
Authen'cator	Leakage		
Through	Backup	Channels	on	Android	

Guangdong	Bai	

Na'onal	University	of	Singapore	

Web	services	are	increasingly	delivered		
through	mobile	apps	…

2	

Social	Networking

Online	Banking
Email	Service

Can’t		we	simply	use	mobile	browsers?	

3	

V.S.	

ü  Full	use	of	device/APIs	
ü 		Less	programming	limita'on	
ü 		Running	faster	

ü 		Cross	plaQorms	
ü 		Reusable	browser		
						func'onality	(JS	engine,	…)	
ü 		Developed	faster	

Can’t		we	simply	use	mobile	browsers?	

4	

…	the	(mobile)	browser	has	
become	a	single	applica'on	
swimming	in	a	sea	of	apps.	
																								--	Flurry	Insights

Therefore,	mobile	apps	play	the	same	role	as	web	browsers	

5	

HTTP/1.1	200	
Set-Cookie:	cookie1=87654321;	domain=.idp.com	
				--	
<body	onload=foo()>	<script>	
				var	domain="hfp://www.sp.com/login";	
				var	authToken="3fa09d24a3ce";	
				var	uEmail="alice@idp.com";	
				var	idpSign="2oOs5u29erIas…“;	
				func'on	foo(){	
								var	message=uEmail+"&"+authToken+"&"+idpSign	;	
								window.postMessage(domain,	message);				}	
</script>	</body>

GET	HTTP/1.1

Web	Server
App

②	
Content	
rendering	

①	
Communica'on	

protocols

However,	this	is	a	non-trivial	task…	

6	

Web	Server
App

②	
Content	
rendering	

①	
Communica'on	

protocols

•  Code	injec'on	afacks	
–  Have	been	extensively	studied		
[CCS’13,	CCS’14,	ESORICS’15]		

•  Security	of	communica'on	protocols	
–  Novel	afack	surface		
–  Novel	Trusted	Compu'ng	Base	(TCB)	

Focus	of	this	talk:	web	authen'ca'on	protocols	on	Android
•  Implementa'on	of	web	authen'ca'on	schemes	on	Android	

–  Authen'ca'on	process		
–  How	authen'ca'on	creden'als	(authen'cators)	are	managed		

•  Backup	channel:	a	new	afack	surface	against	web	authen'ca'on	
on	Android	plaQorm	
–  Why	backup	is	a	dangerous	func'onality	on	Android	
–  How	to	abuse	backup	channels	

•  Case	studies	and	mi'ga'ons	

7	

Sec'on	1.	Web	Authen'ca'on	on	Android	

Web	authen'ca'on:	safeguard	to	web	accounts	

•  Web	Authen'ca'on		
–  A	process	by	server	to	confirm	whether	an	en'ty	(client)	is	who	it	declared
–  One	of	the	mostly	used	web	func'onali'es		

9	

How	Android	apps	implement	web	authen'ca'on?

•  Our	inves'ga'on		
–  Goal:	to	learn	approaches	contemporary	apps	use	to	implement	their	

authen'ca'on	schemes	

–  Focus:	how	authen'cators	are	managed		

–  Methodology:	we	have	manually	analyzed	top-ranked	100	apps	on	Google	
Play	(by	reverse	engineering	and	traffic	analysis)	

10	

Result	summary

11	Figure	source:	hfp://geektechreviews.com/wp-content/uploads/2015/07/Top-10-Free-Android-Apps-Must-Have.jpg

TOP	100

66	with	
authen'ca'on	

schemes

34	without	
authen'ca'on	

schemes

Standalone	apps	e.g.,	news	browsers,	
maps	and	video	players

–  Basic	authen'ca'on	(40)	
–  Single	Sign-on	(40)	
–  Android	Account	Manager	(16)	

Web	authen'ca'on	scheme	#1:	Basic	authen'ca'on	
•  Basic	authen'ca'on	stands	for	tradi'onal	authen'ca'on	schemes	

on	the	basis	of		
–  Knowledge	(e.g.,	a	password	and	security	ques'ons)	

•  34	out	of	40	apps	use	password-based	schemes	

–  Ownership	(e.g.,	a	hardware	token	and	a	mobile	phone)	
•  6	out	of	40	apps	use	SMS-based	one	'me	password	schemes		

–  Inherence	(e.g.,	fingerprint	and	re'nal	pafern)	
•  None	is	found		
•  Fingerprint	confiden'ality	at	Black	Hat	US	2015	by	Dr.	Wei	Tao	

