
Man in the Binder: He Who Controls IPC,

Controls the Droid

Nitay Artenstein and Idan Revivo

Malware Research Lab, Check Point

September 29, 2014

Abstract

While built on top of Linux, Android is a unique attempt to com-

bine the principles behind microkernel OS architectures with a standard

monolithic kernel. This o�ers many advantages in terms of �exibility

and reliability, but it also creates unique liabilities from a security stand-

point. In this paper, we'll have a detailed look at Binder, the all-powerful

message passing mechanism in Android, then examine the far-reaching

consequences if this component is compromised by an attacker. We'll ex-

plain how to parse, utilize and ex�ltrate the data passed via Binder, and

conclude with a demonstration of three di�erent types of attack previously

thought di�cult to implement on Android, but shown to be easily done

when controlling Binder.

Introduction

In recent years, Android malware authors have put considerable e�ort into tak-
ing their game to the next level: The �rst Android bootkit1, the �rst Android-
centric botnet2 and the �rst Android ransomware3 are all a part of this trend.

However, in contrast to the maturity and advanced technical craftsmanship
evident in contemporary PC malware, Android malware still seems to be in its
infancy. The symptom of this is that malicious code in Android will usually
attack at a level which is too high and therefore application-speci�c and non-
portable, or use low-level Linux kernel techniques which focus on subverting
the system at a place far below the Android framework, which is where the
interesting stu� takes place4.

The one thing in common to all Android malware found in the wild is that
they are not based on deep knowledge of Android internals, and as a result do
not integrate well into the Android framework.

1http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
2http://securelist.com/blog/mobile/57453/
3http://labs.bitdefender.com/2014/05/reveton-icepol-ransomware-moves-to-android/
4A good example of this approach is this classic article by dong-hoon you from Phrack

0x44: http://www.phrack.org/issues/68/6.html

1

In this paper, we focus on what we believe will be the next target for Android
malware authors: A crucial Android-speci�c system component which forms
the main bridge between the high-level application framework and the low-level
system layer. Subverting this component allows an attacker to see and control
almost all important data being transferred within the system. Welcome to the
Binder.

In the following pages, we will give an overview of Binder and its role in the
OS architecture, explain why this component is an optimal target for malware,
and discuss possible subversion techniques. We will then show how these tech-
niques can be used for taking Android malware to the next stage of its evolution,
by either making known-types of attack more global and e�ective, or by opening
the door for new types of attacks not possible before.

This paper assumes that the reader is generally familiar with Android pro-
gramming, and has basic understanding of how the Android application sandbox
is implemented. We also assume that the reader already knows about the DVM,
the Zygote, and how managed bytecode interfaces with native code via JNI. We
should also note that Binder, and the Android OS as a whole, are complicated
subjects. This paper focuses on Binder in the context of black hat techniques
that can be used to subvert it. Some additional reading, which discusses mis-
cellaneous aspects of Binder, is suggested at the end of the paper.

Most importantly, all the techniques described in this paper require running
with root permissions.

Android and Binder

The architecture of the Android OS can best be understood as a compromise
between two opposing philosophies of operating system design: The traditional
monolithic kernel approach, which is based on implementing the operating sys-
tem entirely in supervisor mode and using system calls as the main interface
to OS services, and the microkernel approach, which relies on the heavy use of
message passing between user applications and user space based system servers
that serve, in turn, as the bridge to a minimalist kernel.

From a security standpoint, the main advantage of a microkernel based ar-
chitecture is that it exposes a smaller attack surface: A normal application has
no business speaking directly to the kernel, and the kernel, as a result, needs to
handle less untrusted input. The �ip side of this is that an attacker does not
need access to supervisor mode in order to completely subvert the system. All
it takes is control of the system servers or the message passing mechanism.

Binder was designed by Dianne Hackborn as the centerpiece of a hybrid OS
architecture. The idea, �rst implemented in Palm OS Cobalt, was to run a
microkernel-inspired, object oriented OS design on top of a traditional mono-
lithic kernel, mainly through the use of Binder as an optimized IPC mechanism
which will present an object oriented abstraction of system resources to the
upper layers. Google hired Hackborn in 2006, and her ideas greatly in�uenced
Android's architecture.

2

Figure 1: Android's architecture, the classic diagram

To explain Android's architecture, the diagram in �gure 1 is normally used,
and it is probably familiar to anyone who has ever worked with Android. This
diagram is helpful in understanding the basic architecture of the OS: standard
user applications (depicted in the uppermost layer) interact with various system
services in the Application Framework layer, in what is a classic server-client
pattern.

These services, such as the Telephony Manager, the Location Manager, and
the View System, provide access to various hardware resources in accordance
with the application's permissions. The system servers are the only components
with su�cient permissions to interact directly with the kernel and to provide
access to the required resources.

This classic diagram, while useful, is of limited assistance to a security re-
searcher, who will require a more �ne-grained understanding of how things work.

3

Client process
address space

Dalvik VM

Application

System Services
(Proxy)

Native

Native libs
(libcrypto, ...)

