
CJAG: Cache-based Jamming Agreement

Establishing a covert channel between co-located VMs

Michael Schwarz and Manuel Weber

Graz University of Technology, Austria

Abstract. Cache-based covert channels are successfully able to circum-
vent the isolation between multiple tenants in the cloud. As co-located
virtual machines run on the same hardware, and thus share the same
hardware, it is possible to establish a communication channel through the
cache. The communication itself has been thoroughly studied. However,
the problem of detecting the other communication party and negotiating
the communication channels is often neglected.
In this paper, we present CJAG, a technique to fully-automatically ne-
gotiate communication channels between co-located virtual machines.
CJAG uses techniques used in wireless communication and applies them
to cache-based communication channels. We implemented an open-source
proof-of-concept tool that allows to test this technique both locally and
on virtual machines. We show that our tool can reliable detect the other
communication party on a co-located machine running on the Amazon
cloud. Finally, we demonstrate that CJAG is able to establish 6 binary
communication channel between two virtual machines in less than 0.87 s.

1 Introduction

Recent research has shown that caches can be used as a basis for covert channels
in the cloud. A covert channel is a channel not intended to transfer informa-
tion [9]. It allows to secretly transfer data between two parties, a sender and a
receiver. As cache-based covert channels do not require network access, they are
not detectable by traditional network-based intrusion detection or prevention
systems.

The basic principle of cache-based covert channels is to exploit the timing
difference between cached and uncached data. As the cache is shared among all
virtual machines running on the same physical host, these timing differences can
be observed by all tenants. Applications cannot directly influence the content
of the cache, however, they can fill the cache, leading to an eviction of data
for other tenants. Evicting data from the shared cache is the basic technique to
transmit information from the sender to the receiver. To accomplish this, most
covert channels use the so-called Prime+Probe cache attack [7,10,13]. As caches
are fast, this technique allows to build high-throughput covert channels.

A covert channel between virtual machines effectively undermines the iso-
lation properties guaranteed by the hypervisor. Thus, several countermeasures
have been proposed to prevent such covert channels [2, 3, 14, 15]. The majority

2 Michael Schwarz and Manuel Weber

of the countermeasures relies on injecting noise into the cache to disrupt the
communication. However, Maurice et al. [12] showed that despite such counter-
measures, it is still possible to build a reliable covert channel by applying error
detection and error correction. Such a robust covert channel achieves error-free
transmission rates of several hundred kilobits per second in the Amazon cloud.

Most of the research so far focused on the actual transmission and the achiev-
able transfer rates. Actually establishing the communication is often consid-
ered out of scope, simply an engineering task, or a trivial prerequisite. Mau-
rice et al. [12] proposed the idea of cache-based jamming agreements (JAG)
to establish a communication channel between the sending and receiving party.
This approach is inspired by an existing technique from the field of wireless com-
munication, JAG [1]. The main idea is to generate a large amount of noise that
stands out from the noise floor and can thus be detected reliably by the other
communication party, even under heavy noise. Maurice et al. [12] demonstrate
that it is possible to apply JAG to cache covert channels.

In this paper, we give a more thorough explanation of CJAG , the cache-
based jamming agreement. CJAG is both a technique and an open-source tool1

to establish a cache-based covert channel. With CJAG , sender and receiver can
automatically locate each other, both natively as well as inside co-located virtual
machines. We explain how unprivileged parties inside virtual machines can take
advantage of large pages to efficiently build eviction sets for Prime+Probe. We
show that locating cache sets and the channel negotiation process work on state-
of-the art CPUs as well as on cloud providers such as Amazon. CJAG is able to
establish 6 binary communication channels in less than 0.87 s.

Contributions. The contributions of this work are:

1. CJAG is a technique to automatically locate communication parties in the
cloud. It is able to establish an arbitrary number of parallel binary commu-
nication channels.

2. We provide an open-source implementation which works on state-of-the art
native hardware, within co-located virtual machines, and in the cloud.

3. We show that CJAG is very efficient and robust, even if the system is under
heavy stress. We are able to establish 6 binary communication channels
within 0.87 s.

Outline. The remainder of the paper is organized as follows. In Section 2, we
provide background on caches and cache-based covert channels. In Section 3, we
describe the design of CJAG . In Section 4, we present the open-source imple-
mentation of CJAG . In Section 5, we evaluate the performance of CJAG . We
conclude in Section 6.

1 The source can be found on GitHub: https://github.com/IAIK/CJAG

CJAG: Cache-based Jamming Agreement 3

2 Background

2.1 CPU Caches

As CPU speed increases at a significantly higher rate than main memory speed,
there is need for a fast intermediate memory. Modern Intel CPUs contain three
levels of such intermediate memory, called caches. The caches follow a strict
hierarchy, from the fastest and smallest L1 cache close to the CPU, to a slower
but large last-level cache (LLC), furthest away from the CPU. A cache is divided
into sets, where the set index is determined by the physical address bits 6 to
16. Furthermore, every set contains multiple ways. The data is stored in one of
the ways, where the way is determined by the cache replacement policy. Older
CPUs used least-recently used (LRU) as a replacement policy, however for newer
models the exact replacement policy is not known [4].

The last-level cache in Intel CPUs is inclusive, i.e., all data that resides in L1
and L2 must also be in the last-level cache. Furthermore, the last-level cache is
shared among all cores, thus a modification of the last-level cache can influences
the core-local L1 and L2 caches. Since the Sandy Bridge microarchitecture, the
last-level cache is sub-divided into slices. To increase the bandwidth, there is one
cache slice per CPU core. A CPU core can also access a remote slice via a ring
bus, however such a remote access has a higher latency.