12	

General	process	of	basic	authen'ca'on		
on	desktop	browsers	

13	

Web	Server

UID/PWD

•  Authen'cator	
–  An	authen'ca'on	creden'al	indica'ng	client’s	login	session		
–  E.g.,	cookies,	session	ID,	OAuth	Token	and	OAuth	Code	

ü  Same	origin	policy	(SOP)	
ü 		Content	security	policy	(CSP)	
ü 		Cookie	protec'on		
ü 		…	

Web	Browser

General	process	of	basic	authen'ca'on		
on	Android	apps

14	

Web	Server

UID/PWD
Rest	API

Webview

Content	
Provider

Shared	
Preference

Android	App

Internal	Storage
/data/data/appname

Web	authen'ca'on	scheme	#2:	Single	Sign-on

•  Single	Sign-On	(SSO)	
–  A	kerberos-like	single	creden'al	

authen'ca'on	scheme	

–  BrowserID	(Mozilla)	
–  Facebook	Connect		

•  250+	Million	users,		2,000,000	websites	
–  OpenID	

•  one	billion	users,	50,000	websites	
–  …		

15	

Three	par'es	in	SSO

16	

User

Iden'ty	Provider	(IDP)

Relying	Party	(RP)

e.g.,	

e.g.,	
Token

SSO	in	Android
•  Relying	Party	(RP)	

–  Applica'on		
•  Iden'ty	provider	(IDP)		

–  SSO	Service	is	released	in	form	of	SDK	
–  E.g.,	Facebook	Connect,	Twifer	ID		

17	

A	concrete	process:	Facebook	connect

18	

Legend
Secret	cookies

OAuth		
Access	token

Facebook	Server

RP	app

Facebook		
SDK

Android

/app/app/RP

Android

IDP	app

RP	app

Facebook		
SDK

/app/app/IDP /app/app/RP

Web	authen'ca'on	scheme	#3:	Android	Account	Manager

19	hfp://blog.udinic.com/2013/04/24/write-your-own-android-authen'cator/

•  Account	Manager	
–  An	Android	service	which	provides	a	delegated	

authen'ca'on	service	and	centralized	account/
authen'cator	control		

–  Pros	
•  Simplifies	the	process	for	the	developer	

–  By	implemen'ng	some	interface	

•  Can	handle	mul'ple	token	types	for	a	single	
account	

•  Automa'cally	background	update	(SyncAdapters)	

Briefing	how	Account	Manager	works
•  Developer	needs	only	to	…	

–  To	create	an	AccountAuthen)cator	
•  Add	accounts,	account	types,		
	auth	token	

–  To	create	an	Ac'vity		
•  Through	which		users	enter	creden'als	

•  Account	manager	will	…		
–  Manage	authen'cators		

•  Located	in	account.db	in	/data/system/users/0		

–  Update	authen'cators	on	background	
	

20	

Security	of	authen'ca'on	schemes
•  Security	of	protocols	in	three	layers		

–  Design-level	security:	design	and	logic	flaws	
•  A	notorious	example:	flaws	in	Needham-Schroeder	protocol	
•  Protocol	verifica'on:	theorem	proving	(Proverif),	model	checking	(PAT)	

–  Implementa'on-level	security	
•  Implementa'on	errors/bugs	in	the	code		
•  E.g.,	Google	lD	flaw:	not	all	messages	are	covered	in	signature	(IEEE	S&P’12)	
														Guessable	authen'cators	(NDSS’13)	

–  Infrastructure-level	security	
•  Exploits	in	the	so|ware	stack	(e.g.,	OS,	file	system)	that	the	protocols	rely	upon	
•  A	previous	study:	password	leakage	through	compromised	ADB	(Claud	Xiao	on	
HITCON’14)	

21	

Let’s	look	at	infrastructure-level	security		
of	web	authen'ca'on	on	Android

22	

UID/PWD
Rest	API

Webview

Content	
Provider

Shared	
Preference

Android	App

Internal	Storage
/data/data/appname

Basic	Authen'ca'on

Let’s	look	at	infrastructure-level	security		
of	web	authen'ca'on	on	Android

23	

Single	Sign-on

Legend
Secret	cookies

OAuth		
Access	token

Facebook	Server

RP	app

Facebook		
SDK

Android

/app/app/RP

Android

IDP	app

RP	app

Facebook		
SDK

/app/app/IDP /app/app/RP

Let’s	look	at	infrastructure-level	security		
of	web	authen'ca'on	on	Android

24	

Single	Sign-on

Basic	Authen'ca'on

Account	Manager

/app/app/appname

The	owner	app’s	
proprietary	directory	

System	directory	
/data/system/users/0

Isola'on	Mechanism	in	Android

25	

Sandbox	 Sandbox	

/data/data/appname

✓	✗	

Uname/password

What	if	the	sandbox	is	bypassed?	

