
Attacking the Linux PRNG on
Android & Embedded Devices

David Kaplan, Sagi Kedmi, Roee Hay & Avi Dayan

IBM Security Systems

agenda

• Motivation and Introduction
• Linux Random Number Generator

agenda

• Motivation and Introduction
• Linux Random Number Generator
• Our Attack
• 1st Attack Vector – Local Atk.
• Demo
• 2nd Attack Vector – Remote Atk.

agenda

• Motivation and Introduction
• Linux Random Number Generator
• Our Attack
• 1st Attack Vector – Local Atk.
• Demo
• 2nd Attack Vector – Remote Atk.
• Mitigations

MOTIVATION

motivation_keystore_buffer_overflow

• We discovered CVE-2014-3100, a stack-based Buffer
Overflow in Keystore

• Service responsible for securely storing crypto related data

• We had privately reported to Google and they provided a
patch available in KITKAT. Whitepaper.

• Exploit must overcome various defense mechanisms, including
Stack Canaries.

/* KeyStore is a secured storage for key-value pairs. In this implementation,
 * each file stores one key-value pair. Keys are encoded in file names, and
 * values are encrypted with checksums. The encryption key is protected by a
 * user-defined password. To keep things simple, buffers are always larger than
 * the maximum space we needed, so boundary checks on buffers are omitted. */

http://www.slideshare.net/ibmsecurity/android-keystorestackbufferoverflow

motivation_keystore_buffer_overflow

Stack canaries and their enforcement

LR

Saved
Registers

Canary
 (32 bits)

Buffer

Stack
layout

Linux PRNG

AUXV(AT_RANDOM)

__stack_chk_guard

Stack Guard
initialization

32 bits

128
bits

• On libbionic load:
__stack_chk_guard = *(uintptr_t *)getauxval(AT_RANDOM));

• Function Prologue:
● Place __stack_chk_guard on the stack (before ret).

• Function Epilogue:
● Compare saved stack canary with __stack_chk_guard;
 → Crash if mismatch

motivation_keystore_buffer_overflow

Stack canaries and their enforcement

LR

Saved
Registers

Canary
 (32 bits)

Buffer

Stack
layout

Linux PRNG

AUXV(AT_RANDOM)

__stack_chk_guard

Stack Guard
initialization

32 bits

128
bits

• On libbionic load:
__stack_chk_guard = *(uintptr_t *)getauxval(AT_RANDOM));

• Function Prologue:
● Place __stack_chk_guard on the stack (before ret).

• Function Epilogue:
● Compare saved stack canary with __stack_chk_guard;
 → Crash if mismatch

● fork() → execve().
● execve() → Auxiliary vector (AUXV)
● AUXV[AT_RANDOM] = 16 Random bytes from the PRNG
● libbionic assigns canary = first 4 bytes of AT_RANDOM

Canary origins; *nix process creation model

motivation_keystore_buffer_overflow

Stack canaries and their enforcement

LR

Saved
Registers

Canary
 (32 bits)

Buffer

Stack
layout

Linux PRNG

AUXV(AT_RANDOM)

__stack_chk_guard

Stack Guard
initialization

32 bits

128
bits

• On libbionic load:
__stack_chk_guard = *(uintptr_t *)getauxval(AT_RANDOM));

• Function Prologue:
● Place __stack_chk_guard on the stack (before ret).

• Function Epilogue:
● Compare saved stack canary with __stack_chk_guard;
 → Crash if mismatch

● fork() → execve().
● execve() → Auxiliary vector (AUXV)
● AUXV[AT_RANDOM] = 16 Random bytes from the PRNG
● libbionic assigns canary = first 4 bytes of AT_RANDOM

Canary origins; *nix process creation model

Remember this; We'll get back to it

motivation_keystore_buffer_overflow

LR

Saved
Registers

Canary
 (32 bits)

Buffer

Stack
layout

Linux PRNG

AUXV(AT_RANDOM)

__stack_chk_guard

Stack Guard
initialization

32 bits

128
bits

Attacks on the Stack-Smashing Protection:

• Naive Online Bruteforce of the Canary Value
• Impractical: 2^32 attempts on average.

motivation_keystore_buffer_overflow

LR

Saved
Registers

Canary
 (32 bits)

Buffer

Stack
layout

Linux PRNG

AUXV(AT_RANDOM)

__stack_chk_guard

Stack Guard
initialization

32 bits

128
bits

Attacks on the Stack-Smashing Protection:

• Naive Online Bruteforce of the Canary Value
• Impractical: 2^32 attempts on average.

