
Don’t trust your USB! How to find bugs in USB device drivers

Sergej Schumilo
OpenSource Security Ralf Spenneberg

University of Applied Sciences Muenster
schumilo@fh-muenster.de

Ralf Spenneberg
OpenSource Training Ralf Spenneberg

ralf@spenneberg.net

Hendrik Schwartke
OpenSource Security Ralf Spenneberg

hendrik@spenneberg.net

Abstract

Attacks via USB have been demonstrated regularly for
some years. A comprehensive systematic analysis of the po-
tential risk of this weakness was very expensive, yet. The
framework presented in this paper supports the systematic
high performance fuzzing of USB drivers using massive par-
allel virtual machines. The framework identifies and docu-
ments the security weaknesses. The format used permits the
reproduction of the attack, supporting the analysis by devel-
opers and analysts.

Keywords: USB, Fuzzing, QEMU, KVM, USB-
Redirection, Emulation

1. Introduction

The Universal Serial Bus (USB) has been an attractive
security hot spot for some years. Well known attack vectors
have been the USB autorun functionality of older Windows
versions or the creation of malicious HID-devices using the
Teensy framework [1], which uses shortcuts and keyboard
emulation to compromise systems. At least since the pub-
lication of the BadUSB[2] tool, the conceptional security
weaknesses embedded in USB have been known.

Further attacks are possible by exploiting the implemen-
tation errors in USB drivers. Every USB device needs either
a generic driver based on the device class (e.g. HID devices
like keyboards) or device specific drivers. These drivers are
often vendor-specific drivers. The driver loaded by the oper-
ating system is responsible for the communication with the
device. This driver is usually loaded within kernel space and
often trusts the device. This trust can be exploited by using
specific USB fuzzing solutions like the popular Facedancer
board [3].

The USB fuzzing technique either tries to specifically
modify the USB traffic implementing a Man-in-the-Middle
approach[4] or to emulate a malicious USB device, which
injects malicious payloads into the USB host. In the past,
no approach supported a systematic, comprehensive analy-
sis of all available USB device drivers of a given operating
system. The vast amount of possible USB device drivers
and the possible variations of the USB traffic require the
generation of several million possible fuzzing tests. The
slow speed of the known hardware solutions (Facedancer,
etc.) makes such fuzzing attacks virtually impossible.

This papers presents the development of USB fuzzing
framework named vUSBf (virtual USB fuzzer). This frame-
work increases the speed of the fuzzing test by several mag-
nitudes. Additional features support the reproducibility and
analysis of the identified weaknesses.

2. Solution

The main challenges in the implementation of the
fuzzing framework are the speed, high reproducibility and
complete logging of the fuzzing tests, using different USB
payloads. A further requirement is the simple extensibility
of the framework with additional features. The following
technologies permitted the design and implementation of a
framework fulfilling these requirements and challenges.

2.1. Host virtualization

The framework builds upon the Linux kernel integrated
hypervisor KVM. Using this hypervisor, the framework vir-
tualizes the tested operating systems. The USB infrastruc-
ture is emulated using QEMU. The open source license per-
mits the simple and flexible extension by our own patches
and addons.

2.2. USB virtualization

We deploy the USB redirection protocol for the virtual-
ization of the USB protocol. The USB redirection protocol
is used to provide access to remote USB devices in virtual
desktop infrastructures. Currently only QEMU supports the
USB redirection protocol [5]. This interface enables the
transport of USB traffic via TCP, UDP or Unix sockets.

Part of the USB redirection suite is the usbredirserver.
This software makes a USB device available on the net-
work. On the host system, the physical USB device is bound
by its own driver via libusb. All requests by the QEMU
guest are transferred via the USB redirection protocol to this
driver, resulting in a logical connection between the QEMU
guest and the USB device.

USB-
Device libusb

redirserver

emulated
HC

VM-
Kernel

QEMUredir specific

usb traffic

Figure 1. Usage of the usbredirserver

Logically the USB traffic is transferred between libusb
and the emulated host controller (HC) on the guest (Fig. 1).
The USB redirection protocol encapsulates the messages.
This encapsulation is accomplished by the usbredirserver
and the appropriate interface in QEMU.

