
Hide Android Applications in Images

Axelle Apvrille, Fortinet, FortiGuard Labs
120, rue Albert Caquot 06410 Biot, France

aapvrille@fortinet.com

Ange Albertini, Corkami
ange@corkami.com

September 18, 2014

Abstract

With AngeCryption, [Alb14b] has demonstrated it is possible to encrypt any input into a chosen
JPG or PNG image. For a mobile malware author, this is particularly interesting when applied to
Android packages (APK). Indeed, in that case, an attacker can craft a seemingly genuine wrapping
APK which contains a valid image (e.g a logo) as resource or asset. However, the code is able to
transform this unsuspicious image into another APK, carrying the malicious payload. The attacker
installs that APK, and performs his/her nefarious deeds.

Such an attack is highly likely to go unnoticed, because the wrapping APK hardly has anything
suspicious about it, and nothing about the payload APK leaks as it is encrypted. Additionally, the
attack works with any payload and currently on any version of Android.

In short, what you see is on the left (an image). What there really is on the right (an Android
application).

Figure 1: A PNG of Anakin Skywalker :) Figure 2: Hidden payload Android appli-
cation

In this talk, we show the Proof of Concept application we have built. Naturally, the payload
APK is harmless (it displays an image of Darth Vader). It is hidden in a genuine image of Anakin
Skywalker. We show Android disassemblers are unable to detect anything of the real payload. We
explain our PoC’s implementation and how this attack works. Finally, we discuss potential solutions
to mitigate such an attack.

1



The PoC has been sent to the Android Security Team on May 27, 2014, accepted and will be
fixed in future releases. We are happy to be in the Android Security hall of fame [HOF14].

1 Origins

Android malware authors have always liked to hide malicious parts in applications they create or trojan.
For example, Android/DroidCoupon.A!tr hides a rooting exploit in a PNG image inside the sample’s
raw resource directory (see Table 1). Images are usually found in all genuine applications, they are
consequently a good choice for malware authors to hide malicious code and hope it won’t be detected.

Android malware name and
sha256 hash

Year of discovery Obfuscation

Android/Gamex.A!tr
ae7a20692250f85d7a2ed205994f2d26f2d695aef15a9356938454bccbbbd069

2013 Assets contains a file named logos.png.
This is not a PNG, but a ZIP, and it
de-zips to different valid output whether
XORed with key (18) or not.

Android/SmsZombie.A!tr
45099416acd51a4517bd8f6fb994ee0bb9408bdd80dd906183a3cdb4b39c4791

2012 Hides malicious package in a33.jpg

Android/DroidCoupon.A!tr
94112b350d0feceff0a788fb042706cb623a55b559ab4697cb10ca6200ea7714

2011 The Rage Against the Cage exploit is hid-
den in a PNG file in raw resources

Table 1: Examples of samples hiding malicious packages in resource files

In some cases, they even try more tricky solutions like in Android/Gamex.A!tr where the asset,
misleadingly named logos.png, unzips differently (and correctly) whether XORed with a key or not.
This is close to what researchers commonly refer to as polyglots [Alb14a]: a file which is valid for
different formats. So, how about creating a PNG/APK polyglot? An APK is nothing more than a
ZIP, and creating a polyglot file which is valid for both formats (PNG and ZIP) is actually quite easy.
PNG files must start with a PNG file header at offset 0. ZIP tools however are less restrictive and
allow the ZIP file header to be located somewhere else later in the file. So, a PNG/APK polyglot can
be simply creating by prefixing a PNG to an APK:

$ cat myphoto.png app.apk > polyglot.png

$ file polyglot.png

polyglot.png: PNG image data, 382 x 385, 8-bit/color ...

$ unzip -l polyglot.png

Archive: polyglot.png

warning [polyglot.png]: 134834 extra bytes at beginning...