• Online Learning of the Canary Value
• By another info leak issue
• Re-forking server:

• Very efficient: 514 attempts until
success on average

motivation_keystore_buffer_overflow

LR

Saved
Registers

Canary
 (32 bits)

Buffer

Stack
layout

Linux PRNG

AUXV(AT_RANDOM)

Stack Guard
initialization

32 bits

128
bits

__stack_chk_guard

Attacks on the Stack-Smashing Protection:

• Naive Online Bruteforce of the Canary Value
• Impractical: 2^32 attempts on average.

• Online Learning of the Canary Value
• By another info leak issue
• Re-forking server:

• Very efficient: 514 attempts until
success on average

• Overwrite __stack_chk_guard
• By overwriting some pointer

motivation_keystore_buffer_overflow

LR

Saved
Registers

Canary
 (32 bits)

Buffer

Attacks on the Stack-Smashing Protection:

• Naive Online Bruteforce of the Canary Value
• Impractical: 2^32 attempts on average.

• Online Learning of the Canary Value
• By another info leak issue
• Re-forking server:

• Very efficient: 514 attempts until
success on average

• Overwrite __stack_chk_guard
• By overwriting some pointer

• Our attack: Offline reconstruction of the
PRNG’s internal state

Stack
layout

Linux PRNG

AUXV(AT_RANDOM)

Stack Guard
initialization

32 bits

128
bits

__stack_chk_guard __stack_chk_guard __stack_chk_guard

motivation_wrap_up

LR

Saved
Registers

Canary
 (32 bits)

Buffer

Wrap things up:

• We found a vulnerability in a critical service
in Android 4.3.

• In an effort to exploit it, we had to overcome
a stack canary, we couldn't do so using
known techniques.

• Canaries are 4 random bytes that are
extracted from the Linux PRNG.

• Aimed to find a weakness in the PRNG that
will allow us to intelligently guess the canary.

• End up with a full-fledged attack on the Linux
PRNG.

Stack
layout

Linux PRNG

AUXV(AT_RANDOM)

Stack Guard
initialization

32 bits

128
bits

__stack_chk_guard __stack_chk_guard __stack_chk_guard

LINUX PRNG

INPUT POOL

BLOCKING POOL

NON-BLOCKING POOL
/dev/urandom

/dev/random

get_random_bytes()

lprng_overview

Bird's eye view

• Output is hashed twice using SHA1
• Extracts in blocks of 10 bytes and truncates if necessary.

INPUT POOL NON-BLOCKING-POOL

ktime_t ktime_t

EXTRACTION (PULL)

INTERRUPT

DISK

INPUT

T
I
M
E
R

time

if KEC >= 192 bits

*KEC = Kernel Entropy Count

entropy_sources

63 31 0

seconds nanoseconds

INPUT POOL NON-BLOCKING-POOL

ktime_t ktime_t

EXTRACTION (PULL)

INTERRUPT

DISK

INPUT

T
I
M
E
R

time

if KEC < 192 bits

*KEC = Kernel Entropy Count

boot_time_vulnerability

63 31 0

seconds nanoseconds

NON-BLOCKING-POOL

ktime_t

EXTRACTION (PULL)

boot_time_vulnerability

63 31 0

seconds nanoseconds

boot_timeline

Device
powers on

Kernel
starts booting

PRNG is
initialized

Kernel boot
Finished &

Platform starts
booting

Input Pool mixed
into Nonblocking

Pool :(

Phone is
ready

May occur
In different

order

OUR WORK

Prior art on weakness in early boot *

Present practical run-time attack

Formalize attack

Demonstrate PoC against current mobile platforms

contribution

* Heninger et al. 2012, Becherer et al. 2009, Ding et al. 2014

Given a LEAK of a value extracted from the non-blocking pool and

LOW ENTROPY AT BOOT, the STATE of the PRNG can be

determined until external entropy is too high

attack_outcome

NON-BLOCKING-POOL

seed_t1

EXTRACTION (PULL)

63 31 0

seconds nseconds

Using the PRNG against itself

● Recall: Low boot-time entropy degenerates
the PRNG and that the output of the PRNG is
hashed twice using SHA1.

