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WebKit is widely used as a web rendering engine by applications present on 

almost all popular PC platforms including Windows, Mac OS X, as well as mobile 

platforms such as iOS and Android. Usually a single vulnerability in WebKit - 

either logic or memory corruption one - utilized with appropriate exploit 

techniques can result in a remote code execution impacting various applications, 

regardless of what platforms they are running on. 

 

After years of security improvements made by Apple, Google, and other 

companies and communities, WebKit became one of the most secure engines 

amongst web rendering engines. The security improvements mainly focused on 

reducing the number of critical vulnerabilities such as Use-After-Free, heap 

overflow, etc. More importantly, exploitation mitigations implemented in WebKit 

and its corresponding JavaScript engines (JavaScriptCore and V8) also 

dramatically increased the difficulty level of a successful exploitation. 

 

Difficult, but not impossible.  

 

Despite the strong security, defeating WebKit-based applications is still feasible. 

In this talk, I will discuss the details of these security enhancements and the 

approach I took to defeat them. The talk will be illustrated by case study. The 

example is a Webkit vulnerability deployed using several advanced exploit 

techniques to deliver a remote code execution that doesn't rely on Heap Spray 

technique and can be reliably ran on x64 Safari browser.  

 

At the end of the talk, I will provide recommendations on how to improve 

security of WebKit-based applications. 

 

WebKit Introduction 

WebKit is an open source web browser rendering engine developed by Apple. 

From website http://www.webkit.org, there are two main code branch. The 

Trunk includes latest features and is updated frequently while the Branch is used 

by Safari product which is updated less frequently and more stable. WebKit 

works closely with popular JS engines such as V8 and JSC, which is good news 

to exploiter. 
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WebKit is used everywhere. Apart from popular web browsers such as Safari, 

Chrome, both PC and mobile Apps will use WebKit/WebView.  

 

A single vulnerability in WebKit may impact all WebKit-based Apps. In general 

we have DOS vulnerability which may impact on user experience. A typical 

example is the bug which can causing Apps to crash when displaying a craft 

Arabic characters. Also we have UXSS which can cause cookie leak and other 

damage. The most critical vulnerability will cause remote code execution and 

possibly compromise the whole system. Historically there are several logic 

issues causing RCE but this kind of bugs almost extinct now. The other type is 

memory corruption vulnerabilities. Memory corruption issues are usually 

difficult to exploit, less stable, platform/version dependent. However this kind of 

vulnerability is hard to discover and will keep existing in a long term, which is 

the main focus in this talk. 

 

Memory corruption issues can be divided into several categories: heap overflow, 

type confusion, Use-After-Free, etc. There are some good write-ups to talk 

about exploitation of memory corruption issues in WebKit, but not too many. A 

typical example is Nils’s Pwn2Own 2013 write-up: 

https://labs.mwrinfosecurity.com/blog/2013/04/19/mwr-labs-pwn2own-2013-

write-up---webkit-exploit/, targeting on a type confusion vulnerability. Another 

one is Pinkie Pie’s Chrome exploit on 64-bit Linux: 

http://scarybeastsecurity.blogspot.co.uk/2013/02/exploiting-64-bit-linux-like-

boss.html 

 

WebKit security features & exploitation mitigation 

After several years improvement, WebKit has introduced several security 

features and exploitation mitigation techniques. Among them, some are WebKit 

enhancements while others are system-specific improvements with which 

makes the whole WebKit more and more secure. Those techniques include Heap 

Arena, GC enhancement, ASLR, DEP, Sandbox, etc. 

 

Heap Arena 

To put those frequently-updated objects into a isolated heap so that UAF issues 

on those objects are hard to exploit, Heap Arena is introduced.  