Length Date Time Name

--------- ---------- ----- ----

636 2014-04-04 14:03 res/layout/main.xml

1248 2014-04-04 14:03 AndroidManifest.xml

892 2014-04-04 14:03 resources.arsc

...

Fortunately (or unfortunately depending from which angle you look at it), Android is more restric-
tive than common zip tools, and it refuses to load such APKs:

2



Figure 3: When encrypted with AES-CBC and the given key and IV, the image of Anakin Skywalker
encrypts to the image of Darth Vader. This proves it is possible to manipulate the output of encryption
bytes.

$ adb install polyglot.png

Whoops: didn’t find expected signature

read_central_directory_entry failed

file ’polyglot.png’ is not a valid zip file

So, creating a PNG/APK polyglot actually fails. We then contemplate a tricker solution: Ange-
Cryption. A valid PNG image will turn into a valid APK after decryption.

2 AngeCryption

2.1 Introduction

AngeCryption [Alb14b] has demonstrated it is possible to encrypt any input file into a JPG or PNG
image. For example, in [Apv14] we have shown we are able to encrypt Anakin Skywalker into Darth
Vader, and reciprocally decrypt Darth Vader into Anakin Skywalker. See picture below.

Encrypting with AES-CBC the image of Anakin with the specified key and Initialisation Vector
results in the image of Darth Vader - and reciprocally.

2.2 Short crypto reminder

A short reminder on cryptography is required to explain AngeCryption. However, we insist that
AngeCryption is understandable without knowing much more about cryptography. AES (like DES,
Blowfish etc) is block cipher, i.e it processes input data of a given size only. In the case of AES,
the block size is of 16 bytes. This means that, essentially, AES is only able to process 16 bytes. To
chain bigger documents, people use chaining methods which explain how to process each blocks. CBC,
Cipher Block Chaining, is a common chaining method [NIS01].

3



Figure 4: PNG file format illustration by Ange Albertini

For its operation, it requires an additional parameter which is called the Initialisation Vector (IV).
Exactly, if we call Pi the 16-byte chunks of plaintext (unencrypted data), K the encryption key, IV
the 16-byte initialization vector, then Ci the corresponding ciphertext blocks (encrypted data) are
computed like this: C0 = AESK(P0 ⊕ IV ) and Ci = AESK(Pi ⊕ Ci−1).

2.3 How AngeCryption works

A given input file cannot encrypt into a given output image as such, without a little trick. We do not
exactly encrypt the input file but something that looks identical, and it does not exactly output the
expected image, but something that looks identical.

Precisely, the format of PNG files is illustrated at Figure 4
We output a PNG with the following layout.

• File Header. PNG start with a fixed 8-byte ’signature’ which is 0x89 PNG 0x0d 0x0a 0x1a 0xa.
It needs to be correct for the file to be recognized as a valid PNG.

• Garbage chunk. We insert here data which will be ignored by the tool that reads the file as
image, e.g comment chunks, end of object. For PNGs, a chunk is made of:

– Chunk length (4 bytes)

– Chunk id (4 bytes). We use a dummy chunk type like ’aaaa’, so that tools ignore this chunk.

– Chunk data.

– CRC32 of chunk data and id.

• Header chunk (IHDR). In theory, PNG specifications [RPB99] mandate that PNGs begin with a
header chunk (IHDR). In practice, this is seldom enforced by tools as we will demonstrate.

4



• Data chunk (IDAT). Those are the chunks that contains the correct image data blocks

• End chunk (IEND), which terminates the PNG.

To get such an output, we:

• Select an appropriate IV. We want our first cipher block C1 to be equal to the PNG file header (8
bytes) + chunk length (4 bytes) + chunk id (4 bytes). By chance, this fits in an AES block (they
are 16 bytes long). We also know what P0 looks like: the first block of the input file. Finally, we
know K. So, we select IV such that: IV = AES−1

k (Ci) ⊕ Pi. In other words, we select the IV
we need to get the first cipher block we want. Note that in real encryption cases, IV is selected
randomly.