System Services
(Native proxy)

Binder
framework

Server process
address space

Dalvik VM

Application

System
Services

Native

Hardware
libraries

Native System
Services

Binder
framework

Hardware
(/dev/...)

Binder
driver

Kernel space

1 25 436

Figure 2: A down-to-earth view of how processes talk to each other

Figure 2 depicts the �ow from a low-level, process to process view. We
can see that a typical client's address space contains an instance of the DVM,
which runs the user application as well as proxies for the Java system services.
These Java services communicate with their native counterparts (also proxies)
via JNI. Since the system services are not actually implemented in the client's
address space, the client will need to use IPC to request a system service from
the appropriate server.

This is where Binder comes in. Binder is a two-headed monster: A lion's
share of its functionality is implemented in "the Binder framework", a user
space library (libbinder.so) which is loaded into most processes in Android.

4

This library handles, among other tasks, most of the grunt work of wrapping
and un-wrapping complex objects into simpli�ed, �attened objects referred to
as Parcels, before they are sent across to another process or received by it.

The Binder driver, on the other hand, carries out the critical, kernel-level
tasks involved in IPC, such as the copying of data from one process to another
and maintaining a record of which handle corresponds to which object in a
speci�c process.

Figure 2 illustrates a simpli�ed �ow of data between the client and server
processes, via the Binder driver. After handling all tasks such as marshalling
objects into Parcels, the Binder framework calls an ioctl syscall with the �le
descriptor of /dev/binder as a parameter (1) and transfers the relevant data
to the kernel. The driver then looks up the required service, copies the data to
the system server's address space, then wakes up a waiting thread in the server
process to handle the request (2).

After unmarshalling the Parcel objects and verifying that the client process
has the relevant permissions to carry out the required task (for example, make a
network connection), the server performs the requested service, and if necessary
calls into the kernel to interact with the relevant hardware (3) and receive a
response from it (4). Afterwards, the copy of libbinder which is loaded within
the server's own address space marshals the response data and sends it back to
the driver (5), which hands it back to the client process (6).

It is necessary to keep this architecture in mind when trying to wade your
way through the mind-boggling, undocumented swamp that is Android's source
code.

The code of a typical service in Android is split into two parts: the service
itself and its interface. And since we're discussing IPC, even that is a simpli�ed
view. In fact, each interface has a dual implementation - a proxy on the client
side and a stub on the server side. This allows a developer creating an app
for Android to call services transparently, without even realizing that they are
invoking IPC.

A call on the client side for a system service will, under the surface, invoke
the corresponding function in the proxy interface. This will trigger a Binder call
into the server process, where the stub interface will be waiting for incoming
transactions. From that point, the stub interface will call into the actual imple-
mentation on the server side, passing the arguments transferred via Binder.

Any type of data can be transferred via a Parcel. If the data type is non-
primitive (an object), that object will be �attened into what is de�ned as a
"�at binder object". A �at binder object can be used to send across objects of
arbitrary complexity as well as �le descriptors. The driver performs the heavy
work, as it keeps a translation table between pointers to the real objects in the
originating process' memory space, and the handles assigned to these objects so
that remote processes can refer to them.

A user application running on Android is severly limited in what it can do on
its own. Generally speaking, any action outside of its virtualized address space
requires interaction with one of dozens of system services. An app on Android
may call into Binder, and receive replies from it, thousands of times a minute.

5

This information highway going into and out of an app will contain massive
amounts of data - and an attacker who can tap into this data will immediately
gain immense power over the device. Furthermore, controlling the information
�ow to Binder is a uniquely portable way to steal and modify user data in
Android. An attacker does not need to know anything about the implementation
of a speci�c app: regardless of the application's internal complexity, it will
eventually have to call a limited set of system services.

A key to Binder's value for attackers is that Android developers and security
personnel are generally not aware of the sheer extent of data they are sending
across via IPC. For example, developers routinely use Intent objects to send
data between di�erent Activities within the same app. Little do they know,
however, that by doing so they are in fact using Binder to send their data to
the remote process running Activity Manager.

Another example: A developer using HTTPS might assume that the data
being sent is encrypted. However, before being sent across the network, the data
will �rst be delivered in plaintext to the Network Manager. How to intercept,
and possibly modify, interesting data that is passed through Binder, is the focus
of the next section.

Subverting Binder

To control Binder, we �rst need to �nd the point where the Binder framework
�nishes wrapping up the data in Parcels, and passes it on to the driver. Which
process we'll choose as our target really depends on our purpose: if we aim
to trap the global data �ow associated with a single system service - this is
something we'd like to do if, say, we want to install a system-wide keylogger -
we'll choose to attack the relevant server. If we want to grab the data used by
a single client process, and achieve more stealth while we're at it, we'll attack
that process alone.

To get a stranglehold on the exact point where the data gets sent to the
Binder driver, we'll use the classic library injection technique. After injecting
our code into the target process and running from the context of the victim's
address space, we'll put a hook in place to divert the control �ow to our own
code.