● Fact: Crypto. hash functions are designed to
be collision resistant.

attack_leak

NON-BLOCKING-POOL

EXTRACTION (PULL)≠

seed_t2

seed_t1

63 31 0

seconds nseconds

NON-BLOCKING-POOL

seed_t1

EXTRACTION (PULL)

63 31 0

seconds nseconds

Using the PRNG against itself

● Recall: Low boot-time entropy degenerates
the PRNG and that the output of the PRNG is
hashed twice using SHA1.

● Fact: Crypto. hash functions are designed to
be collision resistant.

● It is highly unlikely that PRNGs that are
seeded with different seeds will result in the
same output. Regardless of the order of
extractions.

attack_leak

NON-BLOCKING-POOL

EXTRACTION (PULL)≠

seed_t2

seed_t1

63 31 0

seconds nseconds

NON-BLOCKING-POOL

seed_t1

EXTRACTION (PULL)

63 31 0

seconds nseconds

Using the PRNG against itself

● Recall: Low boot-time entropy degenerates
the PRNG and that the output of the PRNG is
hashed twice using SHA1.

● Fact: Crypto. hash functions are designed to
be collision resistant.

● It is highly unlikely that PRNGs that are
seeded with different seeds will result in the
same output. Regardless of the order of
extractions.

● Result: Every leak(sequence of random
bytes) from the non blocking pool is almost
certainly the offspring of one specific seed.

attack_leak

NON-BLOCKING-POOL

EXTRACTION (PULL)≠

seed_t2

seed_t1

63 31 0

seconds nseconds

Using the PRNG against itself

● Given a leak from the nonblocking pool of a
“Real” PRNG we could simulate offline PRNGs
with different seeds and compare extractions
with the online leak.

attack_overview
REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

Using the PRNG against itself

● Given a leak from the nonblocking pool of a
“Real” PRNG we could simulate offline PRNGs
with different seeds and compare extractions
with the online leak.

● Due to SHA1's collision resistance, if one of
the simulated PRNGs produces a sequence of
random bytes that is the same as the leak
value – we almost certainly found the seed.

attack_overview
REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

Using the PRNG against itself

● Given a leak from the nonblocking pool of a
“Real” PRNG we could simulate offline PRNGs
with different seeds and compare extractions
with the online leak.

● Due to SHA1's collision resistance, if one of
the simulated PRNGs produces a sequence of
random bytes that is the same as the leak
value – we almost certainly found the seed.

● Once we have the seed we can produce the
same outputs of the “Real” PRNG until noise
from the Input pool is mixed to the
Nonblocking pool

attack_overview
REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

Even After the mixing, the PRNG is vulnerable

● Note: in the whitepaper we demonstrated a
more intricate attack flow

attack_overview
REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

Problems we faced:

● The Nonblocking pool seed is 8 bytes long,
Say we consider only the nanoseconds and
assuming uniform distribution

attack_overview

109
=2

log2 (10
9
)
≃230

63 31 0

seconds nanoseconds

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

Problems we faced:

● The Nonblocking pool seed is 8 bytes long,
Say we consider only the nanoseconds and
assuming uniform distribution

● Hidden entropy source – Concurrency

attack_overview

109
=2

log2 (10
9
)
≃230

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

1

2

3

4

3

4

POOL
STATE

Yellow Path

- Process A: extract from pool

- Process A: mix into pool

- Process B: extract from pool

- Process B: mix into pool

Green Path

- Process A: extract from pool

- Process B: extract from pool

- Process A: mix into pool

- Process B: mix into pool

Problems we faced:

● The Nonblocking pool seed is 8 bytes long,
Say we consider only the nanoseconds and
assuming uniform distribution

● Hidden entropy source – Concurrency

● What can be attacked?
● Where can we get the leak value?

attack_overview

109
=2

log2 (10
9
)
≃230

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

Where can we find leaks and attack targets ?