The simplicity of the USB redirection protocol permits
the eavesdropping and manipulation of the connection at
low cost. Thus, USB fuzzing without deep knowledge of
the USB protocol is possible. Additionally, different USB
devices may be emulated using the USB redirection proto-
col. This makes stateful USB fuzzing feasible without using
physically connected hardware USB devices. Scalability is
improved considerably.

A further advantage of the USB redirection protocol is
the missing limitation of the number of the available end-
points. Emulated devices may possibly support all 31 end-
points supported by USB. The USB redirection protocol is
unaware of the used USB protocol. Future emulations may
even support USB 3.0.

2.3. Harddrive Virtualization

Deploying virtual machines using QEMU implies the us-
age of image files or real filesystems to provide the virtual
harddisks for the guests. We are using QCOW2 images for
flexibility and speed. The QCOW2 format supports copy on
write and overlay files. A simple guest setup is illustrated
in fig. 2.

QEMU QCOW2-Image
 + Snapshotload

Figure 2. Simple setup using QEMU

The QCOW2-Image supports the storage of snapshots.
These snapshots store the exact state of the guest system in-
cluding delta of harddisk operations. Instead of booting the
guest system, the guest may be initialized instantaneously
using a known stored state. The QCOW2 image is at least
enlarged by the amount of the guest’s main memory.

Using many guests, the size of the snapshot files be-
comes very important. Our fuzzing framework uses many
parallel QEMU guest instances, each requiring its own
backing files. This would demand a huge amount of file
space and would hinder effective file caching.

To bypass this disadvantage, we are proposing the uti-
lization of overlay files. Overlay files are connected to a
designated backing file and store just the delta of harddisk
operations. The original backing file is untouched and just
used for read operation. All write operations are directed
at the overlay file (copy on write). Using overlays, every
QEMU guest instance would access the same large backing
file and all modifications would be written to the initially
small overlay file (fig. 3).

QEMU Overlay
 + Snapshotload QCOW2-Imageref to

QEMU Overlay
 + Snapshotload

ref to

QEMU Overlay
 + Snapshotload

ref to

Figure 3. Using overlays

Unfortunately when using overlays, snapshots created in
the original backing file are not accessible anymore. Thus
each overlay would need its own snapshot, increasing the
overlay file again by the amount of main memory. This
would again result in larger overlay file sizes.

Tests proved that QEMU supports the usage of several
virtual harddisks. The system state snapshot is always
stored in the image file defined first on the command line.
Copy on write operations are handled separate for each
harddisk. Of course the snapshot may only be reinitialized
if all virtual images are available.

Our fuzzing framework therefore uses the concept shown
in fig. 4.

2

QEMU Overlayload QCOW2-Imageref to

QEMU Overlayload
ref to

QEMU Overlayload

ref to

RAM-File
(Snapshot)load

Figure 4. Overlays supporting best memory
usage

When cloning virtual machines for fuzzing tests this con-
cept requires only one small unique image file per virtual
machine. Both the harddisk backing file and the file con-
taining the snapshot are only read and can be reused for all
virtual machines. The only written file is the overlay con-
taining the copy on write operations during the fuzzing test.
All files will probably be aggressively cached by the host
system. Alternatively these files may be moved to a ramdisk
because of their small footprint.

2.4 Reproducibility

We developed our own fuzzing engine. This engine per-
mits the simple reproduction of the USB fuzzing tests. Al-
though the used Scapy framework[6] implements its own
fuzzing methodology, we refrained from using Scapy for the
fuzzing. Scapy uses random values in its fuzzing, prevent-
ing the fine-tuned control and documentation of the single
fuzzing tests.

Our fuzzing engine uses testcases. Each fuzz testcase is
referenced by a unique ID and contains the fuzzing instruc-
tions. Lists of testcases may be combined using mathemati-
cal conjunctions like the union sets (join of two lists) or the
pairwise union (for each combination of all testcases). The
goal is the simple automatic generation of a large amount of
testcases supporting systematic and comprehensive fuzzing.
A testcase may be anything from a single fuzzing instruc-
tion to a combination of an arbitrary number of other test-
cases.

bLength
@DeviceDescriptor

{0, ..., 255}

bDescriptorType
@DeviceDescriptor

{0, ..., 255}

wTotalLength
@ConfigurationDescriptor

{0, ..., 255}

Vendor_IDs
@DeviceDescriptor

{all VendorIDs}

Product_IDs
@DeviceDescriptor

{all ProductIDs}

X
∪

∪

pairwise union

union

union

Figure 5. Fuzz unit combination

A simple example (fig. 5) illustrates the advantages of
this approach. A set of all possible vendor and product ids
in the device descriptor is combined with a second set of all
possible fuzzing instructions important in the enumeration
phase of USB. All device drivers referenced by the vendor
and product IDs are thus systematically tested. The actual
description of the fuzz units and their application is defined
in XML files (fig. 6).

