Abusing Software Defined Networks

Black hat Europe 2014, Amsterdam
Gregory Pickett, CISSP, GCIA, GPEN
Chicago, Illinois

gregory.pickett@hellfiresecurity.com
Overview

- What is it?
- Exploiting it!
- Fixing it!
- Moving Forward
- Wrapping Up
Modern Day Networks

- Vendor Dependent
- Difficult to scale
- Complex and Prone to Break
- Distributed and Often Inconsistent Configuration
- Uses inflexible and difficult to innovate protocols
- Unable to Consider Other Factors

... And Good Luck If You Want To Change It!
Enter . . . Software Defined Networking

- Separate the Control and Data Plane
 - Forwarding Decisions Made By a Controller
 - Switches and Routers Just Forward Packets

- Controllers
 - Programmed with the Intelligence
 - Full visibility of the Network
 - Can consider the totality of the network before making any decision
 - Enforce Granular Policy
Enter . . . Software Defined Networking

- Switches
 - Bare-Metal Only
 - Any Vendor . . . Hardware or Software
Solves Lots of Problems

- Less Expensive Hardware
- With BGP
 - Maintenance Dry-Out
 - Customer Egress Selection
 - Better BGP Security
 - Faster Convergence
 - Granular Peering at IXPs
Expands Our Capability

- Real-World Network Slicing of Flow Space
- Network and Server Load Balancing
- Security
 - Dynamic Access Control
 - Adaptive Traffic Monitoring
 - Attack Detection and Mitigation
Emerging Standards

Old and Busted
- SNMP
- BGP
- Netconf
- LISP
- PCEP

New Hotness
- OVSDB
- Openflow
Introducing Openflow

- Establishes Elements
 - Controller
 - Secure Channel
 - Forwarding Element
- Defines . . .
 - Forwarding Process
 - Messaging Format
Introducing Openflow

Forwarding Process
- Check Flow Table
- If Match Found, Execute Action
- If No Match, Send Packet to controller
- Update Flow Table

Flow Tables
- Match/Action Entries
- 12 fields available for matching
- Wildcard matching available
Introducing OpenFlow
Leading Platforms

Proprietary
- Cisco Application Policy Infrastructure Controller (APIC)
- Cisco Extensible Network Controller (XNC)
- HP Virtual Application Networks (VAN) SDN Controller
- IBM Programmable Network Controller

Open-Source
- Nox/Pox
- Ryu
- Floodlight
- OpenDaylight
Floodlight

- Open-Source Java Controller
- Primarily an Openflow-based controller
- Supports Openflow v1.0.0
- Fork from the Beacon Java Openflow controller
- Maintained by Big Switch Networks
Opendaylight

- Open-Source Java Controller
- Many southbound options including Openflow
- Supports Openflow v1.0.0 and v1.3.0
- Fork from the Beacon Java Openflow controller
- A Linux Foundation Collaborative Project
- Supported by Citrix, Red Hat, Ericsson, Hewlett Packard, Brocade, Cisco, Juniper, Microsoft, and IBM
So It’s Gonna Be All . . .

Not Exactly!
Protocol Weaknesses

- Encryption and Authentication via TLS
- More of a suggestion than a requirement though ...
 - Started Out Good
 - Heading Backwards
 - v1.0.0 over TLS
 - v1.4.0 over TCP or TLS
Protocol Weaknesses

Controllers
- Floodlight ... Nope
- Opendaylight ... Supported but not required

Switches
- Arista ... No
- Brocade ... Surprisingly, Yes
- Cisco ... Another, Yes
- Dell ... No
- Extreme ... Another, Yes
- HP ... No
Protocol Weaknesses

Switches

- Huawei ... No
- IBM ... No
- Juniper ... No
- NEC ... Another, Yes
- Netgear ... No
- Pronto ... Yes
- OVS ... No
Could Lead To . . .

- **Information Disclosure** through Interception
- **Modification through Man-in-the-Middle**
- And all sorts of **DoS Nastiness**!
DoS Nastiness

- Openflow
 - Centralization Entails Dependency
 - Dependency Can Be Exploited
 - How are vendors handling it?
- Floodlight
 - Explored by Solomon, Francis, and Eitan
 - Their Results ... Handling It Poorly
- Opendaylight
 - Unknown but worth investigating
 - It is Java for God Sake!
Tools

of-switch.py
- Impersonates an Openflow switch
- Utilizes Openflow v1.0.0

of-flood.py
- Floods an Openflow controller
- Disrupting the network and bringing it down
- Utilizes Openflow v1.0.0
Debug Ports

- No Encryption
- No Authentication
- Just Full Control of the Switch
- All Via “dpctl” command-line tool
- Not a problem yet . . .
- But Soon Will Be!
Controller Weaknesses

Floodlight
- No Encryption for Northbound HTTP API
- No Authentication for Northbound HTTP API

Opendaylight
- Encryption for Northbound HTTP API
 - Turned Off by Default
- Authentication for Northbound HTTP API
 - HTTP Basic Authentication
 - Default Password Weak
 - Strong Passwords Turned Off by Default
Could Lead To . . .

- **Information Disclosure** through Interception
 - Topology
 - Credentials
- **Information Disclosure through Unauthorized Access**
 - Topology
 - Targets
And . . .

