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motivation_keystore_buffer_overflow

• We discovered CVE-2014-3100, a stack-based Buffer 
Overflow in Keystore

• Service responsible for securely storing crypto related data

• We had privately reported to Google and they provided a 
patch available in KITKAT. Whitepaper.

• Exploit must overcome various defense mechanisms, including 
Stack Canaries.

/* KeyStore is a secured storage for key-value pairs. In this implementation,
 * each file stores one key-value pair. Keys are encoded in file names, and
 * values are encrypted with checksums. The encryption key is protected by a
 * user-defined password. To keep things simple, buffers are always larger than
 * the maximum space we needed, so boundary checks on buffers are omitted. */

http://www.slideshare.net/ibmsecurity/android-keystorestackbufferoverflow
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Stack canaries and their enforcement

LR

Saved 
Registers

Canary
 (32 bits)

Buffer

Stack 
layout

Linux PRNG

AUXV(AT_RANDOM)

__stack_chk_guard

Stack Guard 
initialization

32 bits

128 
bits

• On libbionic load:
__stack_chk_guard = *(uintptr_t *)getauxval(AT_RANDOM));

• Function Prologue:
● Place __stack_chk_guard on the stack (before ret).

• Function Epilogue:
● Compare saved stack canary with __stack_chk_guard;
  → Crash if mismatch
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Canary origins; *nix process creation model 
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● Place __stack_chk_guard on the stack (before ret).

• Function Epilogue:
● Compare saved stack canary with __stack_chk_guard;
  → Crash if mismatch

● fork() → execve().
● execve() → Auxiliary vector (AUXV) 
● AUXV[AT_RANDOM] = 16 Random bytes from the PRNG
● libbionic assigns canary = first 4 bytes of AT_RANDOM

Canary origins; *nix process creation model

Remember this; We'll get back to it
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• Impractical: 2^32 attempts on average. 

• Online Learning of the Canary Value
• By another info  leak issue
• Re-forking server:

•  Very efficient: 514 attempts until 
success on average

• Overwrite __stack_chk_guard
• By overwriting some pointer

• Our attack: Offline reconstruction of the 
PRNG’s internal state
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Wrap things up: 

• We found a vulnerability in a critical service 
in Android 4.3.

• In an effort to exploit it, we had to overcome 
a stack canary, we couldn't do so using 
known techniques.

• Canaries are 4 random bytes that are 
extracted from the Linux PRNG.

• Aimed to find a weakness in the PRNG that 
will allow us to intelligently guess the canary. 

• End up with a full-fledged attack on the Linux 
PRNG.
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LINUX PRNG



INPUT POOL

BLOCKING POOL

NON-BLOCKING POOL
/dev/urandom

/dev/random

get_random_bytes()

lprng_overview

Bird's eye view

• Output is hashed twice using SHA1
• Extracts in blocks of 10 bytes and truncates if necessary.
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boot_timeline

Device
powers on
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PRNG is
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Kernel boot
Finished & 

Platform starts
booting

Input Pool mixed
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OUR WORK



Prior art on weakness in early boot *

Present practical run-time attack

Formalize attack

Demonstrate PoC against current mobile platforms

contribution

* Heninger et al. 2012, Becherer et al. 2009, Ding et al. 2014



Given a LEAK of a value extracted from the non-blocking pool and 

LOW ENTROPY AT BOOT, the STATE of the PRNG can be 

determined until external entropy is too high

attack_outcome



NON-BLOCKING-POOL

seed_t1

EXTRACTION (PULL)

63            31             0 

seconds nseconds

Using the PRNG against itself

● Recall: Low boot-time entropy degenerates 
the PRNG and that the output of the PRNG is 
hashed twice using SHA1. 

● Fact: Crypto. hash functions are designed to 
be collision resistant.  
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Using the PRNG against itself

● Recall: Low boot-time entropy degenerates 
the PRNG and that the output of the PRNG is 
hashed twice using SHA1. 

● Fact: Crypto. hash functions are designed to 
be collision resistant.

● It is highly unlikely that PRNGs that are 
seeded with different seeds will result in the 
same output. Regardless of the order of 
extractions.

● Result: Every leak(sequence of random 
bytes) from the non blocking pool is almost 
certainly the offspring of one specific seed.
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Using the PRNG against itself

● Given a leak from the nonblocking pool of a 
“Real” PRNG we could simulate offline PRNGs 
with different seeds and compare extractions 
with the online leak.
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Using the PRNG against itself

● Given a leak from the nonblocking pool of a 
“Real” PRNG we could simulate offline PRNGs 
with different seeds and compare extractions 
with the online leak.

● Due to SHA1's collision resistance, if one of 
the simulated PRNGs produces a sequence of 
random bytes that is the same as the leak 
value – we almost certainly found the seed.

● Once we have the seed we can produce the 
same outputs of the “Real” PRNG until noise 
from the Input pool is mixed to the 
Nonblocking pool
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Even After the mixing, the PRNG is vulnerable

● Note: in the whitepaper we demonstrated a 
more intricate attack flow
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Problems we faced:

● The Nonblocking pool seed is 8 bytes long, 
Say we consider only the nanoseconds and 
assuming uniform distribution
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● Hidden entropy source – Concurrency
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Problems we faced:

● The Nonblocking pool seed is 8 bytes long, 
Say we consider only the nanoseconds and 
assuming uniform distribution

  
● Hidden entropy source – Concurrency

● What can be attacked?
● Where can we get the leak value?
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Where can we find leaks and attack targets ?
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Terminology
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1st Attack Vector
Malware → PRNG Seed →

 Keystore's Canary
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● Samsung Galaxy S4, Android 4.3
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Instrumenting a device

● Samsung Galaxy S4, Android 4.3

● printk() input and nonblocking pool seeds - 
find a bias in the seed value

● printk() get_random_bytes() callers and 
amount of random bytes requested – find 
leak and attack targets

● Fixed the seeds to see catch some bias in 
the order of extractions – find bias in conc. 