The simple example may be extended by further fuzz
units at one’s discretion. The conjunction may optionally
be adjusted to combine only those vendor and product ids
used by mass-storage devices with SCSI specific fuzz units.
A list of all well known vendor and product ID values and
further class specific ids may be found in the USB database
on linux-usb.org [7].

Each testcase or a sequence of testcases may be exported
to a file. This file may be loaded and the stored testcases
may be replicated to trigger the found bugs again. This
permits the demonstration of the found weaknesses and the
testing of their successful fix.

. . .
<t e s t c a s e s name=” t e s t c a s e s 1 ” >

<t e s t u n i t type =” p a i r w i s e u n i o n ” >
<f u z z l i s t name=” a l l v e n d o r p r o d u c t i d s ” />
<t e s t u n i t type =” un ion ” >

<f u z z l i s t name=” d e v d e s c b l e n g t h i n v a l i d ” />
<f u z z l i s t name=” c o n f w T o t a l L e n g t h i n v a l i d ” />
<f u z z l i s t name=” d e v b D e s c r i p t o r T y p e i n v a l i d ” />

</ t e s t u n i t >
</ t e s t u n i t >

</ t e s t c a s e s >
. . .

Figure 6. Contents of testcase.xml

3. Implementation

The vUSBf framework is implemented in Python. The
architecture of the framework is shown in the following il-
lustration (fig. 7).

3

testcase-
pooltestcase-

pool

Testcase-Distributor

Fuzzer-Modul

QEMU

USB-Traffic usbredir-
interface VM

QEMU-
Contoller

USB-Emulator

Monitoring-
Modul

- monitoring process start
- load snapshot
- recognition for image corruption

monitoring
per serial port

Read or generate
Device-Descriptor

write to logfile

QEMU monitoring console

instance #1
instance #2

instance #3

traffic fuzzing

de
sc

rip
to

r f
uz

zi
ng

testcase-
pool

read testcase

Figure 7. Architecture of the framework

3.1 QEMU Controller

The main focus of the framework is the supervision and
monitoring of the running QEMU processes.

Thus a very important item of the framework is the
QEMU controller. The QEMU controller runs the individ-
ual QEMU instances as subprocesses. The monitoring of
these processes happens via standard input and output of the
QEMU process. The QEMU-controller monitors the output
of the QEMU process for any possible error messages. A
typical known error message reports on the possible cor-
ruption of the image file. The QEMU built-in monitoring
console supports the initialization of snapshots or the ter-
mination of the QEMU process. As soon as the QEMU
controller notices an error in the execution of the virtual
machine, the Controller can correct the error and restart the
process.

3.2 USB Emulation & Fuzzing

The USB emulation is implemented using an extendable
API. The USB communication is handled by a unique Unix
socket per virtual instance. First the emulator for the USB
redirection protocol is started. This emulator passes the
command on to the emulator for the chosen testcases. Every
emulator inherits the capabilities of the enumeration emula-
tion class and extends this class with its own device-specific
handling.

The USB fuzzing is implemented using the Scapy
framework. Each emulator operates on a Scapy object rep-
resenting the USB message. This object is passed on to the
API function send(). This function works as a wrapper and
relays the Scapy object to the fuzzing engine. The fuzzing
engine obtains a testcase from the defined pool of testcases

and applies all the contained fuzzing instructions to the USB
message. The modified message is returned to the wrapper
which subsequently dispatches the outgoing message. In-
coming USB traffic is not manipulated.

Additionally the emulator supports the fuzzing of device
descriptors. The structures embedded in the device descrip-
tors may be modified. For example, a device descriptor may
be extended by an additional endpoint descriptor or specific
areas of a given device descriptor may be deleted.

