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Abstract. The C++ language and its siblings like C and Objective-C are ones of the most used 
languages . Significant portions of operating systems like Windows, Linux, Mac OS X, iOS and 1

Android are written in C and C++. There is however a fact that is little known about C++: it 
contains a Turing-complete sub-language executed at compile time. It is called C++ template 
metaprogramming (not to be confounded with the C preprocessor and macros) and is close to 
functional programming.!

This white paper will show how to use this language to generate, at compile time, obfuscated 
code without using any external tool and without modifying the compiler. The technics presented 
rely only on C++11, as standardized by ISO . It will also show how to introduce some form of 2

randomness to generate polymorphic code and it will give some concrete examples like the 
encryption of strings literals.!
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Introduction!
In the past few years, we have seen the comeback of heavy clients and of client-server model. 
This is in particular true for mobile applications. It is also the return of off-line modes of 
operation with Internet access that is not always reliable and fast. On the other hand, we are far 
more concerned about privacy and security than in the old times and mobiles phones or tablets 
are easier to steal or to loose than desktops or laptops. We have to protect secrets locally. In 
some cases, we also need to protect intellectual property (for example when using DRM 
systems) knowing that we are giving a lot of information to the attacker, in particular a lot of 
binary code. This is different from the web application model where critical portions of code are 
executed exclusively on the server, behind firewalls and IDS/IPS (at least until HMTL5).!

We have thus to protect software in a hostile environment and obfuscation is one of the tools 
available to achieve this goal, even if it is far from a bullet-proof solution. Popular software such 
as Skype is using obfuscation like the majority of DRM (Digital Rights Management) systems 
and several viruses (to slow down their study).!

Obfuscation!
Obfuscation is “the deliberate act of creating […] code that is difficult for humans to 
understand” . Obfuscated code has the same or almost the same semantics than the original 3

and obfuscation is transparent for the system executing the application and for the users of this 
application.!
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!
Barak and al.  introduced in 2001 a more formal and theoretical study of obfuscation: an 4

obfuscator O is a function that takes as input a program P and outputs another program O(P) 
satisfying the following two conditions:!

• (functionality) O(P) computes the same function as P.!

• (“virtual black box” property) “Anything that can be efficiently computed from O(P) can be 
efficiently computed given oracle access to P.” !

Their main result is that general obfuscation is impossible even under weak formalization of the 
above conditions.!

This result puts limits of what we can expect from an obfuscator. In the remaining of our 
discussion, we will focus on obfuscators not as an universal solution but as a way to slow down 
reverse engineering of softwares. We will also focus on areas typically exploited by attackers. In 
other terms, we will follow a pragmatical approach, not a theoretical one. For a more theoretical 
presentation, see for example the thesis of Jan CAPPAERT .!5

Types of obfuscators!
It is possible to classify obfuscators in several ways depending on assumptions and intents. A 
possible classification is the following :!6

• Source code obfuscators: transformation of the source code of the application before 
compilation.!

• Binary code obfuscators: transformation of the binary code of the application after 
compilation.!

This classification mimics the traditional phases of compilation: front-end (dependent of the 
source language) and back-end (independent of the source language, dependent on the target 
machine) .!7

Source code obfuscators can be further refined:!

• Direct source code obfuscation: manual transformation of the source code by a programmer 
to make it difficult to follow and understand (including for other developers or for himself). !

• Pre-processing obfuscators: automatic transformation of source code into modified source 
code before compilation.!

• Abstract syntax tree (AST) or Intermediate representation (IR) obfuscators: compilers operate 
in phases. Some are generating an intermediate representation, a kind of assembly language 
or virtual machine bytecode (as it is the case for LLVM). This class of obfuscators transforms 
this intermediate language.!

• Bytecode obfuscators: transformation of bytecode generated by the compiler (Java, .NET 
languages, etc.) It is a special case and share similarities with Abstract syntax tree 
obfuscators. This class of obfuscators is in fact located between source code and binary code 
obfuscators. We classify it in source code obfuscators because it is dependent of the 
languages and not of the target machine.!

