....................................................................................................... 7 

The Skeleton Key Malware Technical details ............................................................................................ 7 

Kerberos Pre-Authentication .................................................................................................................... 8 

Network-Based Detection of the Skeleton Key Malware ....................................................................... 10 

Passive downgrade detection ............................................................................................................. 11 

Active downgrade detection ............................................................................................................... 11 

Forged Ticket: The Golden Ticket Attack .................................................................................................... 12 

Attack Details .......................................................................................................................................... 12 

Network Based Detection of the Golden Ticket Attack .......................................................................... 13 

Forged PAC: The MS14-068 Attack ............................................................................................................. 16 

The vulnerability: PAC can be signed without the key ........................................................................... 16 

The Exploit .............................................................................................................................................. 16 

Network Based Detection of MS14-068 Forged PAC .............................................................................. 18 

Forged PAC revisited: The Diamond PAC .................................................................................................... 20 

Diamond PAC Generation and Injection ................................................................................................. 20 

Network Based Detection of the Diamond PAC Attack .......................................................................... 21 

 

 

  



Introduction 
Being the default authentication protocol for Windows-based networks, the Kerberos protocol is a 

prime target for advanced attackers. These attackers are trying to steal users' identity in order to gain 

access to the enterprise's most secured secrets.  

Recently, it seems that advanced attackers had progressed from merely stealing the Kerberos related 

tokens to forgery attacks, in order to gain even greater powers within the domain. 

In this document, we explore in detail three different forgery techniques, all found in the wild on 

attackers campaigns: 

 Forged key: Skeleton Key 

 Forget Ticket: Golden Ticket 

 Forged PAC: MS14-068 
 

Additionally, we suggest the “Diamond PAC” attack, a novel offspring of the Golden Ticket and Forged 

PAC attacks. 

For each of the aforementioned attacks, we describe in detail a detection solution. All of the solutions 

are based only on the passive network monitoring of the Kerberos protocol traffic, and do not require 

any prior knowledge of the Kerberos secrets.  

  



The Kerberos protocol 
Kerberos is an Authentication and Authorization protocol, standardized and maintained by the IETF 

(mainly in RFC 41201) and implemented by many Operating Systems (OS), including but not limited to 

Windows, Linux and Mac OSX.  

The Kerberos protocol enables the transparent Single-Sign-On (SSO) user experience. The SSO enables 

users to actively authenticate (i.e. provide their password) only once even though they access various 

services. 

Kerberos Message Flow 
The Kerberos authentication and authorization protocol works in the following manner: 

 

Figure 1 Kerberos Authentication Flow 

1. The user provides the Domain Name, user name and password to logon to the computer. 

2. The computer authenticates to the Authentication Server (AS) residing on the Kerberos Key 

Distribution Center (KDC). Accordingly, the KDC provides the computer with a Ticket Granting Ticket 

(TGT). The TGT is a token which enables the computer to request access to services without having 

the user to re-supply their credentials. 

                                                           
1 https://www.ietf.org/rfc/rfc4120.txt  

https://www.ietf.org/rfc/rfc4120.txt


3. Each time the computer attempts to access a service, it first identifies itself to the Domain Controller 

(DC), residing on the KDC, with the TGT as provided earlier by the AS. The DC, through its Ticket 

Granting Server (TGS), provides the user with a ticket for the particular requested service. 

4. The user provides the service ticket to the service. Since the ticket was validated by the TGS, the 

service grants access according to the authorization data specified in the ticket. Accordingly, the 

connection between the user and the service is established.  

 

In Windows networks the KDC is implemented in the Active Directory (AD) service on the Domain 

Controller (DC) server. Therefore we will use KDC, AD and DC interchangeably throughout this 

document. 

Note that for subsequent access requests only steps 3 and 4 are repeated and the Authentication Server 

(AS) is not involved in these transactions. The provided TGT is used as a proof that a successful 

authentication had taken place. 

The user credentials are only used in the preliminary authentication stage. From thereafter, the 

Kerberos protocol only uses the TGT ticket. On the one hand, this feature improves the efficiency of the 

protocol. On the other hand, the TGT token now becomes a single point of failure in the authentication 

and authorization process.  

The Kerberos TGT  

The Kerberos TGT contains all of the user's relevant authentication and authorization information. This 

information enables the KDC to rely solely on the ticket information, without any need to make any further 

queries, thus improving the protocol’s efficiency.  

