
SSL Validation Checking vs.
Go(ing) to Fail

Thomas Brandstetter

Presentation Outline

 Bio

 Background for research

 Architecture & Testing Concept

 Results

BIO

 Founder and GM of Limes Security

 Independent security consulting
company, part of Softwarepark
Hagenberg, Austria

 2 major focus areas

 Secure Software Development

 Industrial Security

 Strong industrial background: Former
head of Siemens ProductCERT &
manager of Hack-Proof Products
Program

 Associate Professor at University of
Applied Sciences St. Poelten,
Austria

 Classes:
 Web- & Application Security

 Penetration Testing

 Industrial Security

 Botnets & Honeypots

 CERTs & Incident Response

 Research Interests: Industrial
Security & Application Robustness

BACKGROUND FOR RESEARCH

Starting Point: Apple’s security-
related update iOS 7.0.6

Source: http://support.apple.com/kb/HT6147

What was wrong in Apple’s SSL code?

• According to public analysis, the problem resided in a file called sslKeyExchange.c
(version 55741) of the source code for SecureTransport, Apple's offical SSL/TLS library

• Buggy code comes as a sequence of C function calls, starting off in SecureTransport's
sslHandshake.c:
– SSLProcessHandshakeRecord()

• -> SSLProcessHandshakeMessage() dealing with different aspects of SSL handshake:

-> SSLProcessClientHello()

• -> SSLProcessServerHello()

• -> SSLProcessCertificate()

• -> SSLProcessServerKeyExchange()

• Last function is called for various TLS connections, notably where forward secrecy is
involved

Source: http://opensource.apple.com/source/
Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

What was wrong in Apple’s SSL code?

• Here, the server uses its regular public/private keypair to authenticate the
transaction, but generates an ephemeral keypair for the encryption (forward
secrecy)

• Benefit of forward secrecy is that if the server throws away the ephemeral keys after
each session, then you can't decrypt traffic from those sessions in the future, even if
you acquire the server's regular private key by different methods (e.g. demand from
law enforcement, bribery or break-in theft)

• To continue: SSLProcessServerKeyExchange() lead to function call
-> SSLDecodeSignedServerKeyExchange()
-> SSLDecodeXXKeyParams()
IF TLS 1.2 -> SSLVerifySignedServerKeyExchangeTls12()
OTHERWISE -> SSLVerifySignedServerKeyExchange()

Source: http://opensource.apple.com/source/
Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

Tracing the bug further to its root cause in
sslKeyExchange.c

static OSStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UInt16 signatureLen)

{

OSStatus err;

...

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

...

fail:

SSLFreeBuffer(&signedHashes);

SSLFreeBuffer(&hashCtx);

return err;

}

Source: http://opensource.apple.com/source/
Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

First fail is correctly bound to
if statement, but the second isn't
conditional:
Code always jumps to the end from
that second goto, err will contain a
successful value because SHA1 update
operation was successful and so the
signature verification will never fail!

Analyzing what the code probably should
have done

Code should calculate
cryptographic checksum of three

elements - the three calls to
SSLHashSHA1.update(), then call

the critical function sslRawVerify().

If sslRawVerify() succeeds, then err
ends up with the value zero "no

error“

That's what the SSLVerifySigned-
ServerKeyExchange function

returns to say, "All good."

The first goto fail happens when
the if statement succeeds, e.g. if

there has been a problem and
therefore err is non-zero, causing
an immediate "bail with error,"

and the entire TLS connection fails.

In C, the second goto fail, which
shouldn't be there, always

happens if the first one doesn't

The result is that the code jumps
over the call to sslRawVerify(), and

exits the function.

This causes an immediate "exit
and report success", and the TLS

connection succeeds, even though
the verification process hasn't

actually/fully taken place.

Source: https://nakedsecurity.sophos.com/2014/02/24/
anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/

What did it mean?

• SSL Validation not working properly:
• Link between ephemeral key and certificate

chain is broken
• Possible to send a correct certificate chain to

client, but sign handshake with wrong
private key, or not sign it at all

• No proof that the server possesses the
private key matching the public key in its
certificate

• Forged certificates should lead to error
message/warning are omitted

• Thereby making man-in-the-middle (MITM)
attacks easier

Source: https://www.imperialviolet.org/2014/02/22/applebug.html

Our thoughts at this point

Could it have been detected?

