blg’ek hat

EUROPEREE =

APTs Way: Evading your EBNIDS

Ali Abbasi
Jos Wetzels

UNIVERSITY OF TWENTE.

Who we are?

e Ali Abbasi:
— PhD student in Distributed and Embedded System Security Group at University of Twente.
Researching on embedded systems security related to critical infrastructures. Got M.Sc. at
Tsinghua University in China, and was working as head of vulnerability analysis and
penetration testing group at Iran National CERT in Sharif University of Technology in Tehran.

e Jos Wetzels:

— M.Sc. Student and a research assistant with the Services, Cyber security and Safety research
group at the University of Twente. Currently working on projects aimed at on-the-fly
detection and containment of unknown malware and Advanced Persistent Threats, where we
focus on malware analysis, intrusion detection, and evasion techniques. Assisted teaching
hands-on offensive security classes for graduate students at the Dutch Kerckhoffs Institute for

several years.

UNIVERSITY OF TWENTE. lack}

Plan of Talk

History of Exploitation and Shellcodes
Intro to Emulation Based NIDS Approach

Adaptation
Detection Techniques and Heuristics

Evasions
Questions?

History

* Morris Worm 1988 used Buffer overflow on “finger” service on VAX systems.

Morris fingerd

* In 1990 first polymorphic virus designed by Washburn shellcode
pushl $68732f’/sh\0’

pushl $6e69622f’/
* In 2001 K2 introduced ADMmutate a polymorphic engine pipn’

to generate shellcodes movl sp, r10
pushl SO
pushl SO

* In 2008 Conficker worm with one byte XORed shellcode pushlr10 KEEP
pushl S3 CALM
movl sp,ap AND
chmks3 HACK THE

PLANET

Signature Based IDS

* Typical Exploit Code:

. Padding
JUNK Overwrite RET Instruction (NOP) Shellcode

Detection based on:

— Return Addresses
— NOP Instructions (\x90)
— Shellcode signatures

Exploit the
System

— Detecting polymorphic encoder signatures

Limitations of Signature based NIDS

Attackers change a byte of the payload and evade detection.

Polymorphic shellcodes with custom encoders/decoders will evade
detection.

Encrypted
Payload

Decryptor

You must always update and maintain your signatures.

Emulation-Based NIDS, a Giant Leap

Emulation-Based NIDSes emulate suspicious fivii] DAILY @ WEWS @
payloads. n

Meant to solve the problem of detecting M E“ WALK
polymorphic shellcodes. n“ THE Mnn“

Emulation-Based NIDSes are a great step One Small Step for Man,
forward: One Giant Leap for Mankind’

— Detect polymorphic shellcodes regardless of
which type of encoding technique is used.

— Can detect 0-day exploits.

— Do not rely on any specific vulnerability
(signatures).
— Uses heuristics, a behavior black listing

technique.
)| l: | .‘: i ; g -

How Emulation Based NIDS Works?

Pre-Processing

o GetPC
Network Data Disassembly Code Detected

Yes

No —

Emulation

Generate Execution | _ Execution
Trace Finished?
Yes

NO -

Heuristic-based Detection

Match traces

with heuristics Traces Matches

Generate Alert
Yes

NO-

Emulation Based Technique Adopted

SGNET ¢5) FireEye

libemu > Honeynet C. .ae
X x86 emu PTOJeCI: i
NEMU AT

dionaea
catches bugs

. ’rz

ROP

Emulation Based NIDS

* Nemu:

* The state of the art in emulation based network intrusion detection because of its broad
range of heuristics.

* Libemu:
 Asimple shellcode detection engine (used in several Honeynet projects).

Pre-Processing

Looking for GetPC seeding instruction.

