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Background

« Sophisticated malware arms many anti-
analyze techniques

« using targeted attacks, cyber espionages,
banking malware

« First, we need protection
« Second, we are curious about true intention




FFR{
Case study: Citadel

e Some citadel detects the execution
environment and do not engage in malicious
behavior when the current host differs from
the infected hostri]

— To avoid behavior-based malware detection(like
sandbox analysis)

e Showing 2 examples
— Host-fingerprinting
- VM/Sandbox detection
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Host-fingerprinting

e Embedding infected host’s unique value into
execution binary

Citadel

Malicious

Malicious code with

code

host unique
value

Different signature pattern
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Host-fingerprinting(cont’d)

e Getting GUID on system drive using the
GetVolumeNameForVolumeMountPoint()

e Comparing running host’s GUID value and embedded
infected host’s value

e Process executes malicious code if GUID values are

Infected host's GUID(packed)

Unpack
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code with Unpacked GUID
host unique Format:
value 11:9:0,:0.9.9.9.9.0,0.0.0.0.9.9.9,.0.0.9,9,.9,.0.90,0.4
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VM/Sandbox detection

e Checking process’s product name
- like "*vmware*”, “*virtualbox”

e Scanning specific files and devices
— C:¥popupkiller.exe
— C:¥stimulator.exe
— C:¥TOOLS¥execute.exe
- ¥¥ ¥NPF_NdisWanlp
- ¥¥ .¥HGFS
— ¥¥ . ¥vmci
- ¥¥ . ¥VBoxGuest
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Citadel behavior of host/environment inconsistency

e For example:
— Process termination

— Running fake(or harmless) code
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Citadel runtime activities

Memory Persistent Network

storage

Initializationl

v
Environment-awareness
Scouting
Host fingerprinting
4
. . Malicious code execution

Malicious
Behavior Code Unauthorized Connecting

injection Access C&C server
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e [ assume that scouting code carry out
before main malicious routine
Initialization Anti- malicious
(unpack) analyzing routine
> > >
Not really matter A serious matter
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Idea

e Security analyst or incident handler concentrate
malicious activity observation if he migrate malware
process from infected host to analyzing
environment( or honeypot) when anti-analyzing
behavior

Malware

N .
. v
..................
N, —’4

________________ ﬂ'i
migration
End-user’'s Host 9
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Use Case |: Malware live capturing

e End-users execute suspicious executable files
anyway

e Capturing system will suspend program if to detect
anti-analyzing behavior

e Malware analysts may observe to concentrate
malicious activities

e Anti- malicious
Initialization . .
analyzing routine

Analyzing

End-user’s Host

Environment
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Use Case Il: Honeypot

e Faking an artifact of the target host
— To deceive cyber espionage malware

Brokering Resource Request

. Malware
Sensitive Environmental Environmental Dummy
Information Artifacts Artifacts Information

End-user’s Host Analyzing Environment




FFRI
\

Challenges 1
PROCESS MIGRATION
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Challenges
1. Process migration is very difficult (well-known)

- Needs to migrate execution contexts, memory contexts,
persistent contexts and related kernel objects

— Environment sensitivity

Execution Ta rget Memory Execution Ta rget Memory
Context Pro cess Context Context’ Process'’ Context’

user-space Runtime & Libraries Runtime’ & Libraries’

kernel-space

FILE HEAP SOCK FILE? HEAP? SOCK?

Kernel Objects
&Entities

Host A Host B
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Off-topic: Virtual Machine migration

e VM migration is a practical way of
process migration between hosts

Target Target
Process Process

Host on VM Host on VM

VMM(Host A) VMM(Host B)
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VM migration is too much larger

e TOO many resources are migrated for
malware analyzing

e VM solution forces additional system to end-
users and employer
— Increasing complexity, Maintainability and cost
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Our solution: Using process-level sandbox

e CPU emulator-based sandbox is convenient for
process migration
— Grubbed all contexts

— User-mode emulator virtualize process related
kernel objects




CPU emulator-based sandbox
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Execution Ta rget Memory
Context Process Context