!
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Under some circumstances, software or portion of it has to be released in source code. A typical 
example is javascript embedded in web pages. In this case, only some source code obfuscators 
are applicable.!

C++!
Depending on the language, it is possible to further refine this classification or to add new 
classes of obfuscators. It is the case for the C++ language . Beyond the classical syntax and 8

lexical analysis, C++ compilers incorporate other compilation phases: the pre-processor is well-
known as it is directly inherited (almost without modifications) from the C language . But there is 9

another one, specific to C++: templates instantiation. It is this mechanism that will be used for 
the obfuscator described in this document.!

C++11 template metaprogramming!
Before going into the description of our obfuscator, it is necessary to give some basis of the 
mechanism involved: C++ template metaprogramming. !

Templates!
Originally, templates were designed to enable generic programming and provide type safety. A 
classical example is the design of a class representing a stack of objects. Without templates, 
the stack will contain a set of generic pointers without type information (i.e. of void*). As a 
consequence, it is possible to mix incompatible types and it is required to cast (explicitly or 
implicitly) pointers to appropriate types. The compiler is not able to enforce consistency. This is 
delegated to the programmer.!

With templates, the situation is different: it is possible to declare and use a stack of a given type 
and the compiler will enforce it and produce a compilation error in case of a mismatch:!

template<typename T>  
struct Stack  
{  
    void push(T* object);  
    T* pop();  
};"!
Stack<Singer> stack;  
stack.push(new Apple());    // compilation error"!
Contrary to other languages like Java, such templates do retain the types of objects they are 
manipulating. Each instance of a template generates code for the actual types used. As a 
consequence, the compiler has more latitude to optimize generated code by taking into account 
the exact context. Moreover, and thanks to a mechanism called specialization, this kind of 
optimization is also accessible to the programmer. For example, it is possible to declare a 
generic Vector template for objects and another version specialized for boolean. The two 
templates share a common interface but can use a completely different internal representation.!

// Generic Vector for any type T"
template<typename T>  
struct Vector  
{  
    void set(int position, const T& object);  
    const T& get(position);"
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    // ...  
};"!
// template specialization for boolean"
template<>  
struct Stack<bool>  
{  
    void set(int position, bool b);  
    bool get(position);"
    // ...  
};"!
Variadic templates!
There are several situations where it is necessary to manipulate a list of types. It is the case for 
example when defining a tuple, a list of values of various types. Until C++11, the number of 
types (and thus of values) were arbitrarily limited by the implementation. It is not the case 
anymore with the latest versions of C++ (11 and 14): they are able to manipulate a list of types 
with variadic templates. For example, tuple can be defined by the following code:!

template <typename... T>"
class tuple {"
public:"
    constexpr tuple();"
    explicit tuple(const T&…);"
    […]"
};"!
A tuple is created and used this way:!

tuple<int, string, double> values{123, “test”, 3.14};"
cout << get<0>(values);"!
Or, by using make_tuple helper:!

auto values = make_tuple(123, “test”, 3.14);"
cout << get<0>(values);"!
It is important to note that make_tuple and get are evaluated at compile time, not at runtime. 
They are compile-time entities.!

Constexpr!
This is another feature specific to C++11 and 14. It specifies that a value or function can be 
evaluated entirely at compile time (constant expression). As a consequence, only a subset of    
C++ is allowed. It was specifically added to the language for metaprogramming (see below). It 
implies both const and inline (in C++11). For example:!

constexpr int factorial(int n)"
{"
    return n <= 1 ? 1 : (n * factorial(n-1));"
}"!
Again, this is evaluated at compile time.!
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User-defined literals!
In C++11 and 14, it is possible to define custom literals. For example, you can define a subset of 
the International System of Units and write :!10

auto distance = 10_m;         // 10 meters"
auto time = 20_s;             // 20 seconds"
auto speed = distance / time; // 0.5 m/s"!
The compiler will check the consistency of expressions and will, for example, refuse:!

if(speed == distance)" // compilation error"
    [...]"!
These new suffixes are declared with code such as the following:!

constexpr Quantity<M> operator”” _m(double d) { … }"!
We will try to use such custom suffix to declare obfuscated strings of characters but it will have 
limitations.!