3.3 Monitor

Fuzzing is only successful if the victim system is un-
der surveillance and the impact can be correlated with the
data used in the fuzzing test. We use an interchangeable
monitoring module for the observation of the victim sys-
tem. Depending on the examined operating system, differ-
ent approaches are required. Linux systems may easily be
monitored via a virtual serial port connected to a TTY of
the system. If the monitored Linux system is configured to
report kernel messages via printk on this console all ker-
nel messages may be read. By setting the verbosity to 7
(highest) via echo ’7’ > /proc/ sys / kernel / printk even stack
traces and verbose error messages are reported. The Linux
monitoring module collects and reports this information in
combination with the applied testcase ID in log files. Addi-
tionally the monitoring module is notified by the USB emu-
lator as soon as the USB stack becomes unresponsive. This
is again logged including the testcase ID. Furthermore the
QEMU controller is notified to reload the snapshot or restart
the QEMU process. Depending on the configuration, addi-
tional objects are written on disk which may be reloaded by
the framework to reproduce and test the identified bug.

The monitoring module for Microsoft Windows is still in
development. Unfortunately, Windows does not support the
simple output of kernel messages on serial consoles. Cur-
rently different approaches like the analysis of the average
color of Windows screenshots to distinguish bluescreens or
using WinDbg are evaluated.

3.4 Multiprocessing & Clustering

A major feature of the framework is the parallel exe-
cution of virtual machines using multiprocessing. Using
several parallel virtual machines, the number of the tests
can be enhanced. The framework uses a testcase distributor
to supervise the autonomous QEMU controllers. The test-
case distributor uses IPC to communicate with the different
QEMU controllers on the same host1.

1First implementations using multithreading have been found impossi-
ble in Python because of the Global Interpreter Lock[8]

4

To further enhance the scalability, the vUSBf Framework
offers a network interface for clustering. The vUSBf frame-
work implements a simple TCP based protocol. The mas-
ter testcase distributor connects to all testcase distributors,
feeds them testcases and coordinates the tasks among sev-
eral testcase distributors. The vUSBf framework simply
scales across several physical hosts and is only limited by
the amount of resources available.

4. Performance

The framework supports USB fuzzing in two modes:
“reload” and “reload if needed”. The first mode reloads the
virtual machine by loading the snapshot after each unique
fuzzing test. The test always starts in exactly the same
state. The second mode is comparable to the fuzzing using
a hardware solution like the Facedancer. Here the system
is attacked using malicious USB payloads until the system
becomes unresponsive or crashed. This may find additional
bugs only triggered by the combination of such tests.

Naturally, the effective fuzzing performance depends on
the mode. The following benchmarks were executed on a
single server using 4 Intel Xeon E5-2630L CPUs with 6
cores each and 64GB RAM.

Sergej Schumilo - schumilo@fh-muenster.dems_s3c

vUSBf Performance

vUSBf (1 process)

vUSBf Multiprocessing

vUSBf Clustering

0 100 200 300 400

320

120

0,5

150

50

0,5

reload mode non reload mode

tests per seconds

17

Figure 8. Tests per second performance

Depending on the number of testcases, the performance
may be greatly enhanced. The following images illustrates
this for 1,000,000 testcases.

Sergej Schumilo - schumilo@fh-muenster.dems_s3c

vUSBf Performance

vUSBf (1 process)

vUSBf Multiprocessing

vUSBf Clustering

reload mode non reload mode
runtime for 1 million tests:

18

23d 4h

23d 4h

5h 30m

2h 18m

1h 48m

51m

Figure 9. Runtime performance

5. Results

So far, many different bugs have been found in current
Linux kernel versions. Most of these bugs were found in a
small portion of the device drivers.

The current version of the framework implements the
emulation of the USB enumeration phase and HID devices.
Therefore all currently identified bugs are located in this
area. During the enumeration phase the transferred infor-
mation is parsed by the Linux USB core driver and depend-
ing on the vendor and product ID or the USB class ID the
information is passed on the specific driver. Therefore, all
bugs refer to the initialization of these drivers. We trust that
further bugs will be identified as soon as additional emula-
tors are available.

Currently, the following bugs have already been identi-
fied by only fuzzing the device descriptors:

• Null-pointer dereferences

• Kernel paging requests

• Bad page state

• Segfault

• Kernel panic

The mode ”only reload if needed” even unearthed bugs
only triggered by a specific combination of loaded drivers.
Vulnerable drivers are udlfb, r8192u usb and hfa384x, which
crash the system and generate kernel panics. Although
some of the identified drivers currently are in staging state
most Linux distributions enable and ship these drivers. Test-
ing different kernel versions, we also detected new intro-
duced bugs not present in older versions of the Linux ker-
nel.