— Call instructions

if (inst_trace[x].getpc == 1) {

jmp startup /* getPC write */

/* emulate.c Heuristic detection trigger*/
if ((tc[prev_PC]l.inst.type == INSTRUCTION_TYPE_CAL

(tc[prev_PCl.inst.type ==

Getpc: fprintf(trace_fp, "\033[1;31m w \033[0m"); INSTRUCTION_TYPE_FSTENV)) {
mov (%esp), %eax Jelse if (inst_trace[x].getpc == 2) { has_getpc = 1;
ret /* getPC read */ EXECTRACE_CMD(inst_trace[num_exec].getpc
=1 ;
startup: fprintf(trace_fp, "\033[1;31m r \033[0m"); 2
call getpc }

— FPU Instructions

00C67000 D9 EE fldz
00C67002 D9 74 24 F4 fnstenv [esp-0Ch]
00C67006 5B pop ebx

/* 1if call/fstenv, 2 if PC read, O if none */

if ((tc[prev_PCl.inst.type ==INSTRUCTION_TYPE_CALL) ||
(tc[prev_PCl.inst.type == INSTRUCTION_TYPE_FSTENV))
{

has_getpc = 1;
EXECTRACE_CMD(inst_trace[num_exec].getpc = 1);}

Emulation

Create possibility to track the behavior of the emulated CPU during
execution

Emulate X86 instruction sets
Emulate FPU Instructions

make a generic memory image for some local variables

Basic Heuristics Detection

e GetPC Code:

— detect invoking CALL or FPU instructions and check if the emulator started from the seeding GetPC
code.

* Payload Read:

— detect polymorphic shellcode by observing in an execution trace some form of GetPC code followed
by a number of unique memory reads exceeding so-called PRT.

e Write-Execute Instructions:

— Check in the areas that emulator performed write instructions how many executed X instructions get
emulated. If this X instructions pass certain value then the payload will be flagged as Non-self-

contained shellcode.
E | = <

Additional Heuristics

e Kernel32.dll based address resolution

e SEH-based GetPC code

* Process Memory Scanning

PEB Based Kernel32.dll Resolution

mov eax, fs:[0x30]; PEB
mov eax,[eax+0x0C]; LoaderData
mov eax,[eax+0x1C]; InInitializationOrderModulelist.flink
lodsd ; Get 2™ entry in list
mov eax,[eax+0x08] ; base address

BCKWD Kernel32.dll Resolution

;traverse chain
> Lodsd -

; start walking SEH chain _7/"' Mov esi,eax \
Mov esi,fs:[0] Y No

;pointer to kernel32.dll I
mov eax, [eax+4]

/ / Yes Eax now holds kernel32.dll base address

Is [eax] == "MZ'?
| T

. ;iterate backwards

\ through memory image
dec eax

\ No /‘ Xor ax,ax

) (D —

SEH GetPC

first execution will trigger access violation
;handler will catch exception, store PC in
; esi and return to instruction
Xor [esi+offset], KEY

lﬁ

Xor [esi+offset+index], KEY
Index++

[Encoded Body]

plackhat
UROPE 201

Index < body_length

Syscall Process Memory Scanning

\/
Next page
or bx,0xfff

\

:ebx += 1
; use NtAddAtom to check if page
Is valid

No |

; Was it valid?
—» (5 to check for no access violation)
cmpal, 5

l Yes

mov eax, SYSCALL#
(NtAddAtom)
INT Ox2E

A No

'is [ebx] == MARKER?

Ites

Evasions

Pre-Processing X
Emulation X X
Heuristics X

Intrinsic Limitations

e Unavailable context data

— Emulation-based NIDSes cannot have a complete memory image of all possible
targets.

— Context keying.
— Non-self contained shellcodes.

* Execution threshold
— The emulator needs to stop at some point, the attacker can wait.

* Cannot deal with fragmented shellcode
— Send the shellcode payload in multiple (non-consecutive) fragments.

Unavailable Context Data

 Non-self contained shellcodes

* Context Keying

— CKPE

« Using CPUID, values present at static memory addresses, system time or
file information as a key.