• Generate a modified input file. This modified input data has appended data at the end. This
appended data is the decrypted CRC32 checksum + target image file blocks + end chunk. Why?
Because when we encrypt decrypted data, we get the original data. So, if we encrypt those
decrypted image blocks, we get the image blocks: AESk(AES−1

k (Pi)) = Pi.

Note that AngeCryption is independant of AES, CBC or PNG. It just requires that:

• First cipherblock can be controlled (e.g via IV selection)

• Source format tolerate appended data

• Header + chunk declaration data fits in block size.

2.4 Tool

An AngeCryption tool is released on http://corkami.googlecode.com/svn/trunk/src/angecryption/

angecrypt.py.
For the end-user, the goal is to be able to encrypt an input file into a target image. To do so,

AngeCryption must manipulate the input file into a modified file, without altering its content. The
command line is:

$ python angecrypt.py inputfile targetimage modifiedinput key algorithm

where:

• inputfile. The initial file the end-user wants to encrypt into a target image.

• targetimage. That’s what we want the encrypted file to look like. Current supported formats for
output are PDF, PNG, JPG, FLV.

• modifiedinput. That’s the input file modified by angecrypt.py so that encryption will indeed en-
crypt to targetimage. Manipulation of the input file is required: encrypting the input file directly
cannot produce the targetimage. However, note that modifiedfile remains content-identical to
inputfile, i.e if inputfile is an APK, then modifiedfile.apk is also a valid APK which installs the
same application.

• key. The encryption key to use. Provide a string of valid length.

5



• algorithm. Encryption algorithm to use. Currently, this is either AES128-CBC or 3DES-EDE2-
CBC, with no padding.

So, as output, the tool produces:

1. A modified input file.

2. A generated Python script to test and encrypt the input file. In this script, the appropriate IV
to use is generated.

3 PoC application

3.1 Goal

Essentially, what we wish to prove is that it is possible to embed undetectable, valid and
runnable bytecode in a wrapping APK. By undetectable, we mean that static analysis, such as dis-
assembly, of the wrapping APK does not reveal anything particular about that bytecode (apart if we
undo the encryption packing).

Important notes:

• Our PoC embeds an Android application, but we could basically have it embed whatever we
want. For example, just a Dalvik Executable.

• We have not paid attention to obfuscating the wrapping APK. We believe this is outside the
scope of the paper, as there is no particular problem in using off-the-shelf obfuscators such as
ProGuard, DexGuard etc.

• We have not tried either to hide the installation of the payload APK. There are several ways to
do this, for instance using the DexClassLoader class [Str12]. As this is a known technique, we
believe this is also outside the scope of this paper.

3.2 Demo

We have created a PoC Android application containing a valid PNG image of Anakin Skywalker, which
installs a payload APK that displays an image of Darth Vader.

We disassemble the PoC application and check that the string is nowhere to be seen in the wrapping
APK. For example, with baksmali:

$ java -jar baksmali.jar -o ./smali PocActivity-debug.apk

$ grep -r "Darth Vader" ./smali

$

The assets only contain one valid (viewable) PNG file (see Figure 1):

$ file anakin.png

anakin.png: PNG image data, 3684634137 x 1133979790, 45-bit

Now, let’s show it works:

1. Install the application:

6



adb install PocActivity-debug.apk

2. Launch the application (Figure 5) and press the button.

3. This triggers the hidden payload APK (Figure 6)! This demonstration works with any payload
application. Note trickier implementations can conceal the installation of the payload
APK.

Figure 5: Wrapping APK screenshot.
Press the button to trigger the install of
the hidden payload APK

Figure 6: Hidden payload APK

3.3 Implementation

3.3.1 Creating the encrypted payload APK

We have implemented a dummy payload APK. In our case, this APK simply displays an image, but
anything is possible. We are going to encrypt this APK into a PNG of Anakin Skywalker.

