Black Hat Europe 2014

FFRI
Freeze Drying for Capturing

Environment-Sensitive Malware Alive
FFRI, Inc.

http:/lwww.ffri.jp

Yosuke Chubachi

Ver 2.00.01

Contents

e Background

e Idea
— Malware migration system for capturing malware alive

FFRI
\

e Challenges
— Process migration
— Anti-anti-sandbox arming

e Implementation
— Overview
- IA32 CPU Emulator

— Process migration using process-level sandbox
— API Proxies for faking an artifact

e Conclusions

FFR{
Background

« Sophisticated malware arms many anti-
analyze techniques

« using targeted attacks, cyber espionages,
banking malware

« First, we need protection
« Second, we are curious about true intention

FFR{
Case study: Citadel

e Some citadel detects the execution
environment and do not engage in malicious
behavior when the current host differs from
the infected hostri]

— To avoid behavior-based malware detection(like
sandbox analysis)

e Showing 2 examples
— Host-fingerprinting
- VM/Sandbox detection

FFRI
\

Host-fingerprinting

e Embedding infected host’s unique value into
execution binary

Citadel

Malicious

Malicious code with

code

host unique
value

Different signature pattern

FFR{
Host-fingerprinting(cont’d)

e Getting GUID on system drive using the
GetVolumeNameForVolumeMountPoint()

e Comparing running host’s GUID value and embedded
infected host’s value

e Process executes malicious code if GUID values are

Infected host's GUID(packed)

Unpack

MahClous 1 Sk 39 ?% E4 .:E L?u#‘ Sz ba 31 Eﬂ_‘ 42 Ba 33 o4 35 g 37 8 M.w"'

code with Unpacked GUID
host unique Format:
value 11:9:0,:0.9.9.9.9.0,0.0.0.0.9.9.9,.0.0.9,9,.9,.0.90,0.4

(521% < 4
AR43 g a 6E 51 C6 51 Cé &E
BA432FFa @ 4 B8 08 88 80 08 08 8g

FFR{
VM/Sandbox detection

e Checking process’s product name
- like "*vmware*”, “*virtualbox”

e Scanning specific files and devices
— C:¥popupkiller.exe
— C:¥stimulator.exe
— C:¥TOOLS¥execute.exe
- ¥¥ ¥NPF_NdisWanlp
- ¥¥ .¥HGFS
— ¥¥ . ¥vmci
- ¥¥ . ¥VBoxGuest

FFRI
\

Citadel behavior of host/environment inconsistency

e For example:
— Process termination

— Running fake(or harmless) code

FFR{
Citadel runtime activities

Memory Persistent Network

storage

Initializationl

v
Environment-awareness
Scouting
Host fingerprinting
4
. . Malicious code execution

Malicious
Behavior Code Unauthorized Connecting

injection Access C&C server

FFRI
\
e [assume that scouting code carry out
before main malicious routine
Initialization Anti- malicious
(unpack) analyzing routine
> > >
Not really matter A serious matter

FFR{

Idea

e Security analyst or incident handler concentrate
malicious activity observation if he migrate malware
process from infected host to analyzing
environment(or honeypot) when anti-analyzing
behavior

Malware

N .
. v
..................
N, —’4

________________ ﬂ'i
migration
End-user’'s Host 9

FFRI
\

Use Case |: Malware live capturing

e End-users execute suspicious executable files
anyway

e Capturing system will suspend program if to detect
anti-analyzing behavior

e Malware analysts may observe to concentrate
malicious activities

e Anti- malicious
Initialization . .
analyzing routine

Analyzing

End-user’s Host

Environment

FFR{
Use Case Il: Honeypot

e Faking an artifact of the target host
— To deceive cyber espionage malware

Brokering Resource Request

. Malware
Sensitive Environmental Environmental Dummy
Information Artifacts Artifacts Information

End-user’s Host Analyzing Environment

FFRI
\

Challenges 1
PROCESS MIGRATION

FFR{
Challenges
1. Process migration is very difficult (well-known)

- Needs to migrate execution contexts, memory contexts,
persistent contexts and related kernel objects

— Environment sensitivity

Execution Ta rget Memory Execution Ta rget Memory
Context Pro cess Context Context’ Process'’ Context’

user-space Runtime & Libraries Runtime’ & Libraries’

kernel-space

FILE HEAP SOCK FILE? HEAP? SOCK?