The function we'll need to hook is IPCThreadState::talkWithDriver, ex-
ported by libbinder. This function is the only place in the process' address
space where a ioctl is being sent to the Binder driver. This is what it looks like:

ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)

Our next steps will require an understanding of the structs used by Binder and
the ways these structs are handled. In the above function call, an ioctl is sent to
the Binder device's �le descriptor. BINDER_WRITE_READ is one of several request
codes that can be sent to the driver, and the only one which concerns us here.
The �nal argument is the address of a struct of the type binder_write_read,

6

which is the �rst data structure we'll need to examine. It has the following
declaration in binder.h:

struct binder_write_read {

signed long write_size; /* bytes to write */

signed long write_consumed; /* bytes consumed by driver */

unsigned long write_buffer;

signed long read_size; /* bytes to read */

signed long read_consumed; /* bytes consumed by driver */

unsigned long read_buffer;

};

When calling into kernel space, this structure will contain a pointer to a write
bu�er which will hold the transaction code and its parameters. Upon return
from the ioctl call, the read bu�er will be �lled with the driver's reply, pre�xed
by a code which corresponds to the type of reply.

The transaction code can be one of a possible range of codes de�ned in
enum binder_driver_command_protocol. We are generally interested only in
BC_TRANSACTION. When this code is at the beginning of the bu�er pointed to
by write_buffer, we know that we are dealing with a Binder transaction, and
we can parse the bu�er accordingly.

The key struct in a Binder transaction is struct binder_transaction_data,
declared in binder.h:

struct binder_transaction_data {

union {

size_t handle;

void *ptr;

} target;

void *cookie;

unsigned int code;

unsigned int flags;

pid_t sender_pid;

uid_t sender_euid;

size_t data_size;

size_t offsets_size;

union {

struct {

const void *buffer;

const void *offsets;

} ptr;

uint8_t buf[8];

} data;

};

Let's go over some of the more useful �elds in this struct:

7

target - This union will contain either a handle to the referred object if the
object is in a remote process' address space, or an actual pointer to the
object if it is within the current process' address space. The Binder driver
will keep a mapping between each object and its handles, and will do the
appropriate translation.
For example, a client process can ask a server process to initialize a cer-
tain object which will represent a required service (for instance, an audio
recorder). After creating the requested object, the server process will write
the object's address to the target �eld, and pass the data to the Binder
driver. The driver will then map the pointer to a speci�c handle, and pass
on that handle to the client process.
From this point on, whenever the client process wishes to refer to that
object, it will pass the handle back to the Binder driver. The driver will
then swap the handle for the actual memory address and pass it on to the
server process.

code - This is the code of the function which the server is requested by the
client to execute. Further on, we will see how to match the value in this
�eld to an actual function, and how to parse the arguments being passed.

flags - The �ags for this bit�eld are de�ned as follows:
TF_ONE_WAY = 0x01; /* this is a one-way call */

TF_ROOT_OBJECT = 0x04; /* the component's root object */

TF_STATUS_CODE = 0x08; /* contents are a 32-bit status code */

TF_ACCEPT_FDS = 0x10; /* allow replies with file descriptors */

The �ags we'll usually encounter in the transactions we wish to intercept
are TF_ACCEPT_FDS, signifying that �le descriptors can be passed within
�at binder objects, and TF_ONE_WAY, which means that we should not wait
for a reply after performing the transaction.

data - This is the most important member, as it points us to the actual data
bu�er being sent. First of all, you can generally ignore the fact that this
is a union, as the buf union member is very rarely used in the types
of transactions that we care about. Focusing on the ptr struct, we can
see that it contains two pointers: buffer and offsets. buffer holds a
pointer to the raw data sent via Binder. offsets points to a separate
bu�er, which holds the positions within buffer in which we'll �nd �at
binder objects that Binder will need to convert to real objects.

As described above, data.ptr.buffer points to the bu�er which holds all the
good stu� that we want. Understanding how to read it is our next goal. And the
best way to achieve that goal is to focus on a real transaction - a Media Player
function call passed from the proxy interface on the client process to the stub
interface on the server process, and from there to the actual implementation.

8

binder_write_read

write_buffer

binder_transaction_data

strlen

code

16

a n d r o i d . m e d i a . I M e d i a

P l a y e r

Parcel

26

1 2

1.0 1.0

Function code 16: setVolume

android.media.IMediaPlayer

float leftVolume1

float rightVolume2

interface descriptor

32
bits

protocol tag*

* Tag should be BC_TRANSACTION

data.ptr.buffer

Figure 3: Dissecting a typical Binder transaction

9

Unwrapping A Parcel Object

The bu�er that we'll look at next is in fact a Parcel object. And like every
parcel that has a right to expect that it will reach its destination, this one has
an address stamped on it. The interface descriptor is a 16-bit Unicode string
that is appended to the start of a Parcel and simply states which service it
is being delivered to. We'll just note in passing that Binder uses an elaborate
system to determine where to deliver the data, and does not depend upon this
string, which was added as a security measure.5

In the example given in �gure 3, the interface descriptor appended to the
beginning of the Parcel is android.media.IMediaPlayer. The IMediaPlayer
interface passes requests to the almighty Media Player service, which is one of
the main dispensers of audio output in Android.