$ python angecrypt.py payload.apk anakin-original.png payload-similar.apk

’Anakin= DarkSide’ aes

For example, this outputs payload-similar.apk and generates a Python script to encrypt it:

algo = AES.new(’Anakin= DarkSide’, AES.MODE_CBC,

’\xd3\x9e\x0c\xef#p*\xa3\xe9\x8a\xcc:+\xf0\x1a\xec’)

with open(’payload-similar.apk’, "rb") as f:

d = f.read()

d = algo.encrypt(d)

with open("dec-" + ’anakin-original.png’, "wb") as f:

f.write(d)

7



As such, the demo cannot immediately work, because payload-similar.apk does not unzip correctly1:

$ unzip -l payload-similar.apk

Archive: payload-similar.apk

End-of-central-directory signature not found. Either this file is not

a zipfile, or it constitutes one disk of a multi-part archive. In the

latter case the central directory and zipfile comment will be found on

the last disk(s) of this archive.

unzip: cannot find zipfile directory in one of payload-similar.apk or

payload-similar.apk.zip, and cannot find payload-similar.apk.ZIP, period.

Unzipping fails because some tools like unzip do not accept too much appended data at the end,
the end being marked by a record called End-of-central-directory (EOCD). To work around, we
add another EOCD at the end of our APK: there are thus 2 EOCD in the APK.

$ dupe_eocd.py payload-similar.apk

Precisely, the generated APK has the following format:

• Payload APK - unmodified. That’s the application that displays Darth Vader in our PoC. Note
there will be an EOCD at the end of the application.

• AES−1(CRC32 + IHDR + IDAT + IEND) where

– CRC32 is the CRC32 checksum of the garbage chunk we inserted in the image.

– IHDR corresponds to the PNG header chunk

– IDAT corresponds to the PNG data chunks. That’s where the pixels of Anakin are.

– IEND corresponds to a terminating PNG chunk

• Padding bytes. Those bytes ensure that the APK size is a multiple of 16, so that it can be
processed by AES as such.

• EOCD

The unzip tool is happy with this APK.
Finally, we encrypt this APK (using the script which was generated earlier2:

$ python encrypt-apk.py

The APK does encrypt to a valid PNG of Anakin Skywalker (see Figure 7) because:

• The IV has been selected so that AES(beginning of APK)= Header + garbage chunk

• Appended data corresponds to decrypted data. Encrypting decrypted data is like doing nothing:
AES(AES−1(CRC32 + Anakin + IEND)) = CRC32 + Anakin + IEND. We get the garbage
chunk CRC32 checksum, the chunk containing the image of Anakin and the end chunk.

• In crypto, CBC chaining also affects blocks after itself. So, adding padding bytes and EOCD
to the file only affects cipherblocks after the end chunk. AES(Padding bytes+EOCD) produces
garbage bytes at the end of the image. Those bytes are ignored because they appear after the
end chunk.

8



Payload APK

AES−1(CRC32

+IHDR + IDAT
+IEND)

Dummy bytes
so that size multiple of 16

EOCD

APKPNG

File Header

Garbage chunk

AES encrypt

Chunk CRC 32

Chunk IHDR

containing
Anakin Skywalker

Chunk(s) IDAT

Chunk IEND

AES(Dummy)

AES(EOCD) Ig
n

or
ed

Figure 7: Real layout of PNG and APK in the demo

We check that the encrypted APK looks like a real PNG of Anakin Skywalker. It does :) This is
the PNG we will insert in the assets of a wrapping APK. Just to be sure it will work, we check that
the decrypted PNG installs on Android:

$ python decrypt-png.py

$ adb install decrypted.apk

2893 KB/s (402896 bytes in 0.135s)

pkg: /data/local/tmp/decrypted.apk

Success

3.3.2 Wrapping APK

There are several ways to implement such an APK. We chose a simple and straight forward method
(but it can be enhanced):

• Read the asset using AssetManager.getAssets() and open the PNG. The payload APK could
also have been hidden in raw resources.