Backup	func'onality	has	to	violate	sandbox	mechanism

26	

Backup	app

Sandbox	 Sandbox	

✓	✗	✓	

Sec'on	2.	Backup	on	Android	

Two	ways	to	implement	backup	on	Android
•  Root-based	backup		

–  Root	the	device	and	grant	root	
privilege	to	the	backup	apps	

•  ADB-based	backup		

28	

Backup	app

Sandbox	 Sandbox	

✓	✓	

We	consider	only	to	backup	an	app’s	data	located	in	its	proprietary	
folder,	instead	of	the	user’s	data	can	be	accessed	through	APIs	like	
contacts	and	SMS	messages

ADB-based	backup
•  ADB	(Android	Debug	Bridge)	

–  ADB	is	a	versa'le	command	line	tool	that	lets	users	communicate	with	an	
emulator	instance	or	connected	Android-powered	device.		

–  Running	on	system	(or	signature)	level	privilege		
•  Root	>	system	>	user	

•  How	does	ADB-based	backup	work?	(do	we	need	“add	backup”	
every	'me?)

29	

System level
Android

proxy

1.  adb	shell	
2.  app_process	proxy User level

Backup app

How	does	an	ADB	proxy	conduct	backup?		

30	

bu	1	backup	appname	>	backupdata.ab	

bu	0	restore	<	backupdata.ab	

backup	

restore	

ANDROID	BACKUP	
1	
1	
none	or	AES-256	

Reference:	hfp://nelenkov.blogspot.sg/2012/06/unpacking-android-backups.html	

magic	format	version	

compression	flag	

encryp'on	algo	

compressed	using		
deflate	algorithm	

data	

How	backup	can	be	a	threat	to	authen'ca'on?	

31	

Backup	App	Vic'm	App	

Globally	readable	
storage

ADB	
Proxy	

Malicious	App	

Channel	#1:		
Backup	data	
Leakage

Channel	#2:	Backup	
capability	Leakage

A	summary	of	leakage	through	the	exis'ng	backup	apps

Category Apps Installs Publicly	
accessible?	

Backup	data	
encrypted?

Compromised	
interfaces?

Leakage	
possible
?	

	
	
	

Root-based

My	Backup 1,000,000	-	5,000,000 SD	card ✗ -- ✓

Ul'mate	
Backup

500,000	-	1,000,000 SD	card ✗ -- ✓

Ease	Backup 100,000	-	500,000 SD	card ✗ -- ✓

Titanium	
Backup

10,000,000	-	50,000,000 SD	card ✗ -- ✓

ADB-based Helium 1,000,000	-	5,000,000 SD	card ✗ ✓ ✓

32	

Analyzing	an	ADB-based	Backup	App
•  Helium		

–  One	of	the	best	apps	in	2013		
					(www.gizmap.com/best-android-apps-2013/30238)	
–  Developer:	ClockworkMod		

•  Developer	of	CyanogenMod	Android	OS	
•  Has	released	19	apps	on	Google	Play,	15	million	installs	

•  Our	analysis	on	the	ADB-based	app	is	enlightened	by	ScreenMilker	
[NDSS’14]	

33	

Internals	of	Helium	(obtained	by	reverse	engineering)

34	

ShellRunner ShellProxyService
am startservice ①

③

/data/data/helium
Local Socket
Server

②

Android Helium

Legend
control

flow

flow
data

settings.db

Internals	of	Helium	(obtained	by	reverse	engineering)

35	

ShellRunner ShellProxyService
am startservice ①

③

/data/data/helium
Local Socket
Server

②

LocalBackup
Main

Activity ⑴

⑵ ⑶
⑷

SD Card

Android Helium

Legend
control

flow

flow
data

settings.db

Internals	of	Helium	(obtained	by	reverse	engineering)

36	

ShellRunner ShellProxyService
am startservice ①

③

/data/data/helium
Local Socket
Server

②

WebBackup

LocalBackup
Main

HTTPServer

Activity

Asyn

⑴

⑵ ⑶
⑷

SD Card

(i)
(ii) (iii)

(iv)

Android Helium

Legend
control

flow

flow
data

settings.db

Access	Control	Protocol	in	the	ADB	Proxy

37	

ADB	Proxy

Local	Socket	Server
Helium		
Main	app

Code	of	ADB	proxy

Code	of	broadcastPassword()

A	logic	flaw

38	

ADB	Proxy

Local	Socket	Server
Helium		
Main	app

Code	of	ADB	proxy

Code	of	broadcastPassword()

How	handleSocket()	works?	