If source code was available: Yes! By Apple
conducting source code scans/reviews, indicating

that code fragment is never reached

If source code was not available (Most of the
time): Maybe, only if SSL validation checks can be

somehow assessed from the outside
systematically

How is it possible that this critical bug in a
security function went unnoticed for a long

time?

This lead to our main research questions

When having the source code, detecting a bug like
goto fail seems possible, but:

• To which degree can SSL validation checks of 3rd party apps be
systematically assessed if source code is not available?

• What is the overall state of SSL validation checks conducted by
app(lication) developers currently, are developers doing the right
things?

SSL VALIDATION FUZZER
CONCEPT & ARCHITECTURE

Our designated approach

Derive a testing methodology which
allows us to assess whether SSL

validation checks in different
(mobile) applications have been

implemented properly by the app’s
developers – without having access

to the source code

Create a tool which helps us in this
assessment

Run this tool against a number of
apps which are likely to have SSL

validation implemented: Candidate
group one: Critical

EBANKING/payment apps!

Check the same app on the 3 main
mobile platforms iOS, Android and

Windows Phone to look for
interesting patterns

Main Assessment Components

Self-developed SSL
validation fuzzer

Modified
version of

MITMproxy
software,

interfacing to
SSL Validation

Fuzzer

State-of-the-
art mobile
equipment

• Samsung Galaxy S2, Modell GT-
I9100, running Android 4.1.2,
Kernel-Version 3.0.31-1156082

• Apple iPhone 5, Modell
MD297DN/A, running iOS 7.1.1

• Nokia Lumia 820,
Hardwarerevision 2.4.3.5,
running Windows Phone 8.0
(8.0.10517.150)

Architecture & Setup of Assessment
Environment

Testing Approach: Target-oriented SSL
validation fuzzing/checking

Test cases! But which ones do make sense?
How twisted can a developer’s mind be?

List Initial test
cases based on
x509 standard
certificate fields,
In addition:
- SSL stripping
- Certificate
pinning

Case 1: arbitrary
certificate

Case 2: valid certificate
Case 3: invalid

notAfter
Case 4: invalid

notBefore

Case 5: invalid
Hostname, original

serial no

Case 6: invalid
signature, modified

serial no

Case 7: invalid
signature, original

serial no

Case 8: not signed
with key of CA

Case 9: issuer field of
certificate does not
match subject of CA

Case 10: hostname in
subject field modified

Case 11: no hostname
in subject field,

subjectAltNameExtensi
on changed

Case 12: version 2
certificate with wrong

hostnme in subject
field, correct one in

subjectAltName-
Extension

Case 13: certificate
chain is extended with

intermediate
certificate

Case 14: incorrect
intermediate-certificate

(basicConstraints =
CA:FALSE)

Case 15: tbd

RESULTS

90 mobile applications tested as of
August 8th, 2014)

3Kundenzone Airbnb Alinma Bank - مصرف Amazon
American Bank –
Mobile Banking

Anson Bank & Trust
e-zMobile Banking

Apothekerbank Ärztebank
Bank Austria

MobileBanking
BAWAG PSK

BDSwiss - Die Trading
App

BKS Bank Österreich
BNY Mellon Business

Banking
BNY Mellon Private

Banking
Börse Frankfurt

Börse, Aktien,
Aktienkurse -
finanzen.net

Brokerjet BTV Banking bwin Sports bwin.com Poker cfd Banking Services Commerzbank

DenizBank AG –
Österreich

easybank
E-Central mobile

Banking
E-POST KontoPilot -

Banking App

Erste Bank /
Sparkasse Österreich

- netbanking
Fidor Bank

First Bancorp Mobile
Banking

FX on J.P. Morgan
Markets

Gärtnerbank
German American

Mobile Banking
GLS

Hampden Bank
Mobile Banking

HDFC Bank
MobileBanking

HYPO Landesbank Hypo Mobile
HYPO NOE Mobile

Banking
Hypo Vorarlberg

Immobiliensuche -
Wohnnet.at

ING-DiBa Austria
Banking App

Interwetten –
Sportwetten

J.P. Morgan adr.com Kotak Bank

LLB Mobile Banking LOTTERIEN SHAKER Lufthansa
Mein A1

mein bob Meine Bank My T-Mobile ÖAMTC ÖBB Scotty Oberbank Openbank

Paypal paysafecard Personal Banking Pizza Mann Austria Plus500 Post
Postbank

Finanzassistent
Prime on J.P. Morgan

Markets
Quick Mac

Raiffeisen Meine
Bank.

