
Never Let Your Guard Down:
Finding Unguarded Gates to Bypass Control
Flow Guard with Big Data

Ke Sun wildsator@gmail.com

Ya Ou perfectno2015@gmail.com

Yanhui Zhao wildyz.yky@gmail.com

Xiaomin Song zosnetworking@gmail.com

Xiaoning Li ldpatchguard@gmail.com

Agenda

 CFG Implementation Overview

 Previous CFG Bypass Researches

 Research Focus

 Analysis Approaches

 Results & Discussion

 Fix for the issues

 Further Discussion

 CFG Implementation Overview

 Previous CFG Bypass Researches

 Research Focus

 Analysis Approaches

 Results & Discussion

 Fix for the issues

 Further Discussion

Agenda

 Control Flow Guard (CFG) is a mitigation technology to prevent control flow being redirected to
unintended locations, by validating the target address of an indirect branch before it takes place

CFG Overview

Compiler
(Compile-time Support)

OS
(Run-time Support)

Insert CF check function call
before each indirect call/jmp

Point the CF check function pointer
to ntdll!LdrpValidateUserCallTarget

Generate CF function table to list
all legal entry addresses (RVAs)

Generate CFGBitmap when process
created, based on CF function table

Add CFG related entries in Load
Configuration Table:

1. Guard CF Check Function Pointer
2. Guard CF Function Table
3. Guard CF Function Count
4. Guard Flags

Handle violations when CFG check
fails (terminate the process by
issuing an INT 29h)

Original Implementation of CFG

CFG Implementation

Call CF Check
Function

Indirect Call CF Check Func Ptr

Subroutine

CF Function Table

Target Address

CFG Bitmap

Ntdll.dll

ntdll!LdrpValidat
eUserCallTarget

Valid Entry RVA
Valid Entry RVA
Valid Entry RVA
Valid Entry RVA

……

created by OS
at load-time

Compiler-implemented
(compile-time)

OS Implemented
(run-time)

In current 64-bit Windows 10 CFG by default uses “dispatch mode” instead of “check & call”

CFG - Indirect Call Policing

？

Mr. Indirect Call

Barricade
(Call CF Check Function Ptr)

Officer LdrpValidateUserCallTarget

Police Station
Database

(CFG Bitmap)

Agenda

 CFG Implementation Overview

 Previous CFG Bypass Researches

 Research Focus

 Analysis Approaches

 Results & Discussion

 Fix for the issue

 Further Discussion

Previous CFG Bypass Researches

 An incomplete list of previous CFG-bypass studies (most related to JIT)

Attack Surfaces

 Non-CFG Module

- will eventually sunset with wide implementation of CFG

 Indirect JMP

- already protected by CFG the same way as indirect calls

 Return Address on Stack

- mitigated by newly-introduced Return Flow Guard (RFG)

 __guard_check_icall_fptr

- supposed to be RO but can be made writable in certain cases

- reported issue fixed by adding wrapper to VirtualProtect

 setjmp/longjmp

- jmp_buf can be modified to bypass CFG

- mitigated by longjmp hardening in Win10 CFG improvement

 JITed Code

- unprotected JITed code or overwrite temp JITed code buffer

- mostly mitigated by CFG-aware JIT and JIT hardening

 Valid Gadgets

- much less availability and difficult to exploit

Attack Surfaces (continued)

Attack Surfaces – JIT Code

 JIT compliers reported to create problem for CFG

 Flash ActionScript JIT Compiler

 Windows Advanced Rasterization Platform (WARP) Shader JIT Compiler

 JavaScript Chakra JIT Compiler

 CFG-bypass methods:

 Using unprotected indirect call/jmp from the JITed Code

 Using JIT Spray: no target address check for indirect call/jmp to the JITed Code

 Overwriting temporary JITed native code buffer

Attack Surfaces – JIT Code

 Using unprotected indirect call/jmp from the JITed Code

Attack Surfaces – JIT Code

 Using JIT Spray: no target addr check for indirect call/jmp to the JITed Code

Attack Surfaces – JIT Code

 CFG can also be bypassed by manipulating the JITed code in the temporary code

buffer (writable) before it gets copied to the executable memory (non-writable)