In particular, the TGT token contains the following fields: 

 Name: The user's name the ticket is associated with 

 Start time and End time: marks the validity period of the ticket. By default, in Windows networks, 

the validity period is set to ten hours. 

 Authorization-data: Authorization data details the user's privileges and access rights. In Windows, 

the authorization data take the form of a Privilege Attribute Certificate (PAC) object. PAC2 is a 

"Microsoft-specific authorization data present in the authorization data field of a ticket. The PAC 

                                                           
2 http://msdn.microsoft.com/en-us/library/a61a2ecd-de81-4586-8db6-
063873dd4910#privilege_attribute_certificate 

http://msdn.microsoft.com/en-us/library/a61a2ecd-de81-4586-8db6-063873dd4910#privilege_attribute_certificate
http://msdn.microsoft.com/en-us/library/a61a2ecd-de81-4586-8db6-063873dd4910#privilege_attribute_certificate


contains several logical components, including group membership data for authorization, 

alternate credentials for non-Kerberos authentication protocols, and policy control information 

for supporting interactive logon." 

To protect the TGT ticket from being fiddled with, the TGT ticket is encrypted with a key that is known to 

only the AS and the KDC. In Active Directory, this key is generated from the KRBTGT service account 

credentials. 

Network Monitoring of the Kerberos Protocol 
The network monitoring of the Kerberos protocol can be achieved through a passive Security Device (SD), 

monitoring Kerberos traffic through a network’s switch port-mirroring. 

 

Figure 2 Network Monitoring of the Kerberos Protocol 

Due to the standardization of the protocol, the same SD can monitor all of the Kerberos protocol traffic, 

regardless of the hardware and operating system of the originating device. 

We will show below, that even though some portions of the Kerberos traffic are encrypted, the SD can 

detect the discussed attack, with no prior knowledge of Kerberos secrets.    



Forged Key: The Skeleton Key Malware 
On January 2015, Dell Secureworks had shared a report3 on an advanced attack campaign utilizing a 

dedicated Domain Controller (DC) malware, named “Skeleton Key” Malware.  The Skeleton Key malware 

modifies the DC behavior to accept authentications specifying a secret ”Skeleton key” (i.e. a “master 

key”)  password, thus enabling the attackers to logon to any computer as any domain user without 

installing any additional malware. The normal users’ authentication experience remains the same, and is 

not affected by the malware in order to avoid detection. 

The Skeleton Key Malware Technical details 
The Skeleton Key malware has been designed to meet the following principles: 

1. Domain users can still login with their user name and password so it won’t be noticed. 

2. Attackers can login as any domain user with Skeleton Key password.  

3. If the domain user is neither using the correct password nor the Skeleton Key password, the 

logon would fail. 

To do so, the malware changes to the usual password validation process within the DC. If the usual 

check against the user’s key has failed, an additional check that uses the attackers’ key is performed. 

However, there is one more challenge to tampering with Kerberos authentication: Kerberos newer 

encryption types (such as AES) require that a salt string (usually the user name) would be added to the 

key derivation function, to make the same passwords of different users create non-identical encryption 

keys.  

To support a salt-enabled key-derivation function, the malware would need to either: 

 Compute all of the domain users’ Skeleton Key offline and store them, which requires a lot of 

memory; or 

 Compute the relevant user’s Skeleton Key in real-time, which is likely to cause performance 

issues on the DC, as the AES key derivation function (PBKDF24) is designed to be costly. 

Therefore, the Skeleton Key malware chooses to support only RC4-HMAC based Kerberos 

authentication, as RC4-HMAC‘s key-derivation function does not involve a user-based salt. As a result, 

the Skeleton RC4-HMAC key remains the same for all users, which greatly simplifies the malware’s 

implementation.  

Therefore, to support Skeleton Key for Kerberos authentication, the malware: 

 Hooks SamIRetrieveMultiplePrimaryCredentials() to make sure the users will authenticate using 
RC4-HMAC encryption instead of AES encryption. When the hooked 
SamIRetrieveMultiplePrimaryCredentials() function checks for the package name “Kerberos-Newer-
Keys5”, it returns the STATUS_DS_NO_ATTRIBUTE_OR_VALUE value, to effectively disable AES based 
authentication.  