Currently only RenderObject (and its inheritance) will be put in Heap Arena, 

which is also called RenderArena. Those RenderObject objects contribute for 

90%+ WebKit UAFs. RenderArena is created during Document creation time, 

the source code below illustrate this: 
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There is a freelist called m_recycler[] storing freed RenderObjects based on its 

size. LIFO mechanism is used when allocating RenderObject. The m_recyclers[] 

array is illerstrated below: 

 

In the past, UAFs in RenderArena can be easily exploited. Overwriting the “Next” 

pointer to a controlled buffer which is outside the Arena, the new allocation of 

objects of that size may return that controller buffer to the program. The 

exploiter can then leak the important pointer out to bypass ASLR and 

manipulate the RenderObject to get IP control. 

 

Unfortunately the above technique is no longer available after “Next” pointer is 

XORed by random value, which, as a result, killed almost all exploits in 

RenderArena: 

 

 



WebKit Trunk doesn’t implement RenderArena, which indicates some 3rd party 

WebView Apps are still exploitable. 

 

GC mechanism 

There is no explicit GC call in the latest JSC/V8. It is quite different from IE 

implementation where GC can be triggered explicitly. Previously there are some 

tricks available to trigger GC. A typical example is Charlie Miller’s approach to 

take advantage Number heap. However Number heap was abandoned by Apple 

several years ago: 

 

By checking source code, Heap:collectAllGarbage can do the job, but it can 

never by triggered: 

 

On iOS/Android platform, GC on specific sized object can be triggered if too 

many allocation requests take place. However on Mac Safari 7, it is really hard 

to stably trigger GC even if all memory is exhausted. That is bad news for 

exploiters as Heap Fengshui is always the key to exploit memory corruption 

issues, while GC is often used for performing Heap Fengshui. 

To trigger GC when debugging, a simple workaround is to add the GC call to 

specific JS function. A typical candidate is parseFloat: 

 
After compiling the modified code, GC can be triggered easily by calling 



parseFloat function in Javascript. However this approach only applies in 

debugging environment but not in real world exploit. 

A better approach is discovered by Ian Beer. The approach allows exploiters to 

reserve arbitrary seized memory and perform whatever operations. That 

reserved memory can be freed on demand later on and fill with the object we 

need. This approach can resolve most of Heap Fengshui issues. However there 

are still limitations. The reserved memory is allocated by string. Sometimes we 

may need some vtable object to reserve that location, free it and fill with other 

object to continue exploitation. In such cases this approach will no longer work. 

Alternatively “JS Controlled Free” can be used and I will introduce the technique 

later. 

 

ASLR 

ASLR is not an advanced technology nowadays. It is implemented by most of 

the modern OS. However on different OS platform, the level of ASLR is different. 

For example, on iOS ASLR is weak because all system libraries share a single 

base address which is dyld_shared_cache base. This indicates leaking a single 

WebCore vtable address will cause all module base leaked, which is really bad. 

On Mac OSX, however, the ASLR is extremely strong. Two randomized bases 

exist for each module: 

 

Both .DATA section and .TEXT section are randomized and independent to each 



other. Usually vtable address exists in .DATA section, so leaking a vtable doesn’t 

mean defeating ALSR. Arbitrary read need to achieve to get .TEXT base before 

performing ROP. 

 

DEP 

DEP is not an advanced technology either and can be bypassed by performing 

ROP. For WebKit, JIT RWX page exists which allow hackers to execute code 

without ROP. On Mac Safari 7, 128MB JIT page is allocated by default: 

 
 

Sandbox architecture 

Most WebKit Apps have sandbox architecture holding the last layer protection to 

limit the scope the successful exploiter can do on the system. Those sandboxes 

are provided by Apple Sandbox, Android Sandbox, or App self sandbox such as 

Chrome sandbox. 

 

Native x64 App 

 

On x64 platform, exploitation is harder because larger memory space can lead 

to lower possibility to guess the address, in which heap spraying becomes less 

possible. Currently on Mac OS and iPhone 5s+ native x64 Apps are quite 

common. Heap spraying should be avoided to achieve successful and reliable 

exploitation. 