attack_overview

Kernel
starts booting

PRNG is
initialized

Kernel boot
Finished &

Platform starts
booting

Input Pool mixed
into Nonblocking

Pool :(

Phone is
ready

Concurrency Hell

Best
Leak/Target

Good
Leak/Target

Bad
Leak/Target

Device
powers on

Terminology

attack_overview

Device
powers on

Kernel
starts booting

PRNG is
initialized

Kernel boot
Finished &

Platform starts
booting

Input Pool mixed
into Nonblocking

Pool :(

Phone is
ready

Kernel
Boot-time

Leak/Target

Platform
Boot-time

Leak/Target

Concurrency Hell

Best
Leak/Target

Good
Leak/Target

Bad
Leak/Target

1st Attack Vector
Malware → PRNG Seed →

 Keystore's Canary

Instrumenting a device

● Samsung Galaxy S4, Android 4.3

s4_offline_study

Instrumenting a device

● Samsung Galaxy S4, Android 4.3

● printk() input and nonblocking pool seeds -
find a bias in the seed value

● printk() get_random_bytes() callers and
amount of random bytes requested – find
leak and attack targets

s4_offline_study

Instrumenting a device

● Samsung Galaxy S4, Android 4.3

● printk() input and nonblocking pool seeds -
find a bias in the seed value

● printk() get_random_bytes() callers and
amount of random bytes requested – find
leak and attack targets

● Fixed the seeds to see catch some bias in
the order of extractions – find bias in conc.

s4_offline_study

Instrumenting a device

● Samsung Galaxy S4, Android 4.3

● printk() input and nonblocking pool seeds -
find a bias in the seed value

● printk() get_random_bytes() callers and
amount of random bytes requested – find
leak and attack targets

● Fixed the seeds to see catch some bias in
the order of extractions – find bias in conc.

● In total, we rebooted(script) the device more
than 2000 times, each time we dumped the
kernel ring buffer to a file.

s4_offline_study

Details

s4_attack_leak

Kernel
starts booting

PRNG is
initialized

Kernel boot
Finished &

Platform starts
booting

Input Pool mixed
into Nonblocking

Pool :(

Phone is
ready

Concurrency Hell

Best
Leak/Target

Good
Leak/Target

Bad
Leak/Target

Device
powers on

Platform
Boot-time

Leak/Target

Details

● Android designers chose to spawn every app
process by forking a master process – Zygote

s4_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

leak/target

Details

● Android designers chose to spawn every app
process by forking a master process – Zygote

● Zygote(app_process) is fork'ed and exec'ed by
init at platform boot-time

s4_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

leak/target

Details

● Android designers chose to spawn every app
process by forking a master process – Zygote

● Zygote(app_process) is fork'ed and exec'ed by
init at platform boot-time

● *nix-like vs. App process creation model.
Exec() ?

s4_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

leak/target

Details

● Android designers chose to spawn every app
process by forking a master process – Zygote

● Zygote(app_process) is fork'ed and exec'ed by
init at platform boot-time

● *nix-like vs. App process creation model.
Exec() ?

● Recall: exec() enforces ASLR and assigns the
AT_RANDOM

s4_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

leak/target

Details

● Result: All Applications in Android has the
same Canary value (AT_RANDOM) and largely
the same address space layout

s4_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...
fork()

AUXV(AT_RANDOM)

Zygote Linux PRNG

AUXV(AT_RANDOM) – Zygote's

WhatsApp
AUXV(AT_RANDOM) – Zygote's

Contacts
AUXV(AT_RANDOM) – Zygote's

MALWARE

fork()

leak/target

Details

● Result: All Applications in Android has the
same Canary value (AT_RANDOM) and largely
the same address space layout

s4_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...
fork()

AUXV(AT_RANDOM)

Zygote Linux PRNG

AUXV(AT_RANDOM) – Zygote's

WhatsApp
AUXV(AT_RANDOM) – Zygote's

Contacts
AUXV(AT_RANDOM) – Zygote's

MALWARE

fork() fork()

leak/target

s4_attack_leak_concurrency

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

Given a leak, what's the probability of
finding the original seed ?

● Zygote's AT_RANDOM is our leak
It's a platform boot-time leak, which means It
occurs in the 'Concurrency Hell' phase

leak/target

s4_attack_leak_concurrency

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

Given a leak, what's the probability of
finding the original seed ?