Kernel Objects
&Entities

Host A Host B

FFR{
Off-topic: Virtual Machine migration

e VM migration is a practical way of
process migration between hosts

Target Target
Process Process

Host on VM Host on VM

VMM(Host A) VMM(Host B)

FFRI
\

VM migration is too much larger

e TOO many resources are migrated for
malware analyzing

e VM solution forces additional system to end-
users and employer
— Increasing complexity, Maintainability and cost

FFRI
\

Our solution: Using process-level sandbox

e CPU emulator-based sandbox is convenient for
process migration
— Grubbed all contexts

— User-mode emulator virtualize process related
kernel objects

CPU emulator-based sandbox

FFRI
\

Execution Ta rget Memory
Context Process Context

Runtime & Libraries

Execution Ta rget Memory
Context Process Context

Runtime & Libraries

user-space (Virtualized)

kernel-space

FILE HEAP

Kernel Objects
Kernel Objects Sa N d box &Entities

&Entities (virtualized

Bare-metal Host Bare-metal Host

FILE HEAP

Process migration using CPU emulator-baseFoFR{
sandbox

Execution Ta rget Memory Execution Ta rg et’ Memory
Context Process Context Context’ Process Context’

Runtime & Libraries Runtime & Libraries
(Virtualized) (Virtualized)

FILE HEAP FILE' HEAP’

Kernel Objects

Sandbox &Entities Sandbox

(virtualized)

Host A Host B

FFRI
\

Malware freeze-drying

e Sandbox suspends .
target program when a .

trigger event occurred Runtime & Libraries

(Virtualized)

FILE HEAP

e A suspended trigger is SRS
antl'ana|y2|nq virtualized
behaviory2]

Serialize

v

Packed
Living
Malware

FFRI
\

Live malware defrosting

e Sandbox resumed

g xecution Livi emor
packed living malware e

Runtime & Libraries

e Reconstructing address

K | Obj
g a pS Sa N d box er;:éntititjaids

— —

De-serialize

Packed
Living
Malware

FFRI
But... o

e Migrated malware will probably executes
anti-analyzing(anti-sandbox) continuously

e The system needs anti-anti-sandbox arming

FFR{
Challenges(updated)

1. Process migration is very difficult
—Using CPU emulator-based sandbox

2. Arming against anti-sandbox

FFRI
\

Challenges 1I
ANTI-ANTI-SANDBOX ARMING

FFRI
\

Taxonomy of anti-sandbox techniques

e Anti-sandbox maneuver
— Stalling code [3]

— Environment awareness [4][5]
e Using result of sandbox detection

— (User interaction checks)

e Sandbox (debug/sandbox/vm) detection
— Artifact fingerprinting[s][6]
— Execution incongruousness[7][8]
— Platform stimulation[9][10]

I oo
\

Stalling code

unsigned count, t;

e Evasive malware[2; often uses |void helper() {

- t = GetTickCount();
— A sandbox limits malware { -, oetTioktount)

execution time t+:
t = GetTickCount();
}

e Stalling code detection and | oenmams

avoiding techniques already do {
helper(); // equal nop

proposedis] count++:
} while
(count!=0xede1c1);

}

Stalling code in W32.DelfInj [3]

FFRI
\

Environment awareness

e Checking host environments

e If malware runs decoy routine then it detects
analyzer’s sign
— Malicious behavior never executed

Initialization Sandbox(incl. VM) o Malicious
(unpack) Detection routine
If running . Degoy
on an analyzing routine

environment

FFRI
\

Sandbox (debug/sandbox/vm) detection

Execution
Environment aware Malware ’ Incongruousness

VM Sandbox
related specific
Sl Artifacts Artifacts

Platform Stimulation

v
VMM?