Let's focus on �gure 3 for a moment, and read it in lockstep with this
walkthrough on how to understand the data being passed in a Parcel. A
Parcel object has no pre-de�ned size: A variable amount of data is stored in
each Parcel, in accordance with the number and types of arguments required
by the remote function being invoked.

So, we only need to �gure out the prototype of the function being called.
That could be easy or hard, depending on whether or not we have the source
code. And since this is Android, we usually will have the source.6

Referring back to the example in �gure 3, we can see that the code member
in the binder_transaction_data struct is, in this sample, 16. Let's open the
source code of the interface that's being talked to - in this case, IMediaPlayer -
and dig in.7

First of all, let's go for the easy catch. At the beginning of the �le, you'll �nd
an enum similar or identical to the one below. Here it is with line numberings
in comments:

enum {

/* 1 */ DISCONNECT =

IBinder::FIRST_CALL_TRANSACTION, // Defined as 1

/* 2 */ SET_DATA_SOURCE_URL,

/* 3 */ SET_DATA_SOURCE_FD,

/* 4 */ SET_DATA_SOURCE_STREAM,

/* 5 */ PREPARE_ASYNC,

/* 6 */ START,

[...]

/* 16 */ SET_VOLUME

};

5While out of scope for this paper, further details on Cross-Binder Reference Forgery
(XBRF) attacks can be found at: http://crypto.hyperlink.cz/files/xbinder.pdf

6If you are dealing with a unique build for which no source code is available, the best
approach to take is to still rely on the o�cial source code from AOSP, while looking for any
small di�erence in implementation that might arise. It is extremely rare to see signi�cant
changes to the code at this fundamental level of the architecture.

7The full path to the source �le is frameworks/av/media/libmedia/IMediaPlayer.cpp

10

Each member of the enum corresponds to an action that is performed by the
service. There is an exact correspondence between the order of the members
in the enum and the code member in the binder_transaction_data struct.
Here, member number 16 (which is the code we are looking for) is SET_VOLUME.

Let's take a step back and see how this is translated into a real function call.
We can see that the source code �le contains implementations for two classes:
BnMediaPlayer ("Bn" stands for "Binder native"), which contains the stub
interface in the server process, and BpMediaPlayer ("Binder proxy"), which
contains the proxy interface in the client process.

This code gives us a very good general idea on how IPC works at the
native level: The Binder proxy class exposes a variety of methods, such as
disconnect() and setDataSource() (as seen in the enum above), which are
called in the client process via JNI. The method in the proxy class then per-
forms a Binder transaction that contains the function code and the argument
data. On the other side of the divide, the stub interface in the server process
receives the transaction, parses the Parcel, and calls the relevant function in
the implementing classes, where the real work of the service is being done.

A few code snippets should make this clearer. Let's begin at the top, and
see the call chain that eventually triggered our sample transaction in �gure 3.
Here is how the code is called from the managed MediaPlayer class in Java:

public native void setVolume(float leftVolume,

float rightVolume);

So, whenever any Java code instantiates a MediaPlayer class, then calls its
setVolume method, what it really does is call a native method via JNI. Let's
go another step down the ladder, to the native level, and look at the real code
that's being run. The code we're looking for is in the BpMediaPlayer class
which we observed earlier:

status_t setVolume(float leftVolume, float rightVolume) {

Parcel data, reply;

data.writeInterfaceToken(IMediaPlayer::getInterfaceDescriptor());

data.writeFloat(leftVolume);

data.writeFloat(rightVolume);

remote()->transact(SET_VOLUME, data, &reply);

return reply.readInt32();

}

This code, which runs on the client process as part of the proxy interface,
prepares the transaction and sends it across to the server process in these simple
steps:

1. It initializes two Parcel objects on the stack: one for sending the trans-
action data, one for getting a reply.

11

2. It writes an interface token (which is composed of a 32-bit integer which
de�nes a "strict mode policy" - out of scope for our purposes - followed
by the interface descriptor) to the data bu�er.

3. It writes the two arguments required for this function call - leftVolume
and rightVolume - to the data bu�er.

4. It retrieves a reference to the remote service being called, then calls its
transact member. This method prepares the binder_transaction_data
struct, as well as binder_write_read, with all relevant pointers and mem-
bers; this is how the SET_VOLUME value ends up as the value in the code

member in our struct in �gure 3.

5. transact then calls an ioctl into Binder, and the transaction is sent to
the server process.

If you'll look at the Parcel bu�er in �gure 3, you should see that it re�ects
the steps carried out by the code above: The bu�er is composed of an interface
descriptor, followed by the two arguments, leftVolume and rightVolume.