39	

handleSocket()	
{	
				try	{	

	while(true)	{	
					r	=	getRequest();	
					if	(checkOTP(r))	
	 	serve(r);	
					else	
	 	throw	excep'on;	
	}	

				catch	{	
						 					//	not	terminate	
				}	
}	

A	logic	flaw

40	

ADB	Proxy

Local	Socket	Server
Helium		
Main	app

Code	of	ADB	proxy

Code	of	broadcastPassword()

Afack	#1:	Exploit	the	logic	flaw

41	

ShellRunner
ShellProxyService

AuthSniffer User

uninstall
start

mHelium

Monitor uninstall events
Attacker

Monitor install events
Trick user to install mHelium

install

start

Helium uninstalled

Wrong token

•  Disadvantage	of	the	afacker	
–  Helium	needs	to	be	uninstalled	
–  Afacker	needs	to	install	an	

malware	with	the	same	name	as	
Helium	

•  Advantage	of	the	afacker	
–  Once	obtaining	the	OTP,	the	

afacker	is	able	to	backup	the	vic'm	
app	at	any	'me	(ac've	afack)	

–  Once	obtaining	the	OTP,	the	
afacker	is	able	to	conduct	other	
high-privileged	ac'ons	(see	hfp://
developer.android.com/tools/help/
adb.html)

Afack	#2:	Invoke	the	Web	interface

42	

HTTP	Server	on	
port	5000

URL Method HTTP	Body DescripKon

hfp://IP:5000/api/package GET NULL Fetch	the	list	of	
installed	apps

hfp://IP:5000/api/backup.zip POST Name	of	the	app	
to	backup

Backup

hfp://IP:5000/api/restore.zip

POST Backup	data Restore

Afack	#2:	Invoke	the	Web	interface

43	

HTTP	Server	on	
port	5000

•  Disadvantage	of	the	afacker	
–  The	HTTP	server	is	closed	by	default	and	only	open	when	web	

backup	is	used	(semi-ac've	afack)	
–  Needs	INTERNET	permission		

•  Advantage	of	the	afacker	
–  Can	backup	target	vic'm		
–  Easier	to	implement	than	Afack	#1	

Afack	#3:	Access	backup	data	on	external	storage

44	

•  Disadvantage	of	the	afacker	
–  Cannot	chose	target	vic'm	(passive	afack)	

•  Advantage	of	the	afacker	
–  Easy	to	implement	

Sec'on	3.	Impact	and	Case	studies	

Extent	of	the	ADB	backup
•  The	apps	won’t	be	backup	by	ADB	proxy	when		

–  Using	Android	Account	Manager	for	authen'ca'on	
–  Android:allowBackup	is	false		

•  If	a	developer	does	not	specify	it	in	AndroidManifest.xml,	it	is	true	
by	default!!	
–  Our	study	reveals	that	only	~10%	apps	specify	it	false.	

46	

How	many	apps	are	subject	to	these	afacks?	
•  Data	Set	I		

–  Top	ranked	100	apps	
•  Data	Set	II	

–  Randomly	chosen	10	Categories	of	apps	from	Goolge	Play	
–  Top	10	apps	from	each	category	

47	
Helium

Device 1 Device 2 Web
Server

?

Attacker PC

①

Proxy
②

③ ④
⑤

⑥

Victim App

How	many	apps	are	subject	to	these	afacks?	

48	

W/O	
Authen'ca'on,	

83	

Infected,	80	 Account	
Manager,	23	

W/O	Backup,	14	

Not	
infected,	

37	

Case	study	#1:	Facebook	App	

49	

POST	hfps://b-api.facebook.com/method/auth.login	HTTP/1.1	
...	
User-Agent:	[FBAN/FB4A;FBAV/9.0.0.26.28;FBBV	/2403143;FBDM/	
email=alice.tester%40gmail.com&password=pwd&sig	
=452aca050cdce967a699e969076962f0&...