Hardware

FFR{
Artifact Fingerprinting

e Sandbox/VM related processes
- Like vmware, virtualbox etc.

e Sandbox/VM environment specific files

e Sandbox/VM environment specific registry keys

e Sandbox/VM environment specific devices and its attributes
- ex). QEMU HDD vendor name

Sandbox/VM Specific I/O port

- VMWare backdoor port is most famous artifact in malware

FFRI
\

Execution Incongruousness

e Using clock count differential
— Traditional anti-debug technique
o Redpill[s]
— Using LDT/GDT and IDT incongruousness

40002242 | 60 PUSHAD

40002243 0F31 ROTSC

j”“”ffhr g}g? Egg Egﬁgﬁ_ Comparing two
40002247 : - .
40009249 | OF3] ROTSC TSC differentials
AN00Z7Z8B] 2908 SUB EAX,ECK /

40002240 3D FFOFOO00 CMP EAX, OFFF

400022B2 | 61 POPAD

400022B3|.OF83 11010000 | JNB 400023CA

FFRI
\

Platform stimulation

e Using virtual machine implementation
differentials

— Like CPUID instruction result
— Interesting research here: Cardinal Pill Testing[9]

FFRI
\

Our solution: Anti-anti-sandbox arming

e Hiding an artifact using API proxies

e Stalling code detection and evasion(future work)
— Following prior works

e Faithful CPU emulation(future work)
— Following prior works and showing GUTS

API Proxies

Malware

Sensitive Environmental Environmental Dummy
Information Artifacts Artifacts Information

End-user’s Host Analyzing Environment

FFRI
\

IMPLEMENTATION

I oo
\

Sweetspot Overview

e Sweetspot have two sandbox, Freeze-drying
Sandbox and Defroster Sandbox

e Sandboxes are based on [A-32 CPU emulator

Execution Ta rg et Memory
Context’ Process Context’

Runtime & Libraries
(Virtualized)

Execution Ta rget Memory
Context Process Context

Runtime & Libraries
Wirtualized -
FILE HEAP Migration

Freeze-dryer Sandbox

FILE' HEAP'

Defroster Sandbox

FFR{
IA-32 CPU emulator-based sandbox

e We have already CPU Emulator-based
sandbox for win32 execution (in-house use)

— Like IDA Bochs PE operation mode[11]

Target Program
(loaded)

Address Resolution

CPU Emulator

Instruction
Fetch

Applying
Execution Result

FFRI
IA-32 CPU Emulator: Virtual contexts

Virtual CPU
Contexts DLLs
Virtual Process /
Contexts /
Virtual Module(DLL) Data
Contexts

Contexts
VA Space contexts

CPU Emulator Target
Process Process

\
Virtual Resources ’\/
(handle) Contexts ’ \
Code
[Virtual Heap] /} /a

FFR{
IA-32 CPU Emulator: APl emulation

Virtual kernel32
Functions

Virtual user32.dll
Functions

Virtual advapi32.dil)
Functions

Virtual msvert.dll
Functions

APl Emulation
Components

Virtualized
Resource Manager
CPU Emulator
Process Process

FFR{
IA-32 CPU Emulator: Virtual resource handling

e File system is almost virtualized
e Registry hive is almost virtualized

e GUI components and user interaction
function is virtualized partially

e media components is not
virtualized(squashing request)

FFRI
\

Sweetspot: Malware Live Capturing System
e Freeze-dryer

T Memory Image
— Serializing process contexts S

and execution file if detected

suspend trigger

— All malware activity sealed in
the sandbox

Freeze-dryer Sandbox

Packed process contexts

e Defroster

— Restoring execution context
Memory Image

— Address reconstruction

— API-proxies for faking an

artifacts Defroster Sandbox

FFRI
\

Freeze-dryer

e End-user can use like an anti-virus’s file
scanner

e Freeze dryer serialize process context if
detects anti-sandbox behavior occurred

— Dumping all VA space anyway

e Using msgpackri2;library for serialization

FFRI
\

Defined suspend trigger (Work in progress)

e Specific API-call
- GetVolumeNameForVolumeMountPoint()
— GetVolumelnformation()

e Specific API-call and its arguments

— Searching vm-related artifacts

e Virtual file system and virtual registry hive except
finding sandbox artifacts

e Detecting stalling code(WiP)

FFRI
Defroster — Execution replaying

1. Unpacking process contexts(incl. execution
file)
— Allocating sandbox’s heap

2. Loading execution file before entry point

3. Restoring current process context from

unpacked contexts

— Remapping address in unpacked process

contexts
e Covering all virtual address space

FFRI
\

Demo: Process migrated!