● Zygote's AT_RANDOM is our leak
It's a platform boot-time leak, which means It
occurs in the 'Concurrency Hell' phase

● An offline study of the samples revealed bias
towards a specific extraction path from the
nonblocking pool

leak/target

s4_attack_leak_concurrency

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

Given a leak, what's the probability of
finding the original seed ?

● Zygote's AT_RANDOM is our leak
It's a platform boot-time leak, which means It
occurs in the 'Concurrency Hell' phase

● An offline study of the samples revealed bias
towards a specific extraction path from the
nonblocking pool

● 20% of the samples had Zygote's AT_RANDOM
bytes somewhere in the extraction path

leak/target

s4_attack_leak_concurrency

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

Given a leak, what's the probability of
finding the original seed ?

● Given a leak and assuming we try all 230

possible seeds the chance is

leak/target

1
5

H (snb)=23.5bits

s4_non-blocking_seed

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

leak/target

= LEAK ?

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

s4_attack_targets

leak/target

Given a seed, Probabilities of finding
the canary of early boot services

= LEAK ?

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

Given a seed, Probabilities of finding
the canary of early boot services

SIM.
PRNG

seed_t_k

RANDOM VALUE

s4_attack_targets

leak/target

6
100

= LEAK ?

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

Given Zygote's AT_RANDOM, the
probability of guessing the Keystore's
canary value is:

SIM.
PRNG

seed_t_k

RANDOM VALUE

s4_attack_targets

leak/target

1
5
⋅

6
100

≃0.01→1%

Remember where we came from...
we needed to guess 32 random bits

= LEAK ?

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

Given Zygote's AT_RANDOM, the
probability of guessing the Keystore's
canary value is:

SIM.
PRNG

seed_t_k

RANDOM VALUE

s4_attack_targets

leak/target

1
5
⋅

6
100

≃0.01→1%

1

232≃0.00000000023→0.000000023 %

DEMO

s4_demo

= LEAK ?

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

SIM.
PRNG

seed_t_k

RANDOM VALUE

leak/target

 2nd Attack Vector
Ping6 → PRNG Seed →

 IPv6 Fragment Injection &
Getting Keystore's Canary

file:///home/davidka/rtc-workspace/Attacking%20the%20Linux%20PRNG%20on%20Android/prng_demo_3.avi

Instrumenting a device

● Samsung Galaxy S2, Android 4.1.2

s2_offline_study

Instrumenting a device

● Samsung Galaxy S2, Android 4.1.2

● printk() input and nonblocking pool seeds -
find a bias in the seed value

● printk() get_random_bytes() callers and
amount of random bytes requested – find
leak and attack targets

s2_offline_study

Instrumenting a device

● Samsung Galaxy S2, Android 4.1.2

● printk() input and nonblocking pool seeds -
find a bias in the seed value

● printk() get_random_bytes() callers and
amount of random bytes requested – find
leak and attack targets

● Fixed the seeds to see catch some bias in
the order of extractions – find bias in conc.

s2_offline_study

Instrumenting a device

● Samsung Galaxy S2, Android 4.1.2

● printk() input and nonblocking pool seeds -
find a bias in the seed value

● printk() get_random_bytes() callers and
amount of random bytes requested – find
leak and attack targets

● Fixed the seeds to see catch some bias in
the order of extractions – find bias in conc.

● In total, we rebooted(script) the device more
than 2000 times, each time we dumped the
kernel ring buffer to a file.

s2_offline_study

Details

s2_attack_leak

Kernel
starts booting

PRNG is
initialized

Kernel boot
Finished &

Platform starts
booting

Input Pool mixed
into Nonblocking

Pool :(

Phone is
ready

Concurrency Hell

Best
Leak/Target

Good
Leak/Target

Bad
Leak/Target

Device
powers on

Kernel
Boot-time

Leak/Target

Details

● While the kernel is brought up, an IPv6 module
initializes and extracts 4 random bytes. Lets
call them rand.

s2_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

leak/target

Details

● While the kernel is brought up, an IPv6 module
initializes and extracts 4 random bytes. Lets
call them rand.