Context Keyed Payload Encoding

Index =0 T

;GetPC key / yd |
;ebx = GetContextKey1() / _ Xor[estofsetvinden], etk _
;body key / index++
edx = GetContextKey2() S |

;encoded GetPC on stack | /

push (ENC(DWORD[mov eax, esp; ret]) » ebx) . B
[Encoded Body] -
index < body_length

/

On stack

;GetPC
call esp

Execution Threshold

* Using time consuming loops to evade the threshold of execution

while (++num_exec < exec_threshold);
STATS_CMD(if (num_exec >= exec_threshold) stop_cond =S_THRESH);

- Opaque loop Intensive loop Integrated loop m

Nemu

Libemu 0/1 0/1 0/1 0/1

Execution Threshold Random
Decryption Algorithm (RDA)

Key candidate for GetPC stub
ebx =0 » next key candidate -
ebx +=1
Push (DWORD([mov eax, esp; ret] * KEY)

to stack ‘j No

pu;tzsg (’:‘T:Z’; N is hash([esp] » ebx) = GETPC_STUB_HASH ?

;Call esp Yes

;body = eax + BODY__Offset o -
jmp body

Different key candidate for body encode(body, ebx)

;ebx =0
rI t No
Yes

next key candidate <
ebx +=1 — decode(body, ebx)
’ is hash(body) = SHELLCODE_HASH?

Fragmentation

* Very rare condition
e Shellcode will be sent in two different instances.

* Shellcode have two stage but in one instance

Results

* Context keying
— Modified version of the Context CPUID Metasploit key generator stub.
— Not detected.

* Non-self contained shellcodes:

— Dynamically built the entire GetPC code and the shellcode decoder out of ROP
gadgets.

— Not detected.
e Execution Threshold
— Built shellcodes with four types of time-intensive loops.
— Nemu could detect half of the shellcodes (loops were not taking enough time).
— Libemu could not detect any.

Demo

 RDA (Exec Threshold)

 CKPE

Implementation Limitations

Heuristics are kind of black listing

— You have to list all possible shellcode behavior patterns, attackers can always find a
missing one.

Runtime difference (Emulator detection)
— Shellcode can detect if it is being emulated.

Unsupported instructions

Detection relies on successful shellcode disassembly
— Malware already applies anti-disassembly techniques to avoid analysis

Heuristics Evasion

Kernel32.dll address resolution evasion.

Evading Payload Read:

— Use syscalls to execute read operations instead of reading directly in the payload shellcode.

Evading W-X Instruction:
— Using Virtual Mapping

Evasion of Process memory scanning :
— SEH-walking to evade detection of SEH-based process memory scanning heuristic

— APIl-based egg-hunting to evade SYSCALL-based memory scanning heuristic

Kernel32.dll Resolution Heuristic Evasion

* Evading Kernel32.dll heuristic using SEH Chain.

* Evading Kernel32.dll heuristic using Stack Frame pointers (using
NtcreateProcess API)

Evading Kernel32.dll Heuristic using SEH Chain

Stack

INn case of
Pointer to Next - Handler 1 NTDLL.dI
Looking for SEH Record :
OxFFFFFFFF Pointer t \Failure PE Header
Sl e et e Handler1 Looking
Exception Handler | for

/ In case of PE Header R
Pointer to Next < Handler 2
SEH Record \ Failure
Pointer to \ LdrLoadDLL
Exception Handler "*"I'*'*’ Handler2 L
: oS SEH

End of SEH Chain &
OxFFFFFFFF

Pointer to OS SEH
in NTDLL.dlI
a5 ? Kernel32.d1l —g—

LoadLibraryA

(D= 9Jf

Kernel32.dll Heuristic Evasion using
Stack Frame Walking

esi = ebp
. . esi now holds address of
= last stackframe esi now points within
v dword after that is NtCreateProcess in NTDLL.DLL
+ No €S return address of stack frame
Esi = [esi+4]
P is [esi] == 0?
v
is [esi] == 'MZ'? esi now holds base address of NTDLL.DLL
v No " Yes _
alLdrLoadDLL = GetAddress (esi, 'LdrLoadDLL")
es! ;= 1 * Eax = aLdrLoadDLL('Kernel32.dII')