Metaprogramming!
It was not the original intent of the designers of C++  but C++ templates is in fact a sub-11

language. This language is Turing-complete  and similar to functional programming. It is 12

evaluated entirely at compile time, not at run time. For example, it is possible to declare the 
following:!

template<int N>"
struct Fibonacci { static constexpr int value = Fibonacci<N-1>::value + 
Fibonacci<N-2>::value; };"!
template<>"
struct Fibonacci<1> { static constexpr int value = 1; };"!
template<>"
struct Fibonacci<0> { static constexpr int value = 0; }"!
It is an implementation of Fibonacci sequence  using recursion (note: it can be implemented 13

differently, this code is designed this way to illustrate our discussion). The code:!

Fibonacci<20>::value"!
is entirely computed at compile time and will be replaced by its result (6756). There is no 
computing and no cost at run time. We use recursion because C++ templates define a 
functional language: there is no variables, no loops, etc. Every statement is immutable like in 
Lisp  or Haskell .!14 15

Using this sub-language, we are able to generate code and not only to compute numbers. 
Templates are able to operate on types and make computation on them, or on other templates. 
We will use these possibilities to implement obfuscation schemas like encryption of string 
literals.!
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Encryption of strings literals!
Strings literals are one of the most important source of information for an attacker when reverse 
engineering binaries. They are sometimes even more important than debugging information 
(when they are available). Thanks to those literals, the attacker will be able to quickly find 
interesting portion of code instead of trying to take a costly top-bottom approach (reverse 
engineering from the entry point of the binary). Binary often contains several different kind of 
string literals like:!

• error messages!

• log information (even if logs are not activated)!

• name of functions or of classes!

• URLs!

• etc.!

It is essential to obfuscate these literals in order to slow down reverse engineering. Some 
programmers obfuscate these literals manually (direct source code obfuscation) and maintain 
(manually) a list of correspondence between obfuscated strings and original ones. This kind of 
solution is difficult (if ever possible) to maintain. Others use a pre-processor to automate these 
modifications. But again, it is difficult to maintain and it makes debugging more difficult for the 
developer.!

Our goal is to obfuscate string literals with the following constraints:!

• use a developer-friendly syntax. In particular, the original string literal has to be present in 
source code.!

• use only C++ without any external tool.!

• obfuscate literals at compile time. De-obfuscation can be performed at runtime.!

• the cost of obfuscation / deobfucation has to be minimal.!

• the original string must not be present in the binary in release builds. It is acceptable if it is 
present in debug builds.!

In a second phase, we will add the following constraints:!

• each string literal has to be obfuscated differently.!

• each compilation of the same source code has to produce different obfuscated strings.!

First implementation!
The first tentative of implementation is the following:!