 

Case study (CVE-2014-1303 Pwn2Own 2014) 

The Vulnerability 

 



The vulnerability could be simply triggered by the following HTML code: 

 

By running the code above, Webkit will allocate an array containing 2 

CSSSelector elements first because of two HTML elements are specified in the 

following code: 

 

 

 

 

 

 

 

After running the code, a new array will be allocated containing 1 CSSSelector 

element, by the following call stack: 

    

<html> 

<style>html,em:nth-child(5){ 

    height: 500px 

} 

</style> 

<script> 

function load() { 

    var cssRules = 

window.getMatchedCSSRules(document.documentElement); 

    cssRules[0].selectorText = 'a'; 

} 

</script> 

<iframe onload=load()> 

</html> 

<style>html,em:nth-child(5){ 

    height: 500px 

} 

</style> 



 

This new allocation is 0x10 (1 CSSSelector object) in size on MAC OSX Safari. 

However in the following code, it still think the new array has two CSSSelector 

elmements, so that selectorIndex is 1 (which will refer to the second element of 

the array later on.) 

 

OOB access can be reached in WebCore::CSSSelector::specificity() 

void RuleSet::addRule(StyleRule* rule, unsigned selectorIndex, 

AddRuleFlags addRuleFlags) 

{ 

    RuleData ruleData(rule, selectorIndex, m_ruleCount++, addRuleFlags); 

//selectorIndex is 1. 

    collectFeaturesFromRuleData(m_features, ruleData); 

 

    if (!findBestRuleSetAndAdd(ruleData.selector(), ruleData)) { 

        // If we didn't find a specialized map to stick it in, file under 

universal rules. 

        m_universalRules.append(ruleData); 

    } 

} 



 

 

A deeper look will show that CSSSelector struct is a 21-bit value (aligned to 8 

bytes) followed by a 8-byte pointer: 

 

Looking at the code in WebCore::CSSSelector::specificity(), 1-bit write can be 

achieved depends on the original bit value: 



 
1-bit write can be reached when: 

 

The possible options include changing 0x40 to 0xC0 which seems good, as well 

as 0x40040 to 0x400c0. There are several other options available but I think the 

existing ones are good enough. Once you want to overwrite the bit value, the 

next 8-byte pointer must be either 0 or a valid pointer (If it is a valid pointer, 

other checks will be performed before overwriting). 

 

Now we have restrictive 1-bit write achieved, it is time to think of what 

struct/field/value to overwrite. 

 



Exploitation 

What to overwrite? 

The first structure we can think of is WTF::StringImpl, its definition is illustrated 

as below: 

 

We can change m_refCount from 0x40 to 0xC0 but it seems not quite useful 

unless we can change into a smaller value (can free it earlier). We can also try 

to make m_length bigger but we can not tough the higher 4 bytes where 

m_length is located using this vulnerability. 

 

Except for WTF::StringImpl, WTF::ArrayBuffer is a good option. Looking at the 

structure definition of WTF::ArrayBuffer: 

 

 

 

 

 

 

WTF::ArrayBuffer is 0x20 in size which is equal to the size of two CSSSelector 

elements. The length field: m_sizeInBytes is aligned at 0x10 which is quite good 

fit for this vulnerability. Additionally m_firstView field can be 0 if no 

ArrayBufferView is assigned. 

 

When no ArrayBufferView is assigned, ArrayBuffer structure is created with 

m_firstView set to 0 and m_data field pointing to a buffer with m_sizeInBytes in 

size: 



 

When ArrayBufferView is assigned, WTF::ArrayBuffer.m_firstView will point to 

an ArrayBufferView structure: 

  

Changing ArrayBufferView::m_buffer pointer can achieve Arbitrary Address 

Read/Write (AAR/AAW). And the size of ArrayBufferView is 0x40. 