Attack Surfaces – Valid Gadget

 CFG only prevents the control flow being hijacked to unexpected locations, but does
not stop the unintended use of valid gadgets at legal entry addresses

 However, with CFG, the availability of gadgets is largely reduced, making it much more
difficult to exploit

Agenda

 CFG Implementation Overview

 Previous CFG Bypass Researches

 Research Focus

 Analysis Approaches

 Results & Discussion

 Fix for the issues

Research Focus

 Besides all the previous researches that have been done on CFG bypass, we are
trying probing this topic from a different angle

 Instead of trying to break the CFG check logic itself or exploit the implementation
issues of CFG in JIT compilers, we are focusing on another aspect that has not been
extensively studied for CFG bypass: memory-based indirect calls

Recognition

 Two kinds of memory-based indirect calls:

 Function pointer @ vulnerable memory location (CFG-protected)

 Example: Calling a function pointer located in .data section, which is RW at runtime

 Compiler will insert CFG check for the target address

 Function pointer @ safe memory location (Non-CFG-protected)

 Example: Calling a function pointer from import address table (IAT), which is
READ_ONLY after being initialized at runtime

 Because such memory locations are generally considered “safe” due to their non-
writable attribute, CFG check is not implemented

CFG Policy for Mem-based Indirect Calls

Mem-based Indirect Calls - Vulnerable Location

CFG (/guard:cf) Turned-off

CFG (/guard:cf) Turned-on

 Function pointer @ vulnerable memory location (CFG-protected)

 For memory-based indirect calls with function
pointer at vulnerable location, CFG will

 Insert CF check function before the
indirect call

 Copy the function pointer value to stack
and call it from stack instead of from the
original memory location

 Function pointer @ safe memory location (Non-CFG-protected)

 CFG not implemented due to function pointer being READ_ONLY at runtime

 Form kept as memory-based indirect call: call dword ptr [mem_address]

CFG (/guard:cf) Turned-on

Static

Mem-based Indirect Calls - Safe Location

Runtime

Research Focus

 Memory-based indirect call (from READ_ONLY locations) is not CFG-protected due to
it’s considered “safe”.

JITed Code

Unprotected indirect call/jmp
(register-based)

Unprotected indirect call/jmp
(memory-based)Protected indirect call/jmp

No gate here ?

Image source: http://www.clipartlord.com/category/structures-clip-art/castle-clip-art/, http://clipart-library.com/armor-of-god-clipart.html

 Memory-based indirect call (from READ_ONLY locations) is not CFG-protected due to
it’s considered “safe”, is it?

JITed Code

Unprotected indirect call/jmp
(register-based)

Unprotected indirect call/jmp
(memory-based)Protected indirect call/jmp

No gate here ?

Research Focus

 However, if for some reason, the target address pointer of an indirect call become
writable, it will become an unguarded gate…

Research Focus

JITed Code

Unprotected indirect call/jmp
(register-based)

Unprotected indirect call/jmp
(memory-based)Protected indirect call/jmp

The goal of our study is to find
memory-based indirect calls with

writable function pointer at
runtime (unprotected)

Agenda

 CFG Implementation Overview

 Previous CFG Bypass Researches

 Research Focus

 Analysis Approaches

 Results & Discussion

 Fix for the issues

 Further Discussion

 To find the cases of indirect call with writable target address pointer, we use an analysis
framework with

 Performance Monitor Unit (PMU)-based instrumentation tool to collect the run-time
context information for each indirect branches

 Spark-based data analysis for large-volume data screening

Analysis Approaches

 First introduced in the Pentium processor with a set of model specific performance
monitoring counter MSRs (Model Specific Registers)

 Permit selection of processor performance parameters to be monitored and measured

IA32_PERFEVTSELx MSR

Analysis Approaches – Performance Monitoring

 To collect binary data after each Ind Call, we utilized PMU to track target code execution

 Each Ind Call triggers a PMI

 Register the interrupt handler for PMI

 0xFE in IDT

 Using a Windows API*

(Ref: C. Pierce BH USA 2016)

 Data collection

 In Kernel Mode

 Avoid page fault

Target Process Context

CPU

Target Code

In
d

C
al

l

Interrupt
Handler

User

Kernel
Print out

binary code

Analysis Approaches – PMU Instrumentation

 CPU performance event select register (Sandy Bridge)

 Performance Monitor Interrupt is triggered at each indirect call instruction while
running an application.