template<int... I>"
struct MetaString1"
{"
    constexpr ALWAYS_INLINE MetaString1(const char* str)"
    : buffer_ {encrypt(str[I])...} { }"
    "
    const char* decrypt()"
    {"
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        for(int i = 0; i < sizeof...(I); ++i)"
            buffer_[i] = decrypt(buffer_[i]);"
        buffer_[sizeof...(I)] = 0;"
        return buffer_;"
    }"!
private:"
    constexpr char encrypt(char c) const { return c ^ 0x55; }"
    constexpr char decrypt(char c) const { return encrypt(c); }"
    "
private:"
    char buffer_[sizeof...(I) + 1];"
};"!
constexpr ALWAYS_INLINE const char* operator "" _obfuscated1(const char* str, 
size_t)"
{"
    return MetaString1<0, 1, 2, 3, 4, 5>(str).decrypt();"
}"!
#define OBFUSCATED1(str) (MetaString1<0, 1, 2, 3, 4, 5>(str).decrypt())"!
It defines a template class called MetaString1. Its constructor accepts a parameter: a string of 
characters (const char*). The class contains also a private buffer called buffer_. In the 
constructor, the buffer is initialized: each character (str[I]) is encrypted with the encrypt function. 
It assumes that the template parameter I will contain the suite of integers 0, 1, 2, … This is 
called a variadic template. This way, the buffer will be initialized with the encrypted characters 
str[0], str[1], str[2], etc.!

The encryption is very simple in this first version: it simply makes a XOR of the value of a 
character with the hard-coded value 55 (in hexadecimal). This is far from optimal and will be 
enhanced in a later version. Since we are using XOR, decryption is identical to encryption. To 
decrypt a string we simply iterate character decryption for each byte in the internal buffer. This is 
done in place (decrypted characters replace obfuscated ones).!

In release builds and with the help of always_inline attribute, most compilers are able to inline all 
member functions. In other terms, the content of members is directly injected into the code of 
callers. There is no call to member functions.!

The custom operator “” defines a new suffix _obfuscated1 and allows writing:!

cout << "Britney Spears"_obfuscated1 << endl;"!
The macro OBFUSCATED1 can be used as an alternative:!

cout << OBFUSCATED1("Britney Spears") << endl;"!
Version 2 - Generation of a list of integers to instantiate variadic templates!

This first version is a good starting point. However, it has a major drawback: it is only able to 
handle strings of 6 or less characters. A list of indexes (0, 1, 2, 3, 4, 5) is hard-coded and 
passed explicitly to instantiate MetaString1. Of course, it is possible to add more indexes but it 
will still be limited.!

�  / �7 20



version 3 - September 26, 2014

C++14 standard library introduces std::index_sequence and related types to generate lists of 
integers. But as only a few compilers are implementing C++14 today, we rely on a custom and 
simplified implementation. The code:!

MakeIndex<N>::type"!
will generate:!

Indexes<0, 1, 2, 3, …, N>"!
Thanks to this helper, it is possible to remove the hardcoded list of indexes and generate it at 
compile time:!

MetaString2<Make_Indexes<sizeof(str) - 1>::type>(str)"!
Sizeof gives the length of the literal with the terminating null byte. Unfortunately, it is not 
possible to use such technique with user-define suffixes: the length of the literal is passed as a 
parameter but it is not considered constant and thus it can’t be used in metaprogramming. We 
have thus to use the macro:!

cout << OBFUSCATED2("Katy Perry") << endl;"!
This time, the string is not truncated.!

Version 3 - Randomization of encryption keys!
In the previous version, the encryption key is hard-coded (0x55) and is thus the same for all 
strings. The third version introduces a random number generator evaluated at compile time. It 
uses a Lehmer random number generator . It is certainly possible to use a better algorithm but 16

it is simple to implement, well known and considered a minimal standard . In our case, as we 17

just want to obfuscate literals, we need random numbers but their randomness is not so 
important (after all, our keys have only 8 bits; it is easy to brute-force). What is important is to 
use a different key for each compilation and each string literal.!