To close the circle, let's see what happens on the other side, when the trans-
action reaches the server process. This code is from the onTransact method
of the BnMediaPlayer class, which implements the stub interface on the server
process side.

status_t BnMediaPlayer::onTransact(uint32_t code,

const Parcel& data, Parcel* reply, uint32_t flags) {

switch (code) {

[...]

case SET_VOLUME: {

CHECK_INTERFACE(IMediaPlayer, data, reply);

float leftVolume = data.readFloat();

float rightVolume = data.readFloat();

reply->writeInt32(setVolume(leftVolume, rightVolume));

return NO_ERROR;

} break;

This an exact mirror image of what we saw in the proxy interface, except that
the setVolume method called now is a member of the class MediaPlayer, which
is responsible for the actual implementation of Android's media player.

And now, at the end of this journey, you should have a pretty good idea of
how IPC works in Android on the userland level, and how to read the Parcel

bu�er and understand the data being sent.
We're now prepared for the fun part: attacking the system. But before we

take o� our gloves, please note: We're only touching the tip of the iceberg. We'll
grab data from the most obvious places, mainly to show how versatile is this
method of attack. However, you can easily see that the possibilities are almost
endless. The only limit is how imaginative you're willing to be, and how far you
want to dig into the system's internals.

12

First Attack: Keylogger

Keyloggers have always been problematic on Android. Not equipped with ad-
equate knowledge of the system's internals, malware authors had a hard time
understanding where and how to trap a user's keyboard input.

A prevalent approach currently used by malware is to replace the default
keyboard with a custom keyboard application which saves the entered input
to a bu�er or sends it back to the C&C server. However, this attack is easily
detected, even by a non-technical user. Using a Man in the Binder attack would
be a much more robust and stealthy solution.

To receive keyboard data, an application has to register with an Input
Method Editor (IME) server. An IME is the actual keyboard implementa-
tion in Android; A user can swap IMEs and install new ones, but only one
IME can be enabled at a time. The default IME in most Android images is
com.android.inputmethod.latin.

When an application registers with a server - in this case the IME - to
receive data from it, the client/server model we described earlier is turned on
its head: Now, the application becomes the server, and the server becomes its
client. Whenever new data is available for the application, the service delivers
the goods by using Binder to call into a callback method initialized by the
application. In this case, the arguments for this callback will be our keyboard
input.

To grab data in this new model, we have to take our Binder kung-fu up a
notch: We no longer need to intercept the data going down from the application
into Binder - we have to intercept the reply tossed up from Binder to the app.
To do so, we'll need to do something along the lines of this pseudo-code:

int hooked_ioctl(int fd, int cmd, void *data) {

do_evil_deeds_with_transaction(data);

int ret = ioctl(fd, cmd, data);

do_evil_deeds_with_reply(data);

return ret;

}

Parsing the reply bu�er isn't di�erent from parsing the transaction data. The
�rst four bytes of the reply are a code that tells us what kind of bu�er to expect.
The protocol codes are de�ned in enum binder_driver_return_protocol. We
are generally only interested in BR_REPLY and BR_TRANSACTION.

BR_REPLY is a raw bu�er that doesn't have any speci�c format: it contains
the return data from a function we have called. A BR_TRANSACTION, on the
other hand, holds the information sent from a service when we have registered
a callback method to handle incoming data.

This is the kind of transaction we'll get when we receive keyboard data from
the IME, and it is parsed exactly the same as a BC_TRANSACTION, as in �gure
3 above. We are merely looking at the other side of the transaction, this time
from the server angle.

13

binder_write_read

read_buffer

binder_transaction_data

strlen

code

6

c o m . a n d r o i d . i n t e r n

a l . v i e w .

Parcel

39

2

Function code 6: setComposingText

com.android.internal.view.IInputContext

CharSequence text1

int newCursorPosition2
32

bits

protocol tag*

* Tag should be BR_TRANSACTION

protocol tag*protocol tag* data.ptr.buffer

I I n p u t C o n t e x t

1

U R P W N D8

strlen

1

interface descriptor

Figure 4: Getting at that juicy keyboard data

14

By hooking all Binder calls in the application process, and typing some test
input, you'll quickly �nd exactly what you're looking for. The bu�er you'll see
is illustrated in �gure 4, which demonstrates how we would parse a transaction
coming in from the IME.

As you can see, read_buffer in binder_write_read points to the reply we
got via Binder. Parsing the beginning of the bu�er, we know that we need to
continue if the protocol code is BR_TRANSACTION. The remainder of this bu�er
can be parsed as a struct binder_transaction_data.

The Binder packet which contains the keypress data is delivered to an in-
ternal interface called com.android.internal.view.IInputContext. This in-
terface sends the data up to the InputContext class, which handles received
keyboard input within the client process.

Remember that in this transaction, the client process acts as a server, and
receives calls from the IME whenever keyboard strokes are detected. Each
time a key is pressed, another callback to IInputContext is triggered, and a
fresh bu�er is sent via Binder. So we know that the target of this trans-
action is IInputContext. Digging through the source code, we'll �nd that
IInputContext has no actual implementation; the only thing we have is an
AIDL �le.

AIDL is a domain-speci�c language meant for de�ning Android IPC inter-
faces. The methods which can be called in a remote process are de�ned as a
series of function prototypes. When an AIDL �le is processed by the AIDL
compiler, it generates the required native classes that together form the proxy
interface on the client side and the stub interface on the server side.