● In total, we rebooted(script) the device more 
than 2000 times, each time we dumped the 
kernel ring buffer to a file.  

s4_offline_study
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Details

● Android designers chose to spawn every app 
process by forking a master process – Zygote
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Details

● Android designers chose to spawn every app 
process by forking a master process – Zygote

● Zygote(app_process) is fork'ed and exec'ed by 
init at platform boot-time

● *nix-like vs. App process creation model.    
Exec() ?

● Recall: exec() enforces ASLR and assigns the 
AT_RANDOM
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Details

● Result: All Applications in Android has the 
same Canary value (AT_RANDOM) and largely 
the same address space layout
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finding the original seed ? 

● Zygote's AT_RANDOM is our leak
It's a platform boot-time leak, which means It 
occurs in the 'Concurrency Hell' phase

● An offline study of the samples revealed bias 
towards a specific extraction path from the 
nonblocking pool

● 20% of the samples had Zygote's AT_RANDOM 
bytes somewhere in the extraction path 
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 2nd Attack Vector
Ping6 → PRNG Seed →

 IPv6 Fragment Injection &
Getting Keystore's Canary

file:///home/davidka/rtc-workspace/Attacking%20the%20Linux%20PRNG%20on%20Android/prng_demo_3.avi
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Instrumenting a device

● Samsung Galaxy S2, Android 4.1.2

● printk() input and nonblocking pool seeds - 
find a bias in the seed value

● printk() get_random_bytes() callers and 
amount of random bytes requested – find 
leak and attack targets

● Fixed the seeds to see catch some bias in 
the order of extractions – find bias in conc. 

● In total, we rebooted(script) the device more 
than 2000 times, each time we dumped the 
kernel ring buffer to a file.  
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Details

● While the kernel is brought up, an IPv6 module 
initializes and extracts 4 random bytes.  Lets 
call them rand.
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Details

● While the kernel is brought up, an IPv6 module 
initializes and extracts 4 random bytes.  Lets 
call them rand.

● IPv6 packet fragment identifier is computed by 
a deterministic function.

  
● The pair (ipv6_dst_addr,ipv6_frag_id) is our leak.

Why?

● We simulate PRNGs up to rand, and feed it to 
the deterministic function  f
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Details

● While the kernel is brought up, an IPv6 module 
initializes and extracts 4 random bytes.  Lets 
call them rand.

● IPv6 packet fragment identifier is computed by 
a deterministic function.

  
● The pair (ipv6_dst_addr,ipv6_frag_id) is our leak.

Why?

● We simulate PRNGs up to rand, and feed it to 
the deterministic function  f

● OK, fine, but how did you get ipv6_dst_addr?
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IPv6 fragmentation & ICMPv6 Echo Req.

● IP packets that exceed the path MTU, are 
divided into fragments which are sent and 
then reassembled by receiver. 
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● IP packets that exceed the path MTU, are 
divided into fragments which are sent and 
then reassembled by receiver. 

● Each fragment of the packet contains  the 
same fragment id.  Which is used by the 
receiver to identify fragments of a packet.
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IPv6 fragmentation & ICMPv6 Echo Req.

● IP packets that exceed the path MTU, are 
divided into fragments which are sent and 
then reassembled by receiver. 

● Each fragment of the packet contains  the 
same fragment id.  Which is used by the 
receiver to identify fragments of a packet.

● IPv6 fragmentation doesn't happen very 
often. How do we make it happen ?

 

s2_attack_leak

leak/target



IPv6 fragmentation & ICMPv6 Echo Req.

● Ping6 – a utility for sending ICMPv6 Echo 
Requests which requires the target to 
send an ICMPv6 Echo Replay with the 
exactly the same data.
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IPv6 fragmentation & ICMPv6 Echo Req.

● Ping6 – a utility for sending ICMPv6 Echo 
Requests which requires the target to 
send an ICMPv6 Echo Replay with the 
exactly the same data.

● Result: Sending ICMPv6 Echo Request 
with data > MTU will make the receiver 
send a fragmented reply
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Given the seed what can we attack ?

● IPv6 Fragment injection – We can derive the 
exact fragment id V will use for any destination 
address.
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Given the seed what can we attack ?

● IPv6 Fragment injection – We can derive the 
exact fragment id V will use for any destination 
address. 

● Canary value of early boot services.
For instance, with a probability of 1/20 we can 
compute Keystore's canary value, given the 
seed. 
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Current mitigations

● Save entropy across boots  

● Trusted external entropy injection – 
web service / HWRNG
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Entropy injection occurs after the 
kernel boots up 
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Current mitigations

● Initialize the seeds using a hardware RNG 
● RDRAND,RDSEED Intel's ISA
● Early random, Qualcomm
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mitigations

Current mitigations

● Initialize the seeds using a hardware RNG 
● RDRAND,RDSEED Intel's ISA
● Early random, Qualcomm

● Mix device-specific data to nonblocking and 
blocking pools

● Changes to newer kernels allow for more 
boot time entropy 
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ktime_t ktime_t

EXTRACTION (PULL)
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time
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talk_wrap_up

• Linux-based devices with low boot time entropy may 
allow a practical, low-cost attack on the PRNG

• The attack requires an offline study of a device and an 
online leak

• Allows the attacker to predict a random number which is 
generated by the victim's PRNG

• Two manifestations  - Local/Remote Atk.

• Mitigations



?
Thank you

Thanks Nadja Kahan for the illustrations !
http://www.nadjakahan.com
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