

INDUSTRIAL CONTROL SYSTEMS Pentesting PLCs 101

WHO AM I?

@arnaudsoullie

INTERESTS

- Windows Active Directory Can a Windows AD be secured ? JSSI 2013 (French, sorry)
- SCADA stuff
- Wine tasting (we're not going to talk about it today)

LAB PREREQUISITE WHAT'S IN THE LAB VM?

KALI LINUX

ADDITIONAL TOOLS

- MODBUSPAL
- MBTGET
- PLCSCAN
- SNAP7
- ...

SCRIPTS AND FILE EXAMPLES

- PCAP SAMPLES
- SCRIPTS SKELETONS
- ...

shift

AGENDA

11

1

Nuclear Strike

- 1 ICS INTRODUCTION
- 2 MODBUS PROTOCOL

3 ATTACKING PLCS

ICS INTRODUCTION

WHAT IS AN INDUSTRIAL CONTROL SYSTEM (ICS)?

Corporate IS handle data

ICS handle interfaces data with physical world

A BIT OF VOCABULARY

ICS (Industrial Control System)

IACS (Industrial Automation and Control Systems)

SCADA (Supervisory Control And Data Acquisition)

~=

DCS (Distributed Control System)

Nowadays, people tend to say "SCADA" for anything related to ICS

ICS COMPONENTS

SCADA SECURITY AWARENESS TIMELINE (SIMPLIFIED)

<2011 Who cares ?

outckmemetcom

mber 5, 2014

SCADA SECURITY AWARENESS TIMELINE (SIMPLIFIED)

WHAT IS WRONG WITH CURRENT ICS SECURITY?

ICS-CERT

NDUSTRIAL CONTROL SYSTEMS CYBER EMERGENCY RESPONSE TEAM

ICS-CERT listed over 250 attacks on ICS in 2013
59% of attacks targeted the energy sector
79 attacks successfully compromised the target
57 attacks did not succeed in compromising the target
120 attacks were not identified/investigated

WHAT IS A PLC?

- Real-time digital computer used for automation
- Replaces electrical relays
- Lots of analogue or digital inputs & outputs
- Rugged devices (immune to vibration, electrical noise, temperature, dust, ...)

WHAT'S INSIDE ?

SIEMENS S7-1200

PLC Programming

- *"Ladder Logic"* was the first programming language for PLC, as it mimics the real-life circuits
- IEC 61131-3 defines 5 programming languages for PLCs
 - LD: Ladder Diagram
 - **FBD**: Function Block Diagram
 - ST: Structured Text
 - IL: Instruction List
 - SFC: Sequential Function Chart

STRUCTURED TEXT EXAMPLE

```
(* simple state machine *)
TxtState := STATES[StateMachine];
```

```
CASE StateMachine OF
   1: ClosingValve();
ELSE
```

```
;; BadCase();
END CASE;
```

INSTRUCTION LIST EXAMPLE

LD S	peed	
	GT	1000
	JMPCN	VOLTS_OK
	LD	Volts
VOLTS_OK	LD	1
	ST	% Q75

- Shodan is a search engine dedicated to find devices exposed to the Internet
- It regularly scans the whole Internet IPV4 range (~4,3 billions IPs)
- Results are partially free (you have to pay to export the results)

WHAT CAN YOU FIND?

- All kinds of connected devices
 - PLCs
 - Webcams
 - Smart-things (fridge, TV, ...)
- Things you can't even imagine...
- Example ICS report :

https://www.shodan.io/report/I7VjfVKc

ALTERNATIVES?

- Scan the Internet yourself (Zmap, Massscan)
- Other online services/surveys

FUNNY THINGS YOU CAN FIND ON TEH INTERWEBS

It's not just webcams.

THIS IS A CREMATORIUM. ON THE INTERNET.

- Serial communication protocol invented in 1979 by Schneider Electric
- Developed for industrial application
- Royalty-free
- Now one of the standards for industrial communications

HOW IT WORKS

- Master / Slave protocol
- Master must regularly poll the slaves to get information
- Modbus addresses are 8 bits long, so only 247 slaves per master
- There is no object description: a request returns a value, without any context or unit

SECURITY ANYONE?