Looking at the code member in the binder_transaction_data struct, we
see that the function code for the transaction in question is 6. How do we connect
this number to a real function prototype? The key is in IInputContext.aidl,
the AIDL source �le.

The AIDL compiler will enumerate the function prototypes in the source
�le one by one, then generate code similar to the snippets we've seen in the
Media Player example. There is a direct correspondence between the order
of the functions in the AIDL �le and the function code as it appears in the
transaction. Let's have a look at the AIDL source code for IInputContext,
with function numbers in the comments:

oneway interface IInputContext {

/* 1 */ void getTextBeforeCursor(int length, int flags,

int seq, IInputContextCallback callback);

/* 2 */ void getTextAfterCursor(int length, int flags,

int seq, IInputContextCallback callback);

/* 3 */ void getCursorCapsMode(int reqModes, int seq,

IInputContextCallback callback);

/* 4 */ void getExtractedText(ExtractedTextRequest request,

int flags, int seq,

IInputContextCallback callback);

/* 5 */ void deleteSurroundingText(int leftLength,

15

int rightLength);

/* 6 */ void setComposingText(CharSequence text,

int newCursorPosition);

[...]

}

As you can see, the code 6 corresponds to the prototype for setComposingText.
We can now parse the bu�er from the point after the interface descriptor. The
�rst argument, which implements the CharSequence interface, holds a member
for the string length, followed by the string itself as an array of 16-bit characters.
It is here that we'll �nd the keyboard input. Q.E.D.

Now let's continue to something more elaborate.

Second Attack: Playing with in-app data

There is a dark secret common to all Android applications. Android developers
who try to understand how the system works are often quite surprised at the
sheer extent of their application's use of IPC. But even this is not the whole
truth: Hardly anyone is aware that an Android app uses Binder to pass data
within the same application.

A typical Android application of reasonable scale is divided into dozens of
di�erent Activities. An Activity is simply an interaction unit within the ap-
plication, composed of a GUI and the logic used to manage it. From a 10,000
foot view, an Android app is merely a collection of Activities that transfer data
among each other, occasionally receiving input from the user or communicating
over the network.

Let's look at a security-critical application - a banking app that, among
other things, allows a user to transfer money from their account into a di�erent
account. Such functionality will normally be implemented in three Activities:
The �rst Activity would let the user type in the recipient's account details; The
second Activity would ask the user to con�rm the details; And a third Activity
would present con�rmation that the transaction was made.

Most serious banking apps take precautions that aim to minimize the damage
that can be done when the application is running on a compromised device
- for example, working with an in-app keyboard which obviates the need for
communicating with the IME, or encrypting data within the app before handing
it to the Network Manager for delivery to the bank's servers.

However, these measures are mostly copied wholesale from Windows anti-
malware methods; they are not based on understanding the factors unique to
the Android OS.

In this case, we need to understand that the Activity Manager is the only
component of the system that is permitted to initiate new Activities, whether
within an individual app, or across di�erent apps. This means that to start a
new Activity within the same process, your application has to make a Binder

16

call to Activity Manager and pass it all the data that needs to be available to
the second in-app Activity.

And this is where secure apps often fail: Not aware of what is really taking
place, even a security-minded developer will inadvertently pass sensitive data, in
plaintext, via Binder. In the case of our cookie-cutter banking application, what
would happen is that after implementing a secure keyboard, and encrypting
the account details within the application so they cannot be tampered with,
the account details will still be sent in plaintext to the Activity Manager. An
attacker controlling Binder could easily modify the account details, the amount,
or anything else, while they are in transit.

To show a simple example of how this works, we whipped up a mock banking
application which idiotically does nothing except query the user for an amount
to be transferred in a transaction, then send that amount to an Activity called
TransactionActivity, which actually carries out the transaction. By hooking
all the app's Binder transactions which were meant for the Activity Manager,
and dumping their raw contents to �le, we got the output in �gure 5.

Figure 5: Raw data in transit to Activity Manager

This raw hex dump can seem a little disconcerting at �rst, so let's see how
we can take it apart.

By dissecting the parameters in the binder_transaction_data struct as
we did in previous samples, we can determine that this Parcel bu�er holds the
arguments for a function whose code is 3. Figuring out what is the function in

17

question is the �rst step towards parsing the blob above. In the case of the Ac-
tivityManager, the IPC protocol is de�ned in Java, via the IActivityManager
interface, which is implemented by the ActivityManagerNative class.