HTTP/1.1	200	OK	
...	
Content-Type:	applica'on/json	
{"session_key":"5.71T...411696",	
"access_token":"CAAAAUaZA...XW8ZD",	
"session_cookies":[{"name":"c_user","value":“	100003708411696","expires":"Thu,	28	
May	2015	10:11:48	GMT","domain":".facebook.com"},	
{“name":"xs","value":"201:71TTJlPmwZwjXQ	:2:1401271908:10025","expires":"Thu,	28	
May	2015	10:11:48	GMT","domain":".facebook.com"},	
...]	
...}

Iden'fying	authen'cators

50	

access_token Creden'als	in	subsequent	
requests,	e.g.,	pos'ng	a	new	post

c_user Creden'als	indica'ng	the	user’s	
login	state xs	

prefs_db

/data/data/com.facebook.katana

Case	study	#2:	Facebook	Single	Sign-on

51	

user id/pwd

rpApp Facebook
Server

c_user, xs verification

OAuth token

Facebook SDK

? user_info&OAuth token
 user_info

①

②

③

④

c_user, xs
OAuth token

Authen'ca'on

Authoriza'on

• 	Authoriza'on:	the	user	can	control	what	informa'on	can	be	accessed	by	the	rpApp.		

Authen'cators	belonging	to	two	origins?	

52	

Facebook	Server

RP	app

Facebook		
SDK

Android

/app/app/RP

c_user

xs	

OAuth	token

facebook.com

rp.com

• 	Facebook	completely	delegates	the	secrecy	
of	its	creden'als	to	RP	app?!	

Using	c_user	and	xs	to	log	into	user’s	account	and		
completely	violate	authoriza'on	…	

53	

Facebook’s	opinion	

54	

Facebook	Security

	But	couldn't	a	malicious	applica)on	with	a	WebView	also	steal	
usernames	and	passwords	as	they're	submiKed?		
Once	the	user	is	entering	their	creden)als	outside	of	a	trusted	browser,	
there's	very	liKle	that	we	can	do	from	our	end	to	protect	them.		
That's	why	it's	so	important	that	marketplaces	like	Google	Play	and	
Apple's	App	Store	take	steps	to	protect	users	from	malicious	
applica)ons.

Sec'on	4.	Mi'ga'on	

Sugges'ons	to	backup	app	developers
•  Build	secure	ADB-based	Backup		

–  Prevent	backup	privilege	from	exposure	
•  Verified	Access	control	of	the	ADB	proxy	
•  Secrecy	of	backup	data	

–  Follow	the	principle	of	least	privilege		
•  Expose	only	backup/restore	func'onality	

–  Manage	lifecycle	of	ADB	proxy		
•  ADB	proxy	never	outlives	the	main	app

56	

Sugges'ons	to	web	app	developers
•  Protect	authen'cators		

–  Disable	android:allowBackup	if	not	necessary		
–  Avoid	storing	password	
–  Shorten	authen'cator	life'me	

•  Avoid	implementa'on	own	authen'cator	management	
–  Use	Android	Account	Manager	

57	

Summary	and	Take-away
•  The	dilemma		

–  Backup	func'onality	v.s.	Confiden'ality		
–  Push	the	boundary	or	break	the	sandbox?		

•  ScreenMilker[NDSS’14]	

	

•  Authen'ca'on		
–  Awareness	of	infrastructure-level	afacks

58	

References
•  [CCS’13]	Wang,	Rui,	et	al.	"Unauthorized	origin	crossing	on	mobile	plaQorms:	Threats	and	

mi'ga'on."		
•  [CCS’14]	Jin,	Xing,	et	al.	"Code	injec'on	afacks	on	HTML5-based	mobile	apps:	Characteriza'on,	

detec'on	and	mi'ga'on."		
•  [ESORICS’15]	Hassanshahi,	Behnaz,	et	al.	"Web-to-Applica'on	Injec'on	Afacks	on	Android:	

Characteriza'on	and	Detec'on."		
•  [IEEE	S&P’12]	Wang,	Rui,	et	al.	"Signing	me	onto	your	accounts	through	facebook	and	google:	A	

traffic-guided	security	study	of	commercially	deployed	single-sign-on	web	services.“	
•  [NDSS’13]	Bai,	Guangdong,	et	al.	“AUTHSCAN:	Automa'c	Extrac'on	of	Web	Authen'ca'on	

Protocols	from	Implementa'ons.”	
•  [NDSS’14]	Lin,	Chia-Chi,	et	al.	"Screenmilker:	How	to	milk	your	android	screen	for	secrets."	

59	

60	

Thank	you!

Bai	Guangdong	
baiguangdong@gmail.com