In order to use different keys for each compilation, it is essential to use an appropriate seed. 
Some authors  are suggesting to define externally (with a build script) a macro such as 18

__RANDOM__. There is however a more simple solution: use the compilation time defined by 
__TIME__ . It can be converted to a compile time value with the following code:!19

// __TIME__ has the following format: hh:mm:ss in 24-hour time"
constexpr char time[] = __TIME__;"!
constexpr int DigitToInt(char c) { return c - '0'; }"
const int seed = DigitToInt(time[7]) + "
                 DigitToInt(time[6]) * 10 +"
                 DigitToInt(time[4]) * 60 + "
                 DigitToInt(time[3]) * 600 +"
                 DigitToInt(time[1]) * 3600 + "
                 DigitToInt(time[0]) * 36000;"!
In order to generate a different pseudo-random number for each literal, we also use the macro 
__COUNTER__ . This later is not standard but defined by a majority of compilers. If is possible 20

to use other macros such as __LINE__ and __FILE__ (they are standard) to achieve maximum 
portability but the implementation will be slightly more complex.!
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Version 4 - Randomization of encryption algorithm!
It is possible to push the principle described in the previous point further: We generate a 
different key for each compilation and for each string literal. But we can also use a different 
encryption algorithm. We introduce a new template parameter (A) for MetaString:!

template<int A, int Key, typename Indexes>"
struct MetaString4;"!
We then define a partial specialization for each possible value of A:!

template<int K, int... I>"
struct MetaString4<0, K, Indexes<I...>>"
{"
    …"
};"!
template<int K, int... I>"
struct MetaString4<1, K, Indexes<I...>>"
{"
    …"
};"!
Each specialization uses a different encryption algorithm. In our example:!

• The first one (A = 0) makes an XOR of each character with a random key.!

• The second one (A = 1) makes also an XOR but the value of the key is incremented for each 
character.!

• The third one (A = 2) shifts the value of each character by a random value (variation of the 
caesar cipher).!

These are only simple examples to illustrate the principle. It is possible to use far more complex 
implementations (and for example use a wider key length) but it may have an impact on 
performance during runtime. In particular, using AES seems excessive in this particular case.!

As for the key, we select the algorithm with an expression such as:!

MetaRandom<__COUNTER__, 3>::value"!
Generated binary code!
The disassembly of the following code (without obfuscation):!

int main(int argc, const char * argv[])"
{"
    cout << "Britney Spears";"
    return 0;"
}"!
gives (Apple LLVM 5.1 / LLVM 3.4):!

!
!
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The string literal is in plain text:!

The equivalent code using the obfuscator:!

int main(int argc, const char * argv[])"
{"
    cout << OBFUSCATED4("Britney Spears") << endl;   "
    return 0;"
}"!
gives (Apple LLVM 5.1 / LLVM 3.4):!

!
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The first block allocates space on the stack and stores the value of each encrypted character. 
These values are mixed with machine code (C6 45 - mov). The third block decrypts the string (in 
this case, it is a XOR with the key loaded from var_38 and initialized with 0xC9 in the first 
block). There is no call: the compiler has inlined all methods.!

The binary does not contain the original string and the encrypted one does not appear either:!

Obfuscation using Finite State Machines!
Using the same techniques than those described previously, it is possible to obfuscated other 
areas of an application. As an illustration, the obfuscator is able to obfuscate calls. Code such 
as:!

function_to_protect();"!
is obfuscated by rewriting it as:!

OBFUSCATED_CALL(function_to_protect);"!
The obfuscator will instantiate a finite state machine such as (simple example for illustration):!

!
Before actually call function_to_protect, this finite state machine will run until it reaches the final 
state. Such schema will slow down both static and dynamic analysis.!

The finite state machine is based on Boost Meta State Machine (MSM) library . Boost  is a set 21 22

of free and peer-reviewed C++ libraries. They are designed to work well with the C++ Standard 
Library. Some of the libraries of Boost were integrated in the Standard Library (in TR1 and C++ 
11 in particular).!
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Boost Meta State Machine allows to easily and quickly define state machines with very high 
performance” . Without going too much into details, the central entity of MSM is a transition 23

table defined this way:!
struct transition_table : mpl::vector<"
//    Start     Event         Next      Action               Guard"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State1  , event5      , State2                                               >,"
Row < State1  , event1      , State3                                               >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State2  , event2      , State4                                               >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State3  , none        , State3                                               >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State4  , event4      , State1                                               >,"
Row < State4  , event3      , State5                                               >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State5  , E           , Final,    CallTarget                                 >"
//  +---------+-------------+---------+---------------------+----------------------+"
> {};"!
This a compile-time vector: this table is not instantiated at runtime but it is used at compile time 
to generate the finite state machine code. State1, event1, … are not values but arbitrary types 
representing states and events.!