These de�nitions in IActivityManager.java give us a big hint:

int START_RUNNING_TRANSACTION =

IBinder.FIRST_CALL_TRANSACTION;

int HANDLE_APPLICATION_CRASH_TRANSACTION =

IBinder.FIRST_CALL_TRANSACTION+1;

int START_ACTIVITY_TRANSACTION =

IBinder.FIRST_CALL_TRANSACTION+2;

Bearing in mind that FIRST_CALL_TRANSACTION is de�ned as 1, we can deter-
mine that the function code corresponds to START_ACTIVITY_TRANSACTION. Our
next steps are to check the implementation in ActivityManagerNative.java,
�nd its onTransact() method, and happily read this code, which tells us ex-
actly how to parse our blob:

public boolean onTransact(int code, Parcel data,

Parcel reply, int flags) {

switch (code) {

case START_ACTIVITY_TRANSACTION: {

data.enforceInterface(IActivityManager.descriptor);

IBinder b = data.readStrongBinder();

IApplicationThread app =

ApplicationThreadNative.asInterface(b);

String callingPackage = data.readString();

Intent intent = Intent.CREATOR.createFromParcel(data);

[...]

int result = startActivity(app, callingPackage, intent,

resolvedType, resultTo, resultWho, requestCode,

startFlags, profileFile, profileFd, options);

[...]

In the above code, we see that an Intent is generated from the Parcel data.
Grabbing it is just what we're after, since Intent is the abstraction that is used
to pass data and requests to the Activity Manager. The Intent constructor is
too elaborate for our current scope, but you are welcome to check out its source
at Intent.java.

For our purposes, we need to know that the Intent holds the name of the
Activity being started (in this case, com.bank.test.TransactionActivity),
and that in the above bu�er, we can easily see that the Intent's Bundle object
starts at o�set 0x100. A Bundle object is used to transfer key/value pairs
within Intents. It's identi�ed by its magic number, the ASCII sequence "BNDL",
preceded by the size of the object in bytes.

We show the general method of parsing it in �gure 6. And we couldn't resist
having some fun with the transferred amount.

18

size

A t h o u s a

Bundle

104

n d d o l l a r s

BNDL

key length

6 a m o u n t

value length

18

modified to...

size

A t r i l l i

Bundle

104

o n d o l l a r s

BNDL

key length

6 a m o u n t

value length

18

Figure 6: Caught in transit: Capturing and changing in-app data

As you can see from �gure 6, the amount to be transferred was stored by the
banking application in a key/value pair, then wrapped up in a Bundle object.
This Bundle object, in turn wrapped up in an Intent, is what gets sent via
Binder to the Activity Manager. The Activity Manager then delivers this data
to the new Activity as it is started.

This is the main mechanism used to build persistence between di�erent Ac-
tivities in a single app. Grabbing the values passed around in this manner, and
possibly modifying them, is quite simple once an attacker knows what to look
for. In the case of a banking app, we can modify the values in transit, and (for
example) transfer arbitrary sums to an account of our choosing. And since this
data is usually not encrypted, this is literally a back door into the user's data.

Third Attack: SMS Grabbing Made Easy

Traditionally, malware on Android would steal or intercept SMS messages on
the device by simply trying to fool the user into installing a rogue app with the
SEND_SMS and RECEIVE_SMS permissions. Other than the fact that it relies on
social engineering, the weakness of this technique is that an anti-malware ap-
plication installed on the device could easily detect that something is amiss and
prompt the user to uninstall the suspect app. Using a Man in the Binder attack
would circumvent these problems, but �rst we require better understanding of
how SMS messages are handled within the system.

The �rst place where an SMS reaches userland in Android is via the RIL

19

layer.8 From there, the SMS data is passed to the Telephony Provider, run-
ning as the process com.android.phone. This is done through a Unix domain
socket, not through Binder. com.android.phone then sets itself up as a Con-
tent Provider for the SMS data.

A Content Provider in Android is any component that chooses to respond to
queries from other processes and provide information, based on adequate per-
missions. Requests to a Content Provider are usually translated to (or originally
formatted as) SQL queries. The Provider queries its database, and if possible
returns a result. This result is abstracted into a Cursor object, which "points"
at the correct rows in the database. Under the surface, a Cursor is in fact just
a piece of shared memory where the result data is copied, then passed to the
querying process.

And here it is again, the same client-server architecture that is prevalent
throughout Android. And who's the client listening for the data on the other
side? This would be any application which is registered to receive SMS. In most
system images, this would be the default SMS/MMS application that comes
with the device, running as com.android.mms.

And now, three guesses how Content Provider queries and replies are sent
between processes.9

So, our preferred tactic for intercepting SMS is to put ourselves in the mid-
dle of the communication between com.android.phone and com.android.mms.
com.android.mms sets up a thread to act as a Content Observer, and receives
noti�cations (via the BR_TRANSACTION mechanism as discussed above) when-
ever an SMS has been received. The client process then initiates a transaction
with the Telephony Provider. Identifying this transaction is easy, since the
interface descriptor is IContentProvider10, with a function code of 1. This
corresponds to the following function in IContentProvider.java:

public Cursor query(String callingPkg, Uri url,

String[] projection, String selection,

String[] selectionArgs, String sortOrder,

ICancellationSignal cancellationSignal)

For our purposes, what we really care about is that the return value of this
function is a Cursor object. And since a Cursor object is in fact an abstraction
for a �le descriptor11, let's see how we obtain that �le descriptor and read the

8Currently, the best place to learn more about the Radio Interface Layer is "Android
Hacker's Handbook", Chapter 11 ("Attacking the Radio Interface Layer")

9Uh, Binder
10Note that any process can register itself as a Content Provider, so there are situations in

which Binder transactions with this same interface descriptor will be directed at several di�er-
ent processes. Binder identi�es which service to communicate with by looking at the handle

�eld of the binder_transaction_data struct, not at the interface descriptor. However, the
interface descriptor would normally be enough in order to identify which server is being talked
to.