 Code stream at each legal entry of indirect call is collected for analysis.

Analysis Approaches – PMU Instrumentation

Source: http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Analysis Approaches – Data Collection

 “from” addr

 “from” code block

 PTE of “from” addr

 target ptr addr

 PTE of target ptr addr

 “to” addr

 “to” code block

 PTE of “to” addr

 Context information collected for indirect call

 Collected data format:
[+0x00] “from” address
[+0x08] “from” code block, 8 byte
[+0x10] “from” address’s PTE
[+0x18] target pointer’s address
[+0x1c] target pointer’s PTE
[+0x20] “to” address
[+0x28] “to” code block, 8 bytes
[+0x30] “to” address’s PTE

Analysis Approaches – Data Collection

Example:

Analysis Approaches - Bigdata Analysis

Dataset
Pre-process and

remove duplicates

Code blocks
disassembled by

capstone

Filter out all register
based indirect call

Get only memory-
based indirect call

Check if memory is
Writable through PTE

Identify the sources of
writable memory

addresses

 Data processing pipeline in Spark

Agenda

 CFG Implementation Overview

 Previous CFG Bypass Researches

 Research Focus

 Analysis Approaches

 Results & Discussion

 Fix for the issues

 Further Discussion

Results & Discussion

 With the analysis approaches mentioned, we have

 For Edge, collected data items: 69,341,184, data file size: 4.4G, unique combinations
of “to” eip address and code block items: 20,611

 For flash, collected data items: 9,949,184, data file size: 637M, unique combinations
of “to” eip address and code block items: 688

 3 cases of memory-based indirect calls, which are not protected by CFG per policy, have
writable target address pointer:

 2 cases with the target address pointers located within the .data section, which is
PAGE_READWRITE (windows.storage.dll and ieapfltr.dll)

 1 case with the writable target address pointer in the IAT of .idata section of msctf.dll,
which is very interesting…

 1st case of the 2 findings with memory-based indirect call’s target address pointers
in .data section (RW)

windows.storage.dll

Results & Discussion

 2nd case of the 2 findings with memory-based indirect call’s target address pointers
in .data section (RW)

ieapfltr.dll

Results & Discussion

 The one case found with indirect call’s target address pointer writable and
located in the IAT of .idata section

msctf.dll

Results & Discussion

 The reason of this case:

the whole .idata segment is RW for this dll !!

Results & Discussion

 Bonus finding: remember the __guard_check_icall_fptr is also in the IAT of
.idata section…

All CFG checks in msctf.dll can be bypassed!!

Results & Discussion

 Considering it is not likely that msctf.dll is the only black swan, we carried out a
more thorough screening using static PE analysis

 Using Python script to screen for any writable .idata section in all windows dlls

Results & Discussion – Static Analysis

 4093 Windows dll files under Windows 10 Home 32-bit system (Version 1607,
OS Build 14393.477) have been screened and 4 more dlls with RW .idata
sections are found

 ddraw.dll

 ddrawex.dll

 msutb.dll

 tapi32.dll

 Scan in Windows 10 Pro 64-bit system
(Version 1607 OS Build 14393.953) shows
the same results

Results & Discussion – Static Analysis

Agenda

 CFG Implementation Overview

 Previous CFG Bypass Researches

 Research Focus

 Analysis Approaches

 Results & Discussion

 Fix for the issues

 Further Discussion

Fix for the Issues

Microsoft fixed these issues on March 2017.

 Example: after the fix, In msctf.dll, the CFG
function ptr is not Writable anymore.

msctf.dll
Before Fix

After Fix

Agenda

 CFG Implementation Overview

 Previous CFG Bypass Researches

 Research Focus

 Analysis Approaches

 Results & Discussion

 Fix for the issues

 Further Discussion

Further Discussion

 The “PMU-instrumented data collection + Bigdata analysis” is a very powerful
framework and can be used for different bypass studies by selecting different
policies with same data set

 “from” addr

 “from” code block

 PTE of “from” addr

 target ptr addr

 PTE of target ptr addr

 “to” addr

 “to” code block

 PTE of “to” addr

Policy #1 – Unprotected Mem-based Ind Call

  can be used to find memory-based indirect calls with writable target pointer
for CFG bypass (this work)