 Patches CDLocateCSystem(unsigned int dwEtype, PCRYPTO_SYSTEM *ppcsSystem) in cryptdll.dll. 
The patched CDLocateCSystem() hooks the Decrypt and Initialize function pointers fields in 

                                                           
3 http://www.secureworks.com/cyber-threat-intelligence/threats/skeleton-key-malware-analysis/ 
4 http://en.wikipedia.org/wiki/PBKDF2  
5 https://msdn.microsoft.com/en-us/library/cc941808.aspx  

http://www.secureworks.com/cyber-threat-intelligence/threats/skeleton-key-malware-analysis/
http://en.wikipedia.org/wiki/PBKDF2
https://msdn.microsoft.com/en-us/library/cc941808.aspx


CRYPTO_SYSTEM structure for dwEtype  == 0x17 (RC4_HMAC) .The hooked Decrypt function first 
calls the original Decrypt function to make sure the users can still logon with their original user 
name and password. If this fails, it replaces the password hash with the supplied Skeleton Key RC4-
HMAC key and calls the original Decrypt function again. In this second call, decryption function will 
return success (NT_SUCCESS) if the skeleton password RC4-HMAC key was used to encrypt. Hence 
the attacker can always pass the Kerberos authentication successfully by supplying the Skeleton Key 
password. 

 

As a result of the publication, a very similar Skeleton key functionality was added to Mimikatz6, making it 

publicly available to both researchers and attackers.  

 

Figure 3 Mimikatz support for Skeleton Key 

 

Kerberos Pre-Authentication 
In the Kerberos protocol, the KDC requires a pre-authentication stage to take place, in order to validate 

the user identity before sending any encrypted data. 

On passwords-based authentication, the pre-authentication stage is realized with an encrypted time-

stamp. The user encrypts the current time-stamp with its long-term key as a proof of password 

knowledge. 

To support this process, a handshake phase must be supported by the protocol: 

                                                           
6 https://github.com/gentilkiwi/mimikatz/releases/tag/2.0.0-alpha-20150117  

https://github.com/gentilkiwi/mimikatz/releases/tag/2.0.0-alpha-20150117


 To determine a common encryption algorithm: Since the Kerberos protocol supports multiple 

encryption algorithms, a handshake phase is needed to determine the encryption types (ETypes) 

that can be used by both sides of the transaction. 

 To determine the user’s salt: Salt is a unique, non-secret string added to the password in the key 

derivation function, in order to ensure that different users having identical passwords will not 

have the same encryption key. The salt is determined per the encryption type. It should be 

noted that some encryption algorithms, such as the RC4-HMAC, does not support salt at all. 

The Kerberos handshake phase details: 

1. The client first sends an AS-REQ message detailing the encryption types it supports 

 

Figure 4 Initial AS-REQ with the client’s supported ETypes 

2. The DC responds with a Kerberos error message, detailing (within the PA-ETYPE-INFO2 field) all 

the encryption types which corresponds to the user keys stored within the DC database and 

were also present in client’s AS-REQ message. 

 



 

Figure 5 DC's PA-ETYPE-INFO2 

  

3. The client selects one of the DC returned encrypted types, encrypts the timestamp with it and 

sends it as pa-enc-timestamp in AS-REQ 

 

Figure 6 Timestamp encrypted in the mutually agreed EType 

Network-Based Detection of the Skeleton Key Malware 
Attackers can remove the Skeleton Key malware traces from the system hard drive after a successful 

infection, while leaving the compromised authentication process in place. This can pose a challenge for 

anti-malware engines to detect the compromise.  However, it is still possible to detect the presence of 

Skeleton Key malware using “over the wire detection”.  

The key for the over the wire detection is the fact that the malware downgrades the Kerberos 

encryption types supported by the DC. This detection method is only relevant for domains operating in a 

Domain Functional Level (DFL) that enables AES (DFL is greater or equal to 20087). 

The detection of encryption downgrade can be carried out in either a passive or an active manner. 

                                                           
7 https://technet.microsoft.com/en-us/library/understanding-active-directory-functional-
levels%28v=ws.10%29.aspx  

https://technet.microsoft.com/en-us/library/understanding-active-directory-functional-levels%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/understanding-active-directory-functional-levels%28v=ws.10%29.aspx


Passive downgrade detection 
A passive monitoring device situated in front of the DC, can monitor ingress and egress traffic and detect 

the attack using the following algorithm. 

1. Inspect the client advertised E-Types from the user’s AS-REQ and check for AES support. 

2. Inspect the DC advertised E-Types from the PA-ETYPE-INFO2 in the corresponding DC Kerberos 

Error. 