Runtime & Libraries

Execution Ta rget Memory
Context Process Context

Runtime & Libraries

user-space (Virtualized)

kernel-space

FILE HEAP

Kernel Objects
Kernel Objects Sa N d box &Entities

&Entities (virtualized

Bare-metal Host Bare-metal Host

FILE HEAP




Process migration using CPU emulator-baseFoFR{
sandbox

Execution Ta rget Memory Execution Ta rg et’ Memory
Context Process Context Context’ Process Context’

Runtime & Libraries Runtime & Libraries
(Virtualized) (Virtualized)

FILE HEAP FILE' HEAP’

Kernel Objects

Sandbox &Entities Sandbox

(virtualized)

Host A Host B
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Malware freeze-drying

e Sandbox suspends .
target program when a .

trigger event occurred Runtime & Libraries

(Virtualized)

FILE HEAP

e A suspended trigger is SRS
antl'ana|y2|nq virtualized
behaviory2]

Serialize

v

Packed
Living
Malware
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Live malware defrosting

e Sandbox resumed

g xecution Livi emor
packed living malware e

Runtime & Libraries

e Reconstructing address

K | Obj
g a pS Sa N d box er;:éntititjaids

— —

De-serialize

Packed
Living
Malware
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But... o

e Migrated malware will probably executes
anti-analyzing(anti-sandbox) continuously

e The system needs anti-anti-sandbox arming
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Challenges(updated)

1. Process migration is very difficult
—Using CPU emulator-based sandbox

2. Arming against anti-sandbox
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Challenges 1I
ANTI-ANTI-SANDBOX ARMING
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Taxonomy of anti-sandbox techniques

e Anti-sandbox maneuver
— Stalling code [3]

— Environment awareness [4][5]
e Using result of sandbox detection

— (User interaction checks)

e Sandbox (debug/sandbox/vm) detection
— Artifact fingerprinting[s][6]
— Execution incongruousness[7][8]
— Platform stimulation[9][10]
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Stalling code

unsigned count, t;

e Evasive malware[2; often uses |void helper() {

- t = GetTickCount();
— A sandbox limits malware { -, oetTioktount)

execution time t+:
t = GetTickCount();
}

e Stalling code detection and | oenmams

avoiding techniques already do {
helper(); // equal nop

proposedis] count++:
} while
(count!=0xede1c1);

}

Stalling code in W32.DelfInj [3]
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Environment awareness

e Checking host environments

e If malware runs decoy routine then it detects
analyzer’s sign
— Malicious behavior never executed

Initialization Sandbox(incl. VM) o Malicious
(unpack) Detection routine
If running . Degoy
on an analyzing routine

environment
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Sandbox (debug/sandbox/vm) detection

Execution
Environment aware Malware ’ Incongruousness

VM Sandbox
related specific
Sl Artifacts Artifacts

Platform Stimulation

v
VMM?

Hardware
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Artifact Fingerprinting

e Sandbox/VM related processes
- Like vmware, virtualbox etc.

e Sandbox/VM environment specific files

e Sandbox/VM environment specific registry keys

e Sandbox/VM environment specific devices and its attributes
- ex). QEMU HDD vendor name

Sandbox/VM Specific I/O port

- VMWare backdoor port is most famous artifact in malware
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Execution Incongruousness

e Using clock count differential
— Traditional anti-debug technique
o Redpill[s]
— Using LDT/GDT and IDT incongruousness

40002242 | 60 PUSHAD

40002243 0F31 ROTSC

j”“”ffhr g}g? Egg Egﬁgﬁ_ Comparing two
40002247 : - .
40009249 | OF3] ROTSC TSC differentials
AN00Z7Z8B] 2908 SUB EAX,ECK /

40002240 3D FFOFOO00 CMP EAX, OFFF

400022B2 | 61 POPAD

400022B3|.OF83 11010000 | JNB 400023CA
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Platform stimulation

e Using virtual machine implementation
differentials

— Like CPUID instruction result
— Interesting research here: Cardinal Pill Testing[9]
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Our solution: Anti-anti-sandbox arming

e Hiding an artifact using API proxies

e Stalling code detection and evasion(future work)
— Following prior works

e Faithful CPU emulation(future work)
— Following prior works and showing GUTS

API Proxies

Malware

Sensitive Environmental Environmental Dummy
Information Artifacts Artifacts Information