 “from” addr

 “from” code block

 PTE of “from” addr

 target ptr addr

 PTE of target ptr addr

 “to” addr

 “to” code block

 PTE of “to” addr

  can be used to find valid gadgets under CFG

Policy #2 – Hunting Valid Gadgets

 “from” addr

 “from” code block

 PTE of “from” addr

 target ptr addr

 PTE of target ptr addr

 “to” addr

 “to” code block

 PTE of “to” addr

 CFG bypass cases can also be searched by looking for unguarded indirect jmp
in , the “to” code block (work in progress)

Policy #3 – Unprotected Ind JMP

 “from” addr

 “from” code block

 PTE of “from” addr

 target ptr addr

 PTE of target ptr addr

 “to” addr

 “to” code block

 PTE of “to” addr

  and  can also be used to look for cases with writable “from” or “to” address,
which can also be considered CFG bypasses (work in progress)

Policy #4 – WX Locations in Code Flow

 “from” addr

 “from” code block

 PTE of “from” addr

 target ptr addr

 PTE of target ptr addr

 “to” addr

 “to” code block

 PTE of “to” addr

 CFG is a powerful mitigation technique that effectively increases the difficulty and cost
for memory-corruption exploitation

 Besides multiple previous studies reporting CFG bypass approaches, this work focuses
on finding memory-based indirect calls with writable target address pointer, which can be
exploited for CFG bypass

 PMU-based instrumentation and Bigdata analysis are used for data collection and
analysis, as well as static PE screening. Multiple results were found and reported to
MSRC

 “PMU-instrumented data collection + Bigdata analysis” is a very powerful framework and
can be used for different bypass studies by selecting different policies with same data set

Summary

Thank You!

Acknowledgement:

Thanks for Haifei Li (Intel Security) and Rodrigo Branco’s (Intel) review!

Reference
 Control Flow Guard, https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx

 Exploring Control Flow Guard in Windows 10. Jack Tang. Trend Micro Threat Solution Team, 2015

 Windows 10 Control Flow Guard Internals. MJ0011, POC 2014

 http://blog.trendmicro.com/trendlabs-security-intelligence/control-flow-guard-improvements-windows-10-anniversary-update/

 Bypass Control Flow Guard Comprehensively, Yunhai Zhang, Blackhat 2015

 Exploiting CVE-2015-0311, Part II: Bypassing Control Flow Guard on Windows 8.1 Update 3, Francisco Falcón, Mar 2015

 https://www.blackhat.com/docs/eu-15/materials/eu-15-Falcon-Exploiting-Adobe-Flash-Player-In-The-Era-Of-Control-Flow-Guard.pdf

 https://securingtomorrow.mcafee.com/mcafee-labs/microsofts-june-patch-kills-potential-cfg-bypass/

 https://www.yumpu.com/en/document/view/55963117/jit-spraying-never-dies

 http://xlab.tencent.com/en/2015/12/09/bypass-dep-and-cfg-using-jit-compiler-in-chakra-engine/

 http://xlab.tencent.com/en/2016/01/04/use-chakra-engine-again-to-bypass-cfg/

 http://theori.io/research/chakra-jit-cfg-bypass

 Intel® 64 and IA-32 Architectures Software Developer Manuals, http://www.intel.com/content/www/us/en/processors/architectures-

software-developer-manuals.html

 Security Breaches as PMU Deviation: Detecting and Identifying Security Attacks Using Performance Counters. Liwei Yuan, Weichao Xing,

Haibo Chen, Binyu Zang. APSYS 2011

 Loop-Oriented Programming: A New Code Reuse Attack to Bypass Modern Defenses, B Lan et al, 2015 IEEE Trustcom/BigDataSE/ISPA

 Capturing 0day Exploit With Perfectly Placed Hardware Traps, C. Pierce, M. Spisak, K. Fitch, Blackhat usa 2016

 IROP – interesting ROP gadgets, Xiaoning Li/Nicholas Carlini, Source Boston 2015

 Apache Spark, http://spark.apache.org/

 Capstone, http://www.capstone-engine.org/