3. If the client advertised its support for AES and the DC is known to have AES keys for this user, 

and yet this encryption type does not appear in the DC advertised response, then it’s a good 

indication that some external party had fiddled with the client keys stored in DC. 

It should be noted that no access to either the client’s or the DC’s secrets (passwords or encryption 

keys) is required in order to implement this algorithm 

 

Figure 7 Network-based detection of the Skeleton key malware 

 

Active downgrade detection 
Defenders can take an active approach to detection by initiating an authentication request as a user 

using the AES encryption and observe a downgrade to RC4 by the DC. We had shared a publicly available 

standalone detection script8 which is capable of detecting such user-encryption downgrade on DC.  

The script works as follows: 

1. Retrieves the Domain Functional Level (DFL) of current domain, in order to verify its support for 

AES (DFL >= 2008). 

2. Finds an AES supporting account (msds-supportedencryptiontypes9 >= 8). 

3. Sends a Kerberos AS-REQ to all DCs with only the AES EType supported. 

                                                           
8 https://gallery.technet.microsoft.com/Aorato-Skeleton-Key-24e46b73/  

9 https://msdn.microsoft.com/en-us/library/cc223853.aspx  

https://gallery.technet.microsoft.com/Aorato-Skeleton-Key-24e46b73/
https://msdn.microsoft.com/en-us/library/cc223853.aspx


4. If AS-REQ fails due to “AES encryption not supported” error, then there’s a good chance that the 

DC is infected. 

Once more, it should be noted that no access to either the client’s or the DC’s secrets (passwords or 

encryption keys) is required in order to implement this active detection algorithm. 

. 

 

Figure 8 Execution of the script on all DCs of a non-infected domain  

 

Figure 9 Execution of the script on a Mimikatz Skeleton Key infected DC 

Forged Ticket: The Golden Ticket Attack 
Golden tickets are Kerberos TGTs forged by the attackers. The attacker can control every aspect of the 

forged ticket including the Ticket’s user identity, permissions and ticket life time.  

Attackers typically set Golden Tickets to have an unusually long lifetime, which allows the possessing 

entity to keep using them for a long period without renewal. In addition to the lifetime, other important 

attributes of the ticket are typically forged to achieve other nefarious goals, such as assigning very high 

permissions, impersonating other users and even using non-existing user names. 

Attack Details 
In this Golden Ticket attack, the attacker: 

1. Gains access to the Active Directory server itself  

2. Steals the keys of the KRBTGT account from DC’s memory or hard drive.  



3. Forges TGTs, using the KRBTGT key. Note that the forged ticket can contain arbitrary information 

including excessive privileges and ticket end time, hence the "golden" in its name. 

4. Copies ("pass") the forged ticket to a remote machine to impersonate the victim on that machine.  

5. Connects to various enterprise services on behalf of the victim from the remote machine. 

Technically, the attacker achieves this ability by providing the forged TGT on the remote machine as the 

authentication data for the authorization process on the TGS_REQ message. 

Network Based Detection of the Golden Ticket Attack 
A passive Security Device (SD), monitoring Kerberos traffic is able to recouple the specific requests 

together with their original authentication transaction and thus detect such decoupling attacks against 

the Authentication and Authorization system.  

The TGT is supplied to the client from the DC with the AS-REP message and quoted by the client on the 

subsequent access requests in the TGS-REQ. 

The key to recoupling is the fact that TGT is quoted verbatim. Therefore, the SD is able to associate the 

relevant authentication information as expressed in the authentication transaction (the AS-REQ, AS-REP 

message exchange) with the access transaction (the TGS-REQ, TGS_REP message exchange). Note that 

the fact that TGT itself is encrypted is irrelevant for recoupling purposes as the SD does not need to 

know the contents of the TGT, just to be able to identify that it’s the same across different transactions. 

The figures below shows a typical flow of a single AS_REP authentication message, followed by a series 

of TGS-REQ access messages, all have the same TGT value, denoted by the "enc_part" column. 



 

 

Figure 10 Network capture of Kerberos AS_REP, "enc-part" is TGT 

 

Figure 11 Network capture of Kerberos TGE_REQ, "enc-part" contains the quoted TGT 



 

Figure 12 Network capture of Kerberos traffic, "enc-part" contains the TGT, "info" is Kerberos message name 

When the attacker uses the forged TGT in a TGS-REQ message, the SD tries to retrieve the original 

authentication transaction that created the TGT, but fails as there is none.  The SD flags this transaction 

as a "Golden Ticket" attack. 