The address of the function to call is also obfuscated with the same techniques than what we 
have used for the obfuscation of string literals. Otherwise, tools such as IDA  will be able to 24

computer references and find callers and callees.!

Without obfuscation, the following code:!

function_to_protect();"!
int result = function_to_protect_with_parameter("did", “again");"!
looks like (Apple LLVM 5.1 / LLVM 3.4):!

With obfuscation, the corresponding code:!

OBFUSCATED_CALL(function_to_protect);"!
int result = OBFUSCATED_CALL_RET(int, function_to_protect_with_parameter, 
OBFUSCATED4("did"), OBFUSCATED4(“again”));"!
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looks like (this is only a small subset):!

None of the addresses loaded (LEA) or called (CALL) are the actual addresses of our functions  
function_to_protect and function_to_protect_with_parameter. It will thus slow down reverse 
engineering by attackers.!

Random selection of Finite State Machine!
We see previously how to select an encryption algorithm for string literals. Using exactly the 
same technique, it is possible to randomly select a finite state machine from a set. It is also 
possible to randomly change some part of the implementation, such as the obfuscation of 
function addresses. It is transparent for the user of the obfuscator. The only constraint is to use 
viable state machines (i.e. machines with a path to the final state).!
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Combining with anti-debug & anti-VM measures!
We can also combine state transitions with debugger or virtual machine detection: depending on 
the result of the detection, the machine will follow other paths of execution and eventually crash 
or enter an infinite loop.!

For example, the companion code contains the following finite state machine:!

It is represented by the following compile-time structure (meta-vector):!
struct transition_table : mpl::vector<"
//    Start     Event         Next      Action               Guard"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State1  , event1      , State2                                               >,"
Row < State1  , E           , State5                                               >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State2  , event1      , State3  , CallPredicate                              >,"
Row < State2  , event2      , State1  , none                , Debugged             >,"
Row < State2  , event2      , State4  , none                , NotDebugged          >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State3  , event1      , State2  , Increment                                  >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State4  , E           , State5  , CallTarget                                 >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State5  , event2      , State6                                               >,"
//  +---------+-------------+---------+---------------------+----------------------+"
Row < State6  , event1      , Final                                                >"
//  +---------+-------------+---------+---------------------+----------------------+"
> {};"!
For State2, the machine can follow two different paths for the same event: event2. The 
difference is the guard condition: the path on the left is conditioned by the predicate Debugged 
and the path on the right, by the predicate NotDebugged. Debugged and NotDebugged are not 
exactly function. They are functors, classes that mimic functions my implemented the call 
operator (operator() ):!
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struct NotDebugged"
{"
    template<typename EVT, typename FSM, typename SRC, typename TGT>"
    bool operator()(EVT const& evt, FSM& fsm, SRC& src, TGT& tgt)"
    {"
        return !Debugged{}(evt, fsm, src, tgt);"
    }"
};"!
The implementation of NotDebugged is simple: it is simply the contrary of Debugged.!