APl Proxies

e Malware can access
specified directories
on Defroster
— Like %APPDATA%

e API Proxies enable to
provide arbitrarily
resources for
malware

|

FFRI
\

Anti anti sandbox arming using APl Proxies

e Defroster performs play innocent with
sandbox/vm related artifacts

— No vm-related artifact exist in sandbox’s virtual
file system and virtual registry hive

e For faking an artifacts

— Fake artifacts mounting virtual file system before
malware resuming

Limitations

FFRI
\

The original CPU emulator supports a limited API
— eX). Cannot CreateProcess and CreateThread

The original CPU emulator supports a limited CPU instruction
- eXx). Cannot complete emulation with SSE instruction

Anti-anti sandbox implementation is not enough

API Proxies not supported Network API(winsock?) yet

FFRI
\

Demonstrations

e Simple program (incl. heap and handle
migration)

e Anti-anti-sandbox PoC

e (Real environment-sensitive malware)

FFRI
\

Future work

e Improving anti-sandbox detection and anti
anti-sandbox

— Stalling code detection and evasion
— More faithful CPU/API emulation

e Improving API proxies utility

o Defroster-based stealth debugger

FFRI
\

Conclusions

e This is proof of concept of live malware
capturing using process migration with CPU
emulator-based sandbox

e We introduced anti-sandbox taxonomy and
proposed API-proxy based countering
approach

FFRI
\

References

. [1]: Analyzing Environment-Aware Malware, Lastline, 2014.05.25(viewed)
http://labs.lastline.com/analyzing-environment-aware-malware-a-look-at-zeus-trojan-variant-called-citadel-evading-traditional-sandboxes

. [2]: Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. 2011. Detecting environment-sensitive malware. In Proceedings of
the 14th international conference on Recent Advances in Intrusion Detection (RAID'11). Springer-Verlag, Berlin, Heidelberg, 338-357.

. [3]: lemens Kolbitsch, Engin Kirda, and Christopher Kruegel. 2011. The power of procrastination: detection and mitigation of execution-

stalling malicious code. In Proceedings of the 18th ACM conference on Computer and communications security (CCS '"11). ACM, New
York, NY, USA, 285-296.

. [4]: Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn Song. 2009. Emulating emulation-resistant malware. In
Proceedings of the 1st ACM workshop on Virtual machine security (VMSec '09). ACM, New York, NY, USA, 11-22.

. [5]: Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2014. Barecloud: bare-metal analysis-based evasive malware detection. In
Proceedings of the 23rd USENIX conference on Security Symposium (SEC'14). USENIX Association, Berkeley, CA, USA, 287-301.

. [6]: Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher Kruegel. 2009. A view on current malware behaviors. In

Proceedings of the 2nd USENIX conference on Large-scale exploits and emergent threats: botnets, spyware, worms, and more (LEET'09).
USENIX Association, Berkeley, CA, USA, 8-8.

. [7]: Aurélien Wailly. Malware vs Virtualization The endless cat and mouse play, 2014.05.25(viewed)
http://aurelien.wail.ly/publications/hip-2013-slides.html
. [8]: Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi. 2009. Testing CPU emulators. In Proceedings of the

eighteenth international symposium on Software testing and analysis (ISSTA '09). ACM, New York, NY, USA, 261-272.

. [9]: Hao Shi, Abdulla Alwabel and Jelena Mirkovic. 2014. Cardinal Pill Testing of System Virtual Machines. In Proceedings of the 23rd
USENIX conference on Security Symposium (SEC'14). USENIX Association, Berkeley, CA, USA,271-285.

. [10]: Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi. 2010. Testing system virtual machines. In
Proceedings of the 19th international symposium on Software testing and analysis (ISSTA '10). ACM, New York, NY, USA, 171-182.

. [11]: IDA Boch PE operation mode
https://www.hex-rays.com/products/ida/support/idadoc/1332.shtml

. [12]: MessagePack, 2014/09/28(viewed)
http://msgpack.org/

Thank you !

FIFRI
X

FFRI, Inc.

http:/lwww.ffri.jp

Yosuke Chubachi
chubachi@ffri.jp