 

Overall strategy 

Our overall strategy of exploitation is: 

1. 1-bit OOB write 

2. 0x80 OOB Read/Write 

3. Arbitrary Address Read/Write 

4. Remote code execution 

 

From 1-bit write to 0x80 Read/Write 

We created the below memory layout. This can be easily achieved thanks to the 

TCMalloc mechanism: 



 
At the 0x20 chunk region we make several ArrayBuffer structure allocation with 

m_sizeInBytes as 0x40, which leads to several 0x40 sized m_data block created. 

During ArrayBuffer creation we also create a 0x40 WebCore object which has 

vtable. Then we can trigger this vulnerability to change m_sizeInBytes to 0xC0, 

assigning ArrayBufferView and access the additional 0x80 bytes to leak the 

vtable address. 

 

Wait, we have something forgot. Such memory layout will cause process crash 

immediately after triggering the vulnerability. Looking at the code again, there 

are several loops after 1-bit write code, it will traverse the CSSSelector array 

until tagHistory is 0: 

 

 

So we have to put another fake CSSSelector structure right after and set 

m_isLastInTagHistory (the 18th bit of the bit value) to 1 to quit the loop ASAP 

and avoid the code keeping OOB read which will finally crash.  

 

As a result we need to adjust the layout to put an ArrayBuffer with 

m_sizeInBytes as 0x20000 (m_isLastInTagHistory bit set). The adjusted 

memory layout looks like below: 



 

The 0x20000 sized buffer should not be wasted just to avoid crash. In fact it can 

be used to store ROP gadget. Will illustrate later. 

 

From 0x80 RW to AAR/AAW 

 

The first issue we need to consider is: what 0x40 WebCore object to choose? 

Basically it we need to fully bypass ASLR, we still need to obtain WebCore .TEXT 

base. To achieve this, AAR is needed.  

Usually the good candidate of such WebCore object are those containing vector 

element. With vector element we can modify the vector pointer so that we can 

achieve AAR and thus read the vtable content to obtain a pointer in .TEXT range. 

Such candidate includes HTMLLInkElement, SVGTextElement, SourceBufferList, 

etc. Unfortunately none of them is 0x40 bytes. 

Out second option is to have a 0x40 WebCore object containing vtable. We can 

then free it and fill with ArrayBufferView at the same address, changing 

ArrayBufferView::m_baseAddress pointer for AAR/AAW.  

Perfect solution? But, how to free that 0x40 WebCore object, WITHOUT GC 

interface? 

 

JS Controlled Free 

For some WebCore objects, the allocation can be controlled by JavaScript. A 

typical example is WebCore::NumberInputType, which is 0x40 in size. The 

object can be created by the code below: 



 

When we allocate by “m_input.type=”number””, the call stack below is reached: 

 

And when we free it by “m_input.type=”””, the free call stack is reached: 

 

Such object can be discovered by writing some IDA scripts because it has typical 

patterns, varying by different size.  

JS controlled object makes heap fengshui much easier. 

 

Now with JS controlled free, our memory layout becomes: 



 

After freeing NumberInputElement, the 0x40 chunk becomes: 

 

By assigning ArrayBufferVIew to those 0x20000 ArrayBuffer, in JavaScript it is 

“arr1[i]= new Uint32Array(arr[i]);”, the memory layout changes to: 

 
We can now obtain ArrayBufferView::m_baseAddress value which can later on 

be used to store ROP gadget. 

 

Since then, AAR and AAW can be achieved easily. AAR is: 

 



 

While AAW is: 

 

 

HeapSprays are for the 99% 

 

The step to achieve code execution without HeapSpray is obvious: 

1. Read the vtable content to leak WebCore .TEXT section base.  

2. Construct ROP gadget at the controlled 0x20000 buffer 

3. Change “vtable for WebCore’WTF::Uint32Array” to the controlled buffer 

pointer 

4. Trigger vtable call WTF::TypedArrayBase<unsigned int>::byteLength() 

 

 

ROPs are for the 99% 

Now the exploit should be successful, but it is deeply relied on WebKit version. 