The implementation of Debugged is more subtle. It possible to make some tests, use a “if” 
instruction and return a boolean value. As an example of what is possible, I choose another 
implementation: the presence of a debugger is tested when State3 is reached (CallPredication 
action) and the result increment a counter. The counter is also incremented when the FSM 
switch from State3 to State2. This is done a certain number of time, determined randomly (at 
compile time). The result is that the counter is even if a debugger was detected and odd 
otherwise. The idea is to separate in time the actual detection from the usage of this detection. 
Debugged is thus implemented as:!
struct Debugged"
{"
    template<typename EVT, typename FSM, typename SRC, typename TGT>"
    bool operator()(EVT const& evt, FSM& fsm, SRC& src, TGT& tgt)"
    {"
        return (fsm.predicateCounter_ - fsm.predicateCounterInit_) % 2 == 0;"
    }"
}; "!
The companion code contains a working implementation of debugger detection for Mac OS X 
and iOS. It is a simple implementation (based on a document from Apple). A more realistic 
implementation would incorporate obfuscation techniques described in this white paper to make 
the implementation more difficult to recognize and remove. For example, it is possible to use 
another FSM machine to hide the calls to sysctl and getpid. Another possibility is to make this 
function inline, call it from different part of the FSM, and use more complex mathematics that 
just increments and even testing.!

To make the code more generic, the companion code does not define directly Debugged and 
NotDebugged. Instead, it defines generic Predicate and NotPredicate functors. The actual 
implementation of the predicate is a template parameter when calling the function to obfuscate:!
// Predicate"
struct DetectDebugger { bool operator()() { return AmIBeingDebugged(); } };"!
void SampleFiniteStateMachine2()"
{"
   OBFUSCATED_CALL_P(DetectDebugger,  
       SampleFiniteStateMachine_important_function_in_the_application);"
}"!
In this example, SampleFiniteStateMachine_important_function_in_the_application is only 
called if AmIBeingDebugged return false. The whole mechanism is obfuscated by the FSM.!

!
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Other areas and future directions!
The same principles and techniques are applicable to other areas such as the obfuscation of 
computations, the introduction of opaque predicates, etc.!

Mixing with Objective-C!
Within Apple Xcode, It is possible to mix C, Objective-C and C++ in the same project or even in 
the same file: Xcode supports what is called Objective-C++ with extension “.mm” (instead of 
“.m”). This way, it is possible to use the techniques described in this document within iOS and 
Mac OS X applications.!

A characteristic of Objective-C is that all calls are dynamic and use what is called “selectors”. To 
simplify, a selector is the name of a method and this name is preserved in compiled code. As a 
consequence, it gives valuable information to attackers. Currently, our obfuscator is not 
addressing this area but this is currently studied and may be part of an update.!

With the release of Swift, the interest to obfuscate selectors has shift from Objective-C to this 
new language.!

Compilers support!
This library was developed using Xcode 6.0 and 6.1 beta. The corresponding LLVM version is 
3.5. It will however compile and run with any C++11 or C++1y (14) conforming compiler.!

It is currently not compatible with Microsoft Visual C++ including update 3 of Visual Studio 2013 
and Visual Studio 2014 CTP3.  The main reason is the lack of support of constexpr  and of 
initialisation of arrays. They are only partially supported by Microsoft. Currently, it is not clear if 
the final release of Visual C++ 14 will fully support constexpr or not .!25

The following table summarizes compatibility:!

!
Side effects and performance!
The impact at compile time and at runtime of obfuscation techniques is largely dependent of the 
context. For example, if you design a big finite state machine or if you make several iterations 

Compilers Compatibility Remarks

Apple LLVM 5.1 (3.4) Yes Previous versions were not tested

Apple LLVM 6.0 (3.5) Yes Xcode 6, 6.1 beta

LLVM 3.4, 3.5 Yes Previous versions were not tested

GCC 4.8.2 and higher Yes Previous versions were not tested

Intel C++ 2013 Yes Version 14.0.3 (2013 SP1 Update 3)

Visual Studio 2013 U3 No Lack of constexpr support

Visual Studio 2014 TP Almost Lack of initialisation of arrays support

Visual Studio 2014 RTM Unknown Not yet released at the time of this writing
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during its execution, it will slow down the application. This is why in our example MetaString, we 
use simple operations like XORs.!

As a general guideline, it is better to protect only specific portions of code. As an example, the 
obfuscator presented here was originally created to protect jailbreak detection code in an iOS 
framework. Protecting other areas such as all user interface code is more questionable.!