Payload Read Threshold Heuristic
Evasion

SYSCALL-based relocation

NtAllocateVirtualMemory(CurrentProcess(),
&memAddress, 0, shellcodeSize, startup:
MEM_COMMIT, Pager_ReadWrite_Execute) ————> call getBack
[Encoded Body]
jmp startup

!

getBack:
NtReadVirtualMemory(CurrentProcess(),

[esp], memAddress, shellcodeSize)

;decode bytes at address memAddress
Decode(memAddress)

Stack Constructing Shellcode
GetPC+PRT evasion

> IQ:khat
UROPE 201

Egg Hunt (Using API

! No | Y
Next page + Was it valid? Next page
or bx,Oxfif - = (5 to check for no access violation) Or bx, Oxfff
* ; cmpal, § |
‘obx += 1 Yes e j
; use NtAddAtom to check if page VirtualQuery(ebx, &info,
Is valid sizeof(MEMORY _BASIC_INFORMATION))
mov eax, SYSCALL# —is [ebx] == MARKER? f
(NtAddAtom) N
INT 002E L’Yes 0
A No

No

:do info.permissions indicates
page has read+execute?

HYes

|— is [eax] == MARKER?

|-’Yes

jmp (eax+sizeof(MARKER))

Heuristics Evasion Demo

PRT Evasion
Kernel32 Evasion(Both Techniques)

Process Memory Scanning Evasion

eax A= ecx,
eax = edx
etc.

xor eax with all registers e.g.:

xor eax with Nemu
derived constant

On Nemu eax is no 0

jmp startup

Nemu GP Register

detection

Emulator Detection

;edx=ebx=ecx=0

;add all regs to eax

Execute CPUID instruction

;on Nemu regs are
unaffected by CPUID
since eax is now 0

jmp startup

Nemu CPUID

substract all registers
eax -= eax — ecx,
ecx -= edx, etc;
Add all registers to eax

On Libemu eax is now 0

jmp startup

Libemu

Timing

startup:
call GetPC

l

GetPC:
:if eax is smaller than threshold,
move esp to ecx

;if eax was smaller, eax(result) now
holds return address
Mov eax,[ecx]

ret

> IQ:khat
UROPE 201

Emulator Detection Demo

e Demo

Anti-Disassembly

Using garbage bytes and opaque predicates

Flow redirection to the middle of an instruction

Push/pop-math stack-constructed shellcode

Code transposition

Garbage Byte Flow Redirect ::::h/ Pop Code Transposition
Nemu 9/9 9/9 8/9 8/9
Libemu 0/1 1/1 0/1 1/1

Unsupported Instructions

 Unsupported Instructions:
— FPU Instructions (FNSTENV, FNSAVE))
— MMX Instructions
— SSE Instructions
— Obsolete instructions (salc or xlatb)

FPU FPU MMX SSE OBSOL
(FNSTENV) (FNSAVE)
Nemu 9/9 0/9 0/9 0/9 0/9
Libemu 1/1 0/1 0/1 0/1 0/1

Unsupported Instructions

jmp startup

GetPC:

MMX instructions to move

[esp] to mmO

jmp startup

GetPC:

Startup:
call GetPC

I

MMX instructions to move

mm0O to mm1

MMX instructions to move

mm1 to eax (result)

SSE instructions to move
[esp] to eax (result)

SSE instructions to copy
eax to xmmO

Startup:
call GetPC

Overwrite contents of [esp]
With junk bytes

ret

MMX

SSE instructions to restore
[esp] from xmmO

ret

SSE

Question?

Everything that has a beginning has an end

The Matrix Revolution

Contact Us:
Ali Abbasi: a.abbasi@utwente.nl
Jos Wetzels: a.l.g.m.wetzels@student.utwente.nl