Santander
Accionistas

Santander Bank Santander Río Skrill
Southern Michigan

Bank & Trust
Sparda-Bank SPARDA-BANK Linz Suncorp Bank TeleTrader timr Tipico Sports Trader's Box

Tyndall e-Banking UBS Mobile Banking VeroPay
Volksbank Mobile

Banking
VP Bank e-banking

mobile App
Wells Fargo CEO

Mobile
Wells Fargo Mobile WKO Mobile Services yesss!

Results 1 / 2: The bad news

 Even in the world of mobile banking apps: In 2014 there are still several
apps of European / international banks (regardless of company size) that do
not apply ANY validation checking and are susceptible to MITM attacks =>
Total fail 

 Several lower degrees of failed validations found

 Some apps are susceptible to SSL stripping, allowing for undetected
malicious redirects e.g. “good” way of supporting phishing purposes

 Some payment apps transmit quite a bunch of (device) data possibly for
fraud detection, maybe raising privacy concerns

 Some use out-of-band tcp connections for whatever reasons

Interesting to see what data is being sent by an app,
e.g. Paypal, probably for risk/fraud estimation:

device_info:
2 {"device_identifier":"c5eeca5e-56ef-4878-af58-09b1e6a0e056","device_os":"Android","dev
3 ice_name":"GT-I9100","device_model":"GT-I9100","pp_app_id":"APP-3P637985EF709422H","de
4 vice_os_version":"4.1.2","device_type":"Android","device_key_type":"ANDROIDGSM_PHONE",
5 "is_device_simulator":"false"}
6
7 app_info:
8 {"device_app_id":"APP-3P637985EF709422H","client_platform":"AndroidGSM","app_version":
9 "5.4.3","app_category":"3"}
10
11 risk_data:
12 {"sms_enabled":true,"conf_url":"https:\/\/www.paypalobjects.com\/webstatic\/risk\/dyso
13 n_config_v2.json","is_rooted":false,"network_operator":"23210","payload_type":"full","
14 ip_addrs":"192.168.45.100","app_version":"5.4.3","is_emulator":false,"conn_type":"WIFI
15 ","comp_version":"2.1.3","os_type":"Android","timestamp":1401226027532,"risk_comp_sess
16 ion_id":"396c4bd0-5a1e-4395-b3ad-eb67cecdb88b","device_model":"GT-I9100","device_name"
17 :"GT-I9100","sim_serial_number":“XXXXX3102000793002460","ssid":"GBT-Party","roaming":fal
18 se,"device_uptime":284285979,"cell_id":7441899,"phone_type":"gsm","mac_addrs":"04:46:6
19 5:4A:CA:59","subscriber_id":“XXXXX922600356","ip_addresses":["fe80::646:65ff:fe4a:ca5
20 9%wlan0","192.168.45.100"],"device_id":“XXXXX0044348101","app_guid":"c5eeca5e-56ef-487
21 8-af58-09b1e6a0e056","locale_lang":"de","os_version":"4.1.2","locale_country":"AT","bs
22 sid":"64:66:b3:c7:0b:bd","linker_id":"b1d3074f-9ec1-45dc-9550-9723cb5388f8","location_
23 area_code":2031,"app_id":"com.paypal.android.p2pmobile","total_storage_space":12353372
24 160,"tz_name":"Mitteleuropäische Zeit"}

Results 2 / 2: The good news

Several banking/payment apps do exist which apply all SSL
validation checks – homework properly done 

Certificate pinning is being done some cases(platform-
dependent) but not totally widespread

 If platform-provided validation functions are used instead of
home-grown code, results look more decent (as long as there’s
no other go-to fail of course…)

Summary & Take-Aways

• Assessing SSL validation checks of a 3rd party app(lication) is
possible to a good degree even without source code

• Even in 2014 in the banking sector, SSL validation checking is
not done properly in all cases – bad guys have probably
figured out where(locally) it’s worthwhile

• More education of developers creating apps with secure
channels seem to be necessary to prevent the next go-to fail
for widely-used apps

Thanks to:

Christian Stoiber/FH St. Pölten

for first working concept

Peter Panholzer/Stefan Keil of Limes Security
for ideas and refinement

More information available at

www.limessecurity.com/sslvalidation

Contact info:

thomas@limessecurity.com

http://www.limessecurity.com/sslvalidation
mailto:office@limessecurity.com