Once more, it should be noted that no access to either the client’s or the DC’s secrets (passwords or 

encryption keys) is required in order to implement this detection algorithm. 

 

 

Figure 13 Network based detection of the Golden Ticket attack 

 

  



Forged PAC: The MS14-068 Attack 
On November 2014, a vulnerability in Windows PAC validation algorithm (CVE-2014-6324) was publicly 

disclosed. The vulnerability allows the attackers to forge the TGT’s PAC and assign arbitrary privileges to 

the ticket. This vulnerability is now patched with the MS14-068 fix. 

It was later published10 that this vulnerability was used in the wild by the Duqu attackers to exploit 

Kaspersky labs’ internal network. 

The vulnerability: PAC can be signed without the key  
The integrity of the PAC is guaranteed by the "Two PAC_SIGNATURE_DATA structures are appended to 

the PAC which stores the server and KDC signatures.11" 

In the case of a TGT's PAC the server is the KDC, so both signatures are created by the KDC. 

According to the specification, only three signing algorithms can be used to sign the PAC. 

 

Figure 14 The three available signature algorithms by [MS-PAC] 

The root cause of the vulnerability is that the function which verifies the PAC signature erroneously 

accepts other signing algorithms besides the three mentioned above. In Windows 2008 (and before) the 

KDC code for signing algorithms accepts some key-less hashes such as MD5, that does not provide any 

security against masquerading PACs. In Windows 2012, KDC code does not allow any key-less hashing 

algorithms, however it allows some relatively weak signing algorithms, such as DES based signatures. 

The Exploit 
In order to exploit the vulnerability the attacker must include its forged PAC within a ticket. However, 

this mission cannot be accomplished in a trivial manner by merely substituting the existing PAC in an 

existing ticket with a forged one, as the tickets are encrypted. 

Therefore the attacker acts as follows: 

1. Sends an AS-REQ for a PAC-less ticket. The attacker does that by including the optional pre-

authentication field of PA-PAC-REQUEST (128) and sets its value to false. 

 

                                                           
10https://securelist.com/files/2015/06/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_return
s.pdf  
11 [MS-PAC] 

https://securelist.com/files/2015/06/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf
https://securelist.com/files/2015/06/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf


 

Figure 15 PA_PAC_REQUEST set to FALSE 

 

2. As a result a PAC-less ticket is sent to the client 

3. The attacker sends a TGS-REQ with the forged PAC (encapsulated with relevant headers) and 

encrypted with the session key (or sub-session key, anyway it's encrypted), using the "enc-

authorization-data" field in TGS-REQ. 

In order to have the PAC properly resigned, the attacker requests a ticket for the DC’s KRBTGT 

service, normally used to renew expiring TGTs, to get a TGT in response.  

 

Figure 16 The enc-authorization-data Field 

 

4. The KDC embeds the PAC in the returned ticket in the TGS-REP without ANY validation (it does 

not have to be a syntactically legal PAC, it work fine with a BLOB).  

5. For a TGT obtained as above, the attacker requests a Service Ticket with a TGS-REQ that now 

carries the TGT which contains the forged PAC.   

6. The KDC validates the PAC and resigns the PAC with a valid service and KDC signatures and 

embeds it in the returned Service Ticket in the TGS-REP.  



Notes: 

 Win2012 servers the attackers cannot sign the PAC with key-less hashes, however they are able 

to use the relatively weak DES cipher which can be bruteforced. Therefore the attacker needs to 

repeat stage 4 above until it succeeds in finding the right PAC. 

 Requesting PAC-less ticket is mandatory for a successful exploit. If the ticket already contains a 

PAC, the DC disregards the PAC in the enc-authorization-data field. 

Network Based Detection of MS14-068 Forged PAC 
The detection is based on observing: 

 An AS-REQ with a PA-PAC-REQUEST set to false. 

 Adding authorization data in a subsequent TGS-REQ message 

 The target service has its NA bit set to false, which means it requires PAC for authorization. 

As noted above, having a PAC-less ticket is mandatory for a successful attack. When no PA-PAC-

REQUEST is specified, the KDC returns a PAC. Therefore, attackers must explicitly send the PA-PAC-

REQUEST and set it to FALSE. 