- Clear-text
- No authentication

- Modbus was originally made for serial communications
- However it is now often used over TCP

MODBUS/TCP FRAME FORMAT

Name	Length	Function
Transaction identifier	2	For synchronization between server & client
Protocol identifier	2	Zero for Modbus/TCP
Length field	2	Number of remaining bytes in this frame
Unit identifier	1	Slave address (255 if not used)
Function code	1	Function codes as in other variants
Data bytes or command	n	Data as response or commands

- The most common Modbus functions allow to read and write data from/to a PLC
- Other functions, such as file read and diagnostics functions also exist
- Undocumented Modbus function codes can also be used to perform specific actions

COMMONLY USED MODBUS FUNCTION CODES

Function name	Function code
Read coils	1
Write single coil	5
Read holding registers	3
Write single register	6
Write multiple registers	16
Read/Write multiple registers	23

MODBUS Protocol

ALL DOCUMENTED MODBUS FUNCTION CODES (FROM WIKIPEDIA)

http://en.wikipedia.org/wiki/Modbus

Function type		Function name	Function code	
Data Access	Bit access	Physical Discrete Inputs	Read Discrete Inputs	2
			Read Coils	1
		Internal Bits or Physical Coils	Write Single Coil	5
			Write Multiple Coils	15
	16-bit access	Physical Input Registers	Read Input Registers	4
		Internal Registers or Physical Output Registers	Read Holding Registers	3
			Write Single Register	6
			Write Multiple Registers	16
			Read/Write Multiple Registers	23
			Mask Write Register	22
			Read FIFO Queue	24
	File Record Access		Read File Record	20
			Write File Record	21
			Read Exception Status	7
			Diagnostic	8
Diagnostics			Get Com Event Counter	11
Diagnostics			Get Com Event Log	12
			Report Slave ID	17
			Read Device Identification	43
Other			Encapsulated Interface Transport	43

LAB SESSION #1: ANALYZING A MODBUS COMMUNICATION WITH WIRESHARK

Launch Wireshark

- Open "modbus1.pcap"
- Try to understand what's going on
- What's the value of register #123 at the end?

LAB SESSION #2: MODBUSPAL

LAB SESSION #2: MODBUSPAL + MBTGET

LAB SESSION #2: MODBUSPAL + METASPLOIT

The following show features stunts performed either by professionals or upervision of professionals.

ATTACKINGNEVER DO THISPLCSON LIVE PRODUCTION SYSTEMS

performed on this show.

LAB SESSION #3 : RECONNAISSANCE

- Objective : Identify all exposed services on a device or a range of devices
- Often the first step in a pentest
- We will use two tools
 - Nmap: The world's finest port scanner
 - PLCSCAN: A reconnaissance tool dedicated to PLCs
 - PLCs IP addresses
 - 192.168.0.50: Siemens S7-1200
 - 192.168.0.5: Schneider m340

LAB SESSION #3 : RECONNAISSANCE (NMAP)

	Zenmap _ 💷
	The de-facto tool for port scanning
	Command: nmap -p- 192.168.0.50
•	 Two stories from NIST SP800-82 A ping sweep broke for over 50 000\$ in product at a semi-conductor factory The blocking of gas distribution for several hours after a pentester went <u>slightly</u> -09 -21 off-perimeter during an assessment for a gas Company Map Scale port for 192.168.0.50 Host is up (0.013s latency). Not shown: 65532 filtered ports
•	 Nmap useful setup for ICS scanning open http Reduce scanning speed! Use «scan-delay=1.» to scan one port at a time Perform a TCP scan instead of a SYN scan Do not perform UDP scan Do not use fingerprinting functions, and manually select scripts (do not use "-sC")
	Filter Hosts

LAB SESSION #3 : RECONNAISSANCE (PLCSCAN)

Siemens PLC

LAB SESSION #4 : ATTACKING STANDARD SERVICES

- Most PLCs have standard interfaces, such as HTTP and FTP
- Lets' say security was not the first thing in mind when introducing these features ...
- Schneider M340
 - Connect to the webserver
 - Default password
 - Hardcoded password ?
 - Take a look at Java applets !

opyright © 1998-2009, Schneider Automation SAS. All Rights Reserved.

LAB SESSION #5 : ATTACKING ICS PROTOCOLS

- Modbus
 - Scan for registry values using mbtget
 - Python / Ruby / Perl / PHP, your call !
- Unauthenticated actions
 - STOP/RUN msf > use auxiliary/admin/scada/modicon_command
 - Logic download/upload msf > use auxiliary/admin/scada/modicon_stux_transfer

little endian counter

WHAT CAN WE DO ABOUT IT ?

It's difficult, but not all hope is lost.

NETWORK SEGMENTATION

- Do not expose your ICS on the Internet
- Do not expose all of your ICS on your internal network
- Use DMZ / Data diodes to export data from ICS to corporate network

PATCH WHEN YOU CAN

 Patching once a year during plant maintenance is better than doing nothing

APPLY CORPORATE BEST PRACTICES

- Change default passwords
- Disable unused services

SECURITY SUPERVISION

- IPS have signatures for ICS
- Create your own signatures, it is not that difficult

www.solucom.fr

Contact

Arnaud SOULLIE Senior consultant

arnaud.soullie[AT]solucom.fr