Comparison with other obfuscators!
There are only a few obfuscators available. Some are commercial like Arxan, Metaforic, 
Morpher or Cryptanium. Only very few are open-source. This is the case of Obfuscator-LLVM  26

(they are a few others but they are more proofs of concept than actual products).!

They all rely on external tools (pre-processors, post-processors, modified versions of LLVM, 
profilers, …) to produce obfuscated binaries. Our approach is different and relies only on C++11. 
Each approach has its benefits and drawbacks. Both are not incompatible and can be combined 
to further obfuscate binaries.!

The following table summarizes benefits and drawbacks of our approach:!

Companion code!
A version of our obfuscator is available on GitHub (https://github.com/andrivet/ADVobfuscator). 
It contains examples of techniques such as:!

• Obfuscation of string literals with random keys and random encryption algorithm!

• Obfuscation of function call with finite state machine!

• Obfuscation of function call mixed with a predicate (debugger detection for Mac OS X and 
iOS)!

The repository contains a Xcode 6.0 project that generates a Mac OS X Command Line tool. It 
demonstrates each point explained in the present document including intermediate steps:!

Benefits Drawbacks

Does not rely on external tools or modified version 
of the compiler

The C++ compiler has to be C++11 compliant

Not dependent on the target platform (the target 
has to be supported by a C++11 compiler)

Some part of the source code has to be in C, C++ 
or Objective-C

Very few impact on the source code (only a little 
intrusive)

Complex to write and to debug

Obfuscate at high-level. Allows complex 
obfuscation involving different parts of an 
application

Some obfuscation techniques like control flow 
graph flattening seem more difficult to implement 
without an important impact on the source code of 
the application

Our approach is applicable in environments where 
it is forbidden to dynamically decrypt or decode 
binary code (such as Apple iOS)
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All the code is released under the permissive BSD 3-Clause license.!

Conclusion!
This document and its companion code demonstrate that it is possible to use C++11 compilers 
to obfuscate code without using any external tools or modifying the compiler. For example, our 
obfuscator is able to obfuscate string literals and function calls. Such techniques can be 
extended to obfuscate code further by using identities, opaque predicates, etc⁄.!

The techniques described in this document were successfully applied in products, including 
commercial ones. In particular, it was used to protect jailbreak detection code in iOS 
applications published on the AppStore.!

We are continuing our researches, in particular regarding the obfuscation of code written in 
Swift. We are also looking for solutions to apply similar techniques to Android code written in 
Java.!

!
!
!
!

File Description

Indexes.h Generate list of indexes at compile time (0, 1, 2, … N)

MetaFactorial.h Compute factorial at compile time

MetaFibonacci.h Compute fibonacci sequence at compile time

MetaRandom.h Generate a pseudo-random number at compile time

MetaString1.h Obfuscated string - version 1

MetaString2.h Obfuscated string - version 2 - Remove truncation

MetaString3.h Obfuscated string - version 3 - Random key

MetaString4.h Obfuscated string - version 4 - Random encryption algorithm

ObfuscatedCall.h Obfuscate function call

main.cpp Samples
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History!

To get the latest version of this document, please visit:!

https://github.com/andrivet/ADVobfuscator/tree/master/Docs!

!
!

Version 0 December 1, 2011 First version, strings literals obfuscation, experimental

Version 1 May 25, 2013 Major enhancements, based on work from Samuel Neves, Filipe 
Araujo and on work from malware maker “LeFF”. Applied to 
ADVdetector (commercial product)

Version 2 June 7, 2014 Enhancements for Hack In Paris 2014. Choose obfuscation 
algorithm randomly, experiments with finite state machines

Version 3 September 26, 2014 Enhancements for Black Hat Europe 2014. Choose finite state 
machine (FSM) randomly from a set, change FSM behavior 
depending on a runtime value (debugger detection)
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