Note, that if a client does not want a TGT or TGS to contain a PAC because the client or the target server 

does not support PAC based authorization, the client does not need to specify it explicitly as the DC 

already knows which account requires a PAC, with an AD attribute (NA flag12). 

                                                           
12 [MS-KILE]: 

"To support all functionality of KILE, the account database MUST be extended to support the following 

additional information for each principal: 

AuthorizationDataNotRequired: A Boolean setting to control when to include a PAC in the service ticket. 

KILE implementations that use an Active Directory for the account database SHOULD use the 

userAccountControl attribute ([MS-ADTS] section 2.2.16) NA flag. The default is FALSE." 

"3.3.5.3 PAC Generation 

In either of the following two cases, a PAC [MS-PAC] MUST be generated and included in the response 

by the KDC when the client has requested that a PAC be included. The request to include a PAC is 

expressed through the use of a KERB-PA-PAC-REQUEST (section 2.2.2) PA-DATA type that is set to TRUE:  

 During an Authentication Service (AS) request that has been validated with pre-authentication 
and for which the account has AuthorizationDataNotRequired set to FALSE. 

 During a TGS request that results in a service ticket unless the NA bit is set in the 
UserAccountControl field in the KERB_VALIDATION_INFO structure ([MS-PAC] section 2.5).  

Otherwise, the response will not contain a PAC." 

[MS-ADTS]:  

"NA (ADS_UF_NO_AUTH_DATA_REQUIRED, 0x02000000): Used by the Kerberos protocol. 



Therefore, if the targeted service had its NA bit set to FALSE, which means they require PAC for 

authorization, we can safely assume the added authorization data is indeed a PAC. 

 

Figure 17 Network based detection of MS14-068 forged PAC 

 

Once more, it should be noted that no access to either the client’s or the DC’s secrets (passwords or 

encryption keys) is required in order to implement this detection algorithm. 

  

                                                           
This bit indicates that when the Key Distribution Center (KDC) is issuing a service ticket for this account, 

the Privilege Attribute Certificate (PAC) MUST NOT be included. For more information, see [RFC4120]" 

 



Forged PAC revisited: The Diamond PAC 
Diamond PACs are attackers’ crafted PAC, signed with a stolen KRBTGT key. The Diamond PAC can be 

used by attackers to assign high privileges to a user’s access request, regardless of the user’s original 

permissions.  

In contrast to the Golden Ticket attack which also use a stolen KRBTGT key and can be used to provide 

high privileges to the attacker, the Diamond PAC attack does not craft a full Kerberos ticket, but uses the 

standard Kerberos flow (in the same manner of the MS14-068 exploit) to inject the crafted Diamond 

PAC.  

By doing so, the Diamond PAC attack represents a more subtle version of the Golden Ticket attack and 

thus harder to detect. Detection rules designed to catch Golden Ticket attack based on the Kerberos 

traffic anomaly it creates of a user sending a valid TGS with no prior AS requests to obtain a TGT will not 

alert on the Diamond PAC attack.  

Diamond PAC Generation and Injection 
Similar to Golden Ticket, In order to successfully generate a Diamond PAC, several pieces of information 

must be provided: 

 krbtgt account key: The most crucial component. The key is used to sign the PAC. 

 The TGT’s authentication time: Authentication time is a mandatory part of the PAC as it is used 

by Kerberos to identify the client and verify that the PAC corresponds to the ticket granted to 

that specific client. Inconsistent authentication time between PAC and encapsulating ticket 

results in a failed attack – PAC validation failed!  

 The SID of the domain: must be provided, as it’s a part of the PAC.  

 A valid domain account credentials:  A successful AS-REQ is the initial stage of the attack. 

  



Once the Diamond PAC is created, it is injected into a valid Ticket in the same manner as described for 

the MS14-068 forged PAC exploit above. The difference is that the Diamond PAC is validly signed using 

the KRBTGT key. 

Network Based Detection of the Diamond PAC Attack 
Since the Diamond PAC attack is using a valid method to inject authorization data and signs the PAC with 

a valid key, it will be accepted even by servers or DCs patched for the MS14-068 exploit. Therefore, it 

seems that the only way to detect this attack is to follow the same logic suggested above to detect 

MS14-068 forged PAC attack: 

1. An AS-REQ with a PA-PAC-REQUEST set to false. 

2. Adding authorization data in a subsequent TGS message 

3. The target service has its NA bit set to false, which means it requires PAC for authorization. 