+ Topology, Flow, and Message Modification through Unauthorized Access
 + Add Access
 + Remove Access
 + Hide Traffic
 + Change Traffic
Identifying Controllers and Switches

- Currently Listening on TCP Port 6633
- New Port Defined ... TCP Port 6653
- Hello's Exchanged
- Feature Request
 - Controller will send
 - Switch will not
Tools

of-check.py
- Identifies Openflow Services
- Reports on their Versions
- Compatible with any version of Openflow

of-enum.py
- Enumerates Openflow Endpoints
- Reports on their Type
- Compatible with any version of Openflow
of-enum.nse
- Enumerates Openflow Endpoints
- Reports on their Type
- Compatible with any version of Openflow
Demonstration
Some Attacks

- Small Local Area Network
 - One Admin Host
 - Two User Hosts
 - One Server
 - One IDS
- Attacker will ...
 - Identify Targets
 - Enumerate ACLs
 - Find Sensors
Tool

of-map.py
- Downloads flows from an Openflow controller
- Uses the flows
 - To identify targets and target services
 - To build ACLs
 - To identify sensors
- Works with Floodlight and Opendaylight via JSON
Demonstration
And Some More Attacks . . .

- Small Local Area Network
 - One Admin Host
 - Two User Hosts
 - One Server
 - One IDS

- Attacker will . . .
 - Gain Access to the Server
 - Isolate the Administrator
 - Hide from the IDS
 - And Attack the Server
Tool

of-access.py

- Modifies flows on the network through the Openflow Controller
- Adds or Removes access for hosts
- Applies transformations to their network activity
- Hides activity from sensors
- Works with Floodlight and Opendaylight via JSON
Demonstration
And Now Some Pwnage . . .

Sorry Linux Foundation!
Zero-Day Exploit

- Opendaylight has other southbound APIs besides Openflow
 - No Encryption for Southbound Netconf API
 - No Authentication for Southbound Netconf API
- Just Connect and Exchange Messages
 - XML-RPC
 - Remember Java?
- Boom Goes Opendaylight
- And it runs as “Root”
Demonstration
If No Exploit...

- Service Not Available or They Fix It
- Not to Worry
- Password Guess the !!!!!!
 - Default Password Weak
 - Strong Passwords Turned Off
 - No Account Lockout
 - No SYSLOG Output
Attackers will ...

- Identify Targets
- Enumerate ACLs
- Find Sensors
- Gain Access to the Server
- Isolate the Administrator
- Hide from the IDS
- And Attack the Server
- And Pwn That Network Too!
Other Exploits Waiting to Be Found!

Floodlight
- Northbound HTTP API
- Southbound Openflow API

Opendaylight
- Northbound HTTP API
- Southbound Openflow API
- Southbound Netconf API (TCP, SSH)
- Southbound Netconf Debug Port
Other Exploits Waiting to Be Found!

- Opendaylight
 - JMX Access
 - OSGi Console
 - Lisp Flow Mapping
 - ODL Internal Clustering RPC
 - ODL Clustering
 - Java Debug Access
Available Solutions

- For Now
- For the Future
For Now

- Transport Layer Security
 - Feasible?
 - Realistic?
- Hardening ... Duh!
- VLAN ... It’s the Network Stupid!
- Code Review Anyone?
For the Future

- Denial of Service (SDN Architecture)
 - Network Partitioning
 - Controller Clustering
 - Static Flow Entries
- Modification (SDN Applications)
 - Traffic Counters
 - Respond to Abnormalities
- Verification (SDN Operations)
How Prevalent Is It Going To Be?

- Gartner: 10 critical IT trends for the next five years
- Major Networking Vendors Have Products or Products Planned for SDN
- InformationWeek 2013 Survey
 - 60% felt that SDN would be part of their network within 5 Years
 - 43% already have plans to put it in production
Reported

While Data Centers/Clouds are the Killer App for SDN
 - NIPPON EXPRESS
 - FIDELITY INVESTMENTS
 - VMWARE

Starting to see it moving toward the LAN
 - Caltech
 - Cern

And WAN
 - Google, NTT, and AT&T
How It Could Go Right

- Vendor Independence and ultimately lower cost
- Networks that match the application and the businesses needs not the other way around
- Faster Evolution of the Network
 - Production-Scale Simulation and Experimentation
 - Exchangeable Network Aspects
- Dynamic and Truly Active Defenses
How It Could Go Wrong

- Denial of Service
 - Peer Node
 - External Node
 - Selectively Dropping Traffic?
- MiTM
 - Entire Networks
 - Local Subnets or Hosts
- Shadow Operations
 - Darknets
 - Uber Admins
Making the Difference

+ Traditional Means of Securing Controllers Still Apply
+ Security Needs to Be Part of the Discussion
+ Until Now ... How SDN Can Help Security
+ But How Secure is SDN?
+ Analyses being Done
 + But By Outsiders
 + Traditional Approach and 2-D
+ Controller’s Need A Security Reference and Audit Capability
Final Thoughts

- SDN has the potential to turn the entire Internet into a cloud
- Benefit would be orders of magnitude above what we see now
- But there is hole in the middle of it that could easily be filled by the likes of the NSA . . . or worse yet, China
- Let’s Not Let That Happen
- And That Start’s Here
Toolkit

SDN-Toolkit v1.01 for Openflow Networks

- Discover, Identify, and Manipulate SDN-Based Networks
- Floodlight and Opendaylight support through Northbound HTTP-Based APIs
- Openflow v1.0.0 support through Southbound Openflow APIs
- Python-Based

SHA1 hash is 5de4f56de0ce24cc5b4fcd691ff4e7e910e0b80b
Updates can be found at http://www.hellfiresecurity.com/
Links

- http://www.sdncentral.com/
- https://www.opennetworking.org/
- http://www.projectfloodlight.org/
- http://www.opendaylight.org/
- https://www.coursera.org/course/sdn
- http://www.openflowhub.org/blog/blog/2012/12/03/sdn-use-case-multipath-tcp-at-caltech-and-cern/