To verify these findings, some randomly chosen bugs
have been implemented using the Facedancer. Using the
Facedancer, we were able to prove that the bugs identified

5

by our framework may be reproduced on physical systems
and are not due to the virtualization framework used in our
tests.

Because of time constraints most bugs have not yet been
analyzed. An assessment of their severity is currently not
possible. To support the analysis, the framework can be uti-
lized to reproduce any payload or even a sequence of pay-
loads. The virtual system may then be analyzed using typi-
cal tools like the KGDB interface to connect to the crashed
kernel and debug the system.

C a l l Trace :
[< f f f f f f f f 8 1 5 2 7 1 f a >] ? p a n i c +0 xa7 / 0 x16f
[< f f f f f f f f 8 1 5 2 b 5 3 4 >] ? oops end +0 xe4 / 0 x100
. . .

Many bugs found by the framework generate “only”
Linux kernel Oops. These Oops only affect kernel sub-
systems and not the complete Linux kernel. Thus, only a
denial of service of the subsystem may be triggered by the
bug. Enterprise Linux distributions (RHEL, CentOS) often
use a build option “Panic-on-Oops” which triggers a kernel
panic on each Oops. These systems are then vulnerable to a
full denial of service (DoS).

6. Future Work

Currently the framework implements a proof of concept.
We are still actively developing the framework and adding
further features. All interested researchers are invited to test
the framework, analyze the identified bugs and suggest fur-
ther features or enhance the framework. The current version
of the framework may be retrieved via git2.

Planned features are the support of Microsoft Windows
and additional specific emulators. These emulators will
support driver specific emulation and fuzzing. The planned
emulators will support the USB classes Mass−Storage and
Printer . Fuzzing USB 3.0 device drivers is planned as well.

7. Conclusion

The presented fuzzing framework vUSBf permits much
higher fuzzing execution speeds than all comparable solu-
tions in the past. Any operating system supported by KVM
and QEMU may be analyzed. The analysis performed by
the framework is systematic and comprehensive. Systems
not supported by the framework still need to be analyzed
using hardware solutions like the Facedancer.

2https://github.com/schumilo

We are convinced that using the systematic analysis via
vUSBf bugs and weaknesses will be found in various sys-
tems. Several of these bugs may be exploited for denial of
service or even compromise of the system using malicious
USB devices. Using the export and reproduction feature of
the framework, both security researcher and device driver
developer may work hand in hand in the identification and
patching of the found weaknesses.

References

[1] A. Crenshaw, “Programmable HID USB
Keystroke Dongle.” https://www.
defcon.org/images/defcon-18/
dc-18-presentations/Crenshaw/
DEFCON-18-Crenshaw-PHID-USB-Device.
pdf, 2010. [Online; accessed 10-September-2014].

[2] S. K. Karsten Nohl and J. Lell, “BadUSB — On
accessories that turn evil.” https://srlabs.
de/blog/wp-content/uploads/2014/07/
SRLabs-BadUSB-BlackHat-v1.pdf, 2014.
[Online; accessed 28-September-2014].

[3] T. Goodspeed and S. Bratus, “Emulat-
ing USB Devices with Python.” http://
travisgoodspeed.blogspot.de/2012/07/
emulating-usb-devices-with-python.
html, 2012. [Online; accessed 10-September-2014].

[4] R. van Tonder and H. Engelbrecht, “Lowering the USB
Fuzzing Barrier by Transparent Two-Way Emulation,
USENIX WOOT’14,” 2014.

[5] H. de Goede, “USB-Redirection protocol informa-
tion.” https://raw.githubusercontent.
com/SPICE/usbredir/master/
usb-redirection-protocol.txt, 2014.
[Online; accessed 10-September-2014].

[6] P. Biondi, “Scapy.” http://www.secdev.org/
projects/scapy/.

[7] “The USB ID Repository.” http://www.
linux-usb.org/usb-ids.html. [Online;
accessed 10-September-2014].

[8] “Global Interpreter Lock at wiki.python.org.”
https://wiki.python.org/moin/
GlobalInterpreterLock. [Online; accessed
10-September-2014].

6