End-user’s Host Analyzing Environment
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IMPLEMENTATION
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Sweetspot Overview

e Sweetspot have two sandbox, Freeze-drying
Sandbox and Defroster Sandbox

e Sandboxes are based on [A-32 CPU emulator

Execution Ta rg et Memory
Context’ Process Context’

Runtime & Libraries
(Virtualized)

Execution Ta rget Memory
Context Process Context

Runtime & Libraries
Wirtualized -
FILE HEAP Migration

Freeze-dryer Sandbox

FILE' HEAP'

Defroster Sandbox
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IA-32 CPU emulator-based sandbox

e We have already CPU Emulator-based
sandbox for win32 execution (in-house use)

— Like IDA Bochs PE operation mode[11]

Target Program
(loaded)

Address Resolution

CPU Emulator

Instruction
Fetch

Applying
Execution Result
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IA-32 CPU Emulator: Virtual contexts

Virtual CPU
Contexts DLLs
Virtual Process /
Contexts /
Virtual Module(DLL) Data
Contexts

Contexts
VA Space contexts

CPU Emulator Target
Process Process

\
Virtual Resources ’\/
(handle) Contexts ’ \
Code
[ Virtual Heap ] /} /a
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IA-32 CPU Emulator: APl emulation

Virtual kernel32
Functions

Virtual user32.dll
Functions

Virtual advapi32.dil )
Functions

Virtual msvert.dll
Functions

APl Emulation
Components

Virtualized
Resource Manager
CPU Emulator
Process Process
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IA-32 CPU Emulator: Virtual resource handling

e File system is almost virtualized
e Registry hive is almost virtualized

e GUI components and user interaction
function is virtualized partially

e media components is not
virtualized(squashing request)
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Sweetspot: Malware Live Capturing System
e Freeze-dryer

T Memory Image
— Serializing process contexts S

and execution file if detected

suspend trigger

— All malware activity sealed in
the sandbox

Freeze-dryer Sandbox

Packed process contexts

e Defroster

— Restoring execution context
Memory Image

— Address reconstruction

— API-proxies for faking an

artifacts Defroster Sandbox
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Freeze-dryer

e End-user can use like an anti-virus’s file
scanner

e Freeze dryer serialize process context if
detects anti-sandbox behavior occurred

— Dumping all VA space anyway

e Using msgpackri2;library for serialization



FFRI
\

Defined suspend trigger (Work in progress)

e Specific API-call
- GetVolumeNameForVolumeMountPoint()
— GetVolumelnformation()

e Specific API-call and its arguments

— Searching vm-related artifacts

e Virtual file system and virtual registry hive except
finding sandbox artifacts

e Detecting stalling code(WiP)
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Defroster — Execution replaying

1. Unpacking process contexts(incl. execution
file)
— Allocating sandbox’s heap

2. Loading execution file before entry point

3. Restoring current process context from

unpacked contexts

— Remapping address in unpacked process

contexts
e Covering all virtual address space
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Demo: Process migrated!




APl Proxies

e Malware can access
specified directories
on Defroster
— Like %APPDATA%

e API Proxies enable to
provide arbitrarily
resources for
malware

|
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Anti anti sandbox arming using APl Proxies

e Defroster performs play innocent with
sandbox/vm related artifacts

— No vm-related artifact exist in sandbox’s virtual
file system and virtual registry hive

e For faking an artifacts

— Fake artifacts mounting virtual file system before
malware resuming




Limitations
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The original CPU emulator supports a limited API
— eX). Cannot CreateProcess and CreateThread

The original CPU emulator supports a limited CPU instruction
- eXx). Cannot complete emulation with SSE instruction

Anti-anti sandbox implementation is not enough

API Proxies not supported Network API(winsock?) yet
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Demonstrations

e Simple program (incl. heap and handle
migration)

e Anti-anti-sandbox PoC

e (Real environment-sensitive malware)
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Future work

e Improving anti-sandbox detection and anti
anti-sandbox

— Stalling code detection and evasion
— More faithful CPU/API emulation

e Improving API proxies utility

o Defroster-based stealth debugger
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Conclusions

e This is proof of concept of live malware
capturing using process migration with CPU
emulator-based sandbox

e We introduced anti-sandbox taxonomy and
proposed API-proxy based countering
approach
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