● IPv6 packet fragment identifier is computed by
a deterministic function.

s2_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

leak/target

f(rand, ipv6_dst_addr)=ipv6_frag_id

Details

● While the kernel is brought up, an IPv6 module
initializes and extracts 4 random bytes. Lets
call them rand.

● IPv6 packet fragment identifier is computed by
a deterministic function.

● The pair (ipv6_dst_addr,ipv6_frag_id) is our leak.
Why?

s2_attack_leak

REAL
PRNG

= LEAK ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

leak/target

f(rand, ipv6_dst_addr)=ipv6_frag_id

Details

● While the kernel is brought up, an IPv6 module
initializes and extracts 4 random bytes. Lets
call them rand.

● IPv6 packet fragment identifier is computed by
a deterministic function.

● The pair (ipv6_dst_addr,ipv6_frag_id) is our leak.

Why?

● We simulate PRNGs up to rand, and feed it to
the deterministic function f

s2_attack_leak

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

f(rand, ipv6_dst_addr)=ipv6_frag_id

Details

● While the kernel is brought up, an IPv6 module
initializes and extracts 4 random bytes. Lets
call them rand.

● IPv6 packet fragment identifier is computed by
a deterministic function.

● The pair (ipv6_dst_addr,ipv6_frag_id) is our leak.

Why?

● We simulate PRNGs up to rand, and feed it to
the deterministic function f

● OK, fine, but how did you get ipv6_dst_addr?

s2_attack_leak

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

f(rand, ipv6_dst_addr)=ipv6_frag_id

IPv6 fragmentation & ICMPv6 Echo Req.

● IP packets that exceed the path MTU, are
divided into fragments which are sent and
then reassembled by receiver.

s2_attack_leak

leak/target

IPv6 fragmentation & ICMPv6 Echo Req.

● IP packets that exceed the path MTU, are
divided into fragments which are sent and
then reassembled by receiver.

● Each fragment of the packet contains the
same fragment id. Which is used by the
receiver to identify fragments of a packet.

s2_attack_leak

leak/target

IPv6 fragmentation & ICMPv6 Echo Req.

● IP packets that exceed the path MTU, are
divided into fragments which are sent and
then reassembled by receiver.

● Each fragment of the packet contains the
same fragment id. Which is used by the
receiver to identify fragments of a packet.

● IPv6 fragmentation doesn't happen very
often. How do we make it happen ?

s2_attack_leak

leak/target

IPv6 fragmentation & ICMPv6 Echo Req.

● Ping6 – a utility for sending ICMPv6 Echo
Requests which requires the target to
send an ICMPv6 Echo Replay with the
exactly the same data.

s2_attack_leak

leak/target

IPv6 fragmentation & ICMPv6 Echo Req.

● Ping6 – a utility for sending ICMPv6 Echo
Requests which requires the target to
send an ICMPv6 Echo Replay with the
exactly the same data.

● Result: Sending ICMPv6 Echo Request
with data > MTU will make the receiver
send a fragmented reply

s2_attack_leak

leak/target

s2_attack_get_leak

Amsterdam
Schiphol
Airport

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

s2_attack_get_leak

Amsterdam
Schiphol
Airport

A

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

s2_attack_get_leak

Amsterdam
Schiphol
Airport

SSID=
Schiphol
Free

A

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

s2_attack_get_leak

Amsterdam
Schiphol
Airport

SSID=
Schiphol
Free

A V

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

s2_attack_get_leak

Amsterdam
Schiphol
Airport

SSID=
Schiphol
Free

Fragmented ICMPv6
 Echo Request

A V

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

s2_attack_get_leak

Amsterdam
Schiphol
Airport

SSID=
Schiphol
Free

Fragmented ICMPv6
 Echo Request

Fragmented ICMPv6
 Echo Reply

A V

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

s2_attack_get_leak

Amsterdam
Schiphol
Airport

SSID=
Schiphol
Free

Fragmented ICMPv6
 Echo Request

Fragmented ICMPv6
 Echo Reply

Attacker got the leak:
● V computed ipv6_frag_id

with A's ipv6_src_addr
● A knows ipv6_frag_id and

ipv6_dst_addr.