For example, the WebCore .TEXT base address is obtained by knowing the offset 

in advance, which is different on different WebKit version. Also the ROP address 

is dependent on WebKit version too.  

 

Is there a better solution to avoid ROP? The answer is yes. 

 

Given that 128MB JIT page is allocated upon process creation: 



 

With AAR/AAW achieved, we can just copy shellcode to that page and execute at 

that buffer. 

 

The only problem is how to find the JIT page address with AAR.  

 

The JIT page address base is recorded by 

JavaScriptCore`JSC::startOfFixedExecutableMemoryPool, which is within the 

range of JavaScriptCore .DATA section. The first dirty solution is to read the 

value out as the offset of startOfFixedExecutableMemoryPool in 

JavaScript .DATA section is fixed on specific WebKit release. For example, on 

Mac Mavericks 10.9.2 Safari 7.0.2, this it is located at JavaScriptCore.DATA + 

0x3d3b8. However the solution still relies on offset, can we have a better 

solution? 

 

To resolve this issue, let’s look at the sample allocation again and how the 

address is different with other address: 

 

The address is quite different from .TEXT .DATA and even heap address. That 

leaves a good pattern to search the JavaScriptCore .DATA and find the JIT. 

Before doing that, let’s check the code for JIT page allocation: 

 

Although the address is randomized, on DARWIN x64 the pattern is obvious: 

1. Minimum is 0x200000000000 

2. Maximum is 0x5fffffe00000 

3. The red part can only by 0 2 4 6 8 a c e 

4. The least 20 bits are all 0. 

5. startOfFixedExecutableMemoryPool value is “<base value> | 0x1000” 



 

Now we can search JavaScriptCore.DATA section and find the pattern: 

 

In the above code, we use subarray trick to avoid JS loop optimization which will 

make you not able to search memory with ArrayBufferView::baseAddress 

modified in a loop. ArrayBuffer::m_data should be adjusted since subarray 

share the same buffer with parent ArrayBuffer. 

We get the JIT page using the better solution: 

 

Finally code execution is obtained: 

 

 

Summary of WebKit exploitation 

 

A single memory corruption vulnerability can impact on all WebKit Apps. Such 

vulnerabilities are hard to be killed by SDL and thus will keep existing in a long 

term. It is hard to exploit and sometimes instable. Different exploit is needed on 



different platforms. 

To exploit those vulnerabilities, Vulnerability Based Exploitation is needed. This 

is because exploitation technique is more and more dependent on vulnerability 

itself. Sometimes new exploitation method need to be discovered to exploit a 

specific vulnerability, while the technique will not be applied to any of the other 

vulnerability. As a result, it puts higher requirements for WebKit exploiters on 

familiarity of WebKit internals. 

 

Future & improvement  

To Apple 

Apple needs to introduce more exploitation mitigation techniques include: 

1. Put key objects that are frequently used by exploiters, such as String, Typed 

array, etc. to separate Heap Arena 

2. Introduce memory allocation randomization especially for small memory 

allocation 

3. Reduce the number of objects with “JS Controlled Free” feature, which is a 

balance between security and performance 

4. Make JIT page harder to guess, especially for DARWIN x64 

 

To Apple and Google 

Since Apple and Google are working closely on WebKit security, those security 

fixes should be merged into all code branches on time. Many WebKit 

vulnerabilities exist because of not merging on time. For example, a Chrome 

vulnerability was fixed by Google but latest WebView remains vulnerable. 

 

To OS & OEM & App vender 

Vendors should update WebKit libraries frequently. Most WebKit Apps (PC and 

mobile device) use system WebKit/WebView library. Security on those Apps 

largely depend on security of system WebKit/WebView library. On iOS, Apple 

rarely releases new updates just because of WebKit, leaving a relatively long 

time window to exploit N-days for APT guys. On Android, most OEM venders 

won7t update WebKit libraries via OTA, causing some N-days being exploited for 

years. 

 



 

But… WebKit is no doublt the best and most secure rendering engine in the 

world. 