11The �le descriptor is a handle to /dev/ashmem, which is an Android-speci�c im-
plementation of shared memory, mainly meant to facilitate the translation of shared
memory regions to �le descriptors that can be transferred from one process to

20

reply sent from the Telephony Provider database. This is the place to mention
that structs of type flat_binder_object, which are normally used to enable
one process to refer to objects that exist in another process (Binder will assign
handles to each object), can also be used to transfer �le descriptors from one
process to another. The Binder driver will do the necessary translation.

Take a look at what a flat_binder_object type looks like:

struct flat_binder_object {

unsigned long type;

unsigned long flags;

union {

void *binder; /* local object */

signed long handle; /* remote object */

};

void *cookie;

};

Flat binder objects that hold a �le descriptor are preceded with a type code of
BINDER_TYPE_FD (de�ned in binder.h). In that case, the �le descriptor itself
will be held in the binder member (de�ned here as a union). The reply for the
query() function is pretty long and complex, but since all you really need is
the �le descriptor, you could just parse it as follows:

int i, temp;

for (i = 0; i < reply_length; i++) {

temp = *(reply_buffer + i); // reply_buffer is a uint32_t*

if (temp == BINDER_TYPE_FD) {

got_fd = true;

break;

}

}

if (got_fd) {

flat_binder_object* fbo =

(flat_binder_object *) (reply_buffer + i);

}

int fd = fbo->binder;

From this point, you can just read the Content Provider's reply as you would
read any Linux �le. The hex dump in �gure 7 shows the results of reading this
�le.

another. Information about ashmem is pretty scarce, but here's a nice intro:
http://notjustburritos.tumblr.com/post/21442138796/

21

Figure 7: The intercepted SMS. To be read aloud in a heavy accent

It is even easier to intercept an outgoing SMS (at least when the message
is sent from the default application, com.android.mms), since in this case there
are no �le descriptors involved. The client process simply initiates a transaction
with the Telephony Provider using a function code of 3, which corresponds to
the insert() function. This function inserts an SMS into the main database,
and at the same time triggers the sending procedure. The full text contents
of the SMS are sent as the arguments to this function. Parsing them, and
extracting the SMS text, is left as an exercise to the reader.

Conclusion

In this paper, we have described Binder from a security angle, and demonstrated
how its functionality could be subverted and integrated into a new kind of
Android malware.

Defending against this threat is a complex task. As is evident from the attack
descriptions, each attack can have several di�erent implementations: The client
side of a transaction could be attacked, or the server side; The ioctl function
itself could be hooked, or any function which is above it in the call chain. For
example, an attacker could hook a speci�c server if they suspect that the target
application is performing some security checks.

The prevalence of Binder in Android means that a lot more data is sent
via IPC than you might suspect. To properly defend an application, it is �rst
necessary to thoroughly audit its IPC transactions (using methods such as those
we have described above), and then encrypting any critical information within
the application before it gets sent to Binder. This should particularly include
any data which is sent between di�erent Activities of the same app.

To protect against keylogging attacks, an application should also implement
its own keyboard with the application context. This should be done carefully,
since the in-app keyboard itself could be leaking data if the keyboard output
is sent unencrypted via Activity Manager. SMS grabbing is hard to protect
against if your application is using plaintext SMS. To properly defend against
this threat, it is necessary to use a binary SMS and encrypt its contents.

22

Throughout this paper, we have been stressing the idea that Android is a
unique operating system, a result of several architectural concepts that have
never been realized before on such a massive scale. The threats it is facing
are, likewise, unique. The security community still does not have the depth of
understanding in Android's internals that is required to adequately defend the
system. Now is the time to change that.

References

[1] Aristide Fattori, Kimberly Tam, Salahuddin J. Khan, Lorenzo Cav-
allaro and Alessandro Reina. "On the Reconstruction of Android
Malware Behaviors". This is pioneering work which uses Binder
as a central component of an Android malware analysis system.
http://www.isg.rhul.ac.uk/sullivan/pubs/tr/MA-2014-01.pdf

[2] Aleksandar (Sa²a) Gargenta, "Deep Dive into Android IPC/Binder Frame-
work". This is the go-to resource for anybody wishing to get started with
Binder. Also watch the video. https://thenewcircle.com/s/post/1340/
Deep_Dive_Into_Binder_Presentation.htm

[3] Constanze Hausner, "Binderwall: Monitoring and Filtering Android
Interprocess Communication". This thesis o�ers rich technical in-
formation about Binder, while focusing more on the defensive side.
https://www.sec.in.tum.de/assets/Uploads/MAConstanzeHausner.pdf

[4] Thorsten Schreiber, "Android Binder". A shorter, more
general work, but good for an overview of Binder.
http://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf

23