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

leak/target

A V

s2_attack_finding_seed

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

Given the leak we find the seed

H (snb)=18.4bits

leak/target

s2_attack_targets

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

Given the seed what can we attack ?

● IPv6 Fragment injection – We can derive the
exact fragment id V will use for any destination
address.

leak/target

s2_attack_targets

REAL
PRNG

= ipv6_frag_id ?

seed_t_k

LEAK

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

Given the seed what can we attack ?

● IPv6 Fragment injection – We can derive the
exact fragment id V will use for any destination
address.

● Canary value of early boot services.
For instance, with a probability of 1/20 we can
compute Keystore's canary value, given the
seed.

targetleak

= ipv6_frag_id ?

SIM.
PRNG

seed_t_1

SIM.
PRNG

seed_t_k

SIM .
PRNG

seed_t_n

... ...

rand_t_1 rand_t_k

f(rnd,dst) f(rnd,dst) f(rnd,dst)

rand_t_n

SIM.
PRNG

seed_t_k

RANDOM VALUE

s2_attack_targets
Probabilities of finding the canary
of early boot services

leak target

Mitigations

mitigations
Current mitigations

● Save entropy across boots

INPUT POOL NON-BLOCKING-POOL

ktime_t ktime_t

EXTRACTION (PULL)

T
I
M
E
R

INTERRUPT

DISK

INPUT

time

if KEC >= 192 bits

mitigations
Current mitigations

● Save entropy across boots

● Trusted external entropy injection –
web service / HWRNG

INPUT POOL NON-BLOCKING-POOL

ktime_t ktime_t

EXTRACTION (PULL)

T
I
M
E
R

INTERRUPT

DISK

INPUT

time

if KEC >= 192 bits

mitigations

Problem with those mitigations

Kernel
starts booting

PRNG is
initialized

Kernel boot
Finished &

Platform starts
booting

Input Pool mixed
into Nonblocking

Pool :(

Phone is
ready

Concurrency Hell

Best
Leak/Target

Good
Leak/Target

Bad
Leak/Target

Device
powers on

Injecting
Entropy to

Pools

 Entropy

mitigations

Problem with those mitigations

Kernel
starts booting

PRNG is
initialized

Kernel boot
Finished &

Platform starts
booting

Input Pool mixed
into Nonblocking

Pool :(

Phone is
ready

Concurrency Hell

Best
Leak/Target

Good
Leak/Target

Bad
Leak/Target

Device
powers on

Kernel
Boot-time

Leak/Target

Injecting
Entropy to

Pools

 Entropy

Entropy injection occurs after the
kernel boots up

mitigations

Current mitigations

● Initialize the seeds using a hardware RNG
● RDRAND,RDSEED Intel's ISA
● Early random, Qualcomm

INPUT POOL NON-BLOCKING-POOL

ktime_t ktime_t

EXTRACTION (PULL)

T
I

M
E
R

INTERRUPT

DISK

INPUT

time

if KEC >= 192 bits

mitigations

Current mitigations

● Initialize the seeds using a hardware RNG
● RDRAND,RDSEED Intel's ISA
● Early random, Qualcomm

● Mix device-specific data to nonblocking and
blocking pools

INPUT POOL NON-BLOCKING-POOL

ktime_t ktime_t

EXTRACTION (PULL)

T
I

M
E
R

INTERRUPT

DISK

INPUT

time

if KEC >= 192 bits

mitigations

Current mitigations

● Initialize the seeds using a hardware RNG
● RDRAND,RDSEED Intel's ISA
● Early random, Qualcomm

● Mix device-specific data to nonblocking and
blocking pools

● Changes to newer kernels allow for more
boot time entropy

INPUT POOL NON-BLOCKING-POOL

ktime_t ktime_t

EXTRACTION (PULL)

T
I

M
E
R

INTERRUPT

DISK

INPUT

time

if KEC >= 192 bits

talk_wrap_up

• Linux-based devices with low boot time entropy may
allow a practical, low-cost attack on the PRNG

• The attack requires an offline study of a device and an
online leak

• Allows the attacker to predict a random number which is
generated by the victim's PRNG

• Two manifestations - Local/Remote Atk.

• Mitigations

?
Thank you

Thanks Nadja Kahan for the illustrations !
http://www.nadjakahan.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	MOTIVATION
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