• Decrypt the asset using cipher AES/CBC/NoPadding.

• Write the decrypted APK to the SD card. Another writeable location would do fine too. Alterna-
tively, there are ways to load DEX files as byte arrays (see openDexFile in dalvik.system.DexFile).

• Install the APK using the following piece of code:

Intent intent =new Intent(Intent.ACTION_VIEW);

intent.setDataAndType(Uri.fromFile(new File(filename)),

1Android packages (.apk) actually are Zip files (.zip)
2Do not forget to customize the filenames to encrypt the modified duplicate EOCD payload-similar.apk file.

9



"application/vnd.android.package-archive");

intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

startActivity(intent);

There are other ways to do this (calling setClassName() for example). This implementation has
the advantage of working on Android 4.4, but it triggers an install screen that an attacker might
want to hide. Concealing the install screen is feasible (e.g using DexClassLoader), but is out of
the scope of this paper.

4 Status

This PoC has been tested over Android 4.4.2 (latest version at the time of writing the paper).

The PoC has been sent to the Android Security Team on May 27, 2014. On June 6, 2014, the
team implemented a fix prohibiting any appended data after EOCD. We are however uncertain the fix
makes sure to look after the first EOCD, and have consequently filed an issue on June 19,2014. The
Android Security Team answered they’d be looking into it.

5 Conclusion

It works :) We are able to hide a payload APK inside an apparently genuine APK. This genuine
wrapping APK does not reveal anything of the payload APK. This can be used maliciously by an
attacker to hide his real intents, or by packers.

How can we detect this?
Currently, there is no real way to detect what the payload APK does, apart from actually decrypting
the PNG. Security engineers might consider the following:

• Keep an eye on applications which are decrypting resources or assets. Our wrapping code for
instance is easy to understand. It could be obfuscated though.

• Run the application in a sandbox and check for unexpected behaviour. Indeed, this technique
hides the payload application/bytecode, not the behaviour. When the wrapping APK is launched,
the payload PAK will get executed.

• Add stronger constraints to APKs so that an image can no longer decrypt to a valid APK. For
instance, forbidding appended data in the ZIP format after the first End Of Central Directory
will have AngeCryption fail. This is the option the Android Security Team chose and have started
fixing on June 6th 2014. https://android-review.googlesource.com/#/c/96603/

References

[Alb14a] Ange Albertini. This PDF is a JPEG; or This Proof of Concept is a Picture of Cats. Journal
of PoC —— GTFO, 3, 2014.

[Alb14b] Ange Albertini. When AES(*)=*, April 2014. https://corkami.googlecode.com/svn/trunk/

src/angecryption/slides/AngeCryption.pdf.

10



[Apv14] Axelle Apvrille. AngeCryption at Insomni’Hack, March 2014. http://blog.fortinet.com/

AngeCryption-at-Insomni-Hack/.

[HOF14] Android Security Acknowledgements, 2014. https://source.android.com/devices/tech/

security/acknowledgements.html.

[NIS01] NIST. Recommendation for Block Cipher Modes of Operation - Modes and Techniques,
2001. Special Publication 800-38A, http://csrc.nist.gov/publications/nistpubs/800-38a/
sp800-38a.pdf.

[RPB99] Glenn Randers-Pehrson and Thomas Boutell. PNG (Portable Network Graphics) Specifi-
cation. Technical report, Massachusetts Institute of Technology (MIT), 1999. Version 1.2
http://www.libpng.org/pub/png/spec/1.2/PNG-Contents.html.

[Str12] Tim Strazzere. Dex Education: Practicing Safe Dex. In BlackHat USA, July 2012.
http://www.strazzere.com/papers/DexEducation-PracticingSafeDex.pdf.

11