To determine the cache slice of a physical address, the CPU uses an undoc-
umented hash function. However, this hash function has already been reverse
engineered for various Intel CPUs [5, 6, 8, 11].

2.2 Prime+Probe

Prime+Probe is an access-driven cache attack [7, 10, 13] that allows to monitor
the cache activity of a victim process. A Prime+Probe attack consists of two
steps. First, fill a cache set with data (prime) and schedule the victim process.
Second, access the data in the set and measure the access time (probe). If the
victim process accessed data that maps to the same cache set, the data of the
attacker process is evicted. Thus, the attacker measures a higher access time
as parts of the data have to be fetched from the main memory. In contrast, if
the victim did not access any data mapping to the same cache set, the attacker
measures a low access time, as everything is still cached.

Prime+Probe does not require any form of shared memory and is thus ap-
plicable across virtual machines. To successfully mount a Prime+Probe attack,
the attacker must be able to build an eviction set, i.e., a set of addresses that
occupies a complete cache set. Liu et al. [10] and Maurice et al. [12] developed a
method to generate eviction sets by relying on large pages. Large pages have a
size of 2 MB and thus the least significant 21 bits of the virtual address are the
same as for the physical address. These bits are sufficient to calculate the cache
set, however the cache slice cannot be calculated as the hash function to deter-
mine the slice depends on all physical address bits. Liu et al. use a brute-force
approach to find the correct eviction set by continuously trying if the eviction set

4 Michael Schwarz and Manuel Weber

Table 1: Cache slice function from Maurice et al. [11].

Address Bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 slices o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 slices
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 slices
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

successfully evicts a victim address. Maurice et al. improved the method by using
knowledge about the hash function to generate eviction sets more efficiently.

2.3 Jamming Agreement

Jamming Agreement (JAG) was developed by Boano et al. [1] as a robust hand-
shake method for wireless sensor networks. Sensor networks commonly communi-
cate within the unregulated ISM-bands, mostly the 2.4GHz band, and thus have
to co-exist with WiFi, Bluetooth and several other technologies. Sensor modules,
called sensor nodes, generally run on battery and therefore need to communi-
cate efficiently. This requires establishing general communication channels for
frequency hopping protocols or finding timeslots for time-slotted protocols. The
receiver confirms a successful communication channel establishment by respond-
ing with an acknowledgment (ACK). If the ACK is not received, the channel
is not established. Although ACKs have a high probability to be successfully
received, they can still be lost due to heavy interference e.g., by WiFi file trans-
fer. Boano et al. introduced JAG to increase the probability of successful ACK
reception. Instead of sending an ACK, the carrier is modulated, i.e., the noise
floor is increased for a time period t by generating interference. This has to
be long enough to distinguish this kind of interference from other noise sources,
such as WiFi, which is—although stronger—much shorter. If the communication
partner can sense that the carrier does not return to the usual noise floor during
period t, this is interpreted as an ACK using the JAG technique.

3 CJAG Technique

In this section, we describe the technique of CJAG . We describe how to build
eviction sets without knowledge of the cache slice. Furthermore, we show how
sender and receiver can agree on common cache sets without knowledge of phys-
ical addresses.

CJAG: Cache-based Jamming Agreement 5

Address 0

...

Address n

Fig. 1: The access pattern to the addresses in the eviction set.

3.1 Constructing Eviction Sets

A first prerequisite for a Prime+Probe-based covert channel is a method to gen-
erate eviction sets for cache sets. Maurice et al. presented the following method
to construct eviction sets using large pages.

1. For the eviction set, we can only use one address per 4 KB page, otherwise
the hardware prefetcher might prefetch addresses from the eviction set. Thus,
we have to calculate the number of addresses on a 2 MB page that map to
the same cache set, same cache slice, and are on different 4 KB pages. A
2 MB page contains 2MB

4KB = 512 different 4 KB pages. The cache set index
is determined by the (physical) address bits 6 to 16. We consider only ad-
dresses with some arbitrary but fixed bits 0 to 11, resulting in 32 cache sets
containing only addresses with a distance of 4 KB to each other. The number
of addresses in each of these cache sets is 512

32 = 16. Thus, the number of
addresses per 2 MB page usable as an eviction set is therefore nraddr = 16

slices .
2. To fully evict a cache set, we require as many addresses as there are cache

ways. Thus, the number of required 2 MB pages is
⌈

ways
nraddr

⌉
.

3. We iterate in 4 KB steps over the allocated pages. For every address, we cal-
culate a virtual cache slice by applying the cache slice function (cf. Table 1)
to the least significant 21 bits of the address. All addresses within a 2 MB
page that have the same virtual cache slice have the same (real) cache slice
as well. However, virtual cache slices differ between different 2 MB pages by
a constant offset depending on the physical address.

4. For all pages, we add all addresses mapping to the correct cache set to the
eviction set, regardless of the virtual cache slice. This results in an eviction
set containing all correct addresses, but also too many addresses, i.e., ad-
dresses mapping to the correct cache set but to the wrong cache slice. Thus,
for the addresses of every 2 MB page, we remove all addresses with the same
virtual cache slice as long as the eviction set still works. Finally, we are left
with a minimal eviction set for a specific cache set.

For older CPUs, it was sufficient to access every address in the eviction set
once to fill the cache set with these addresses and evict everything else. However,
modern CPUs use an undocumented eviction strategy and simply accessing all
addresses from the eviction set is not sufficient anymore. We use the experimen-
tally discovered access pattern by Gruss et al. [4] as shown in Figure 1.

6 Michael Schwarz and Manuel Weber

Using this method combined with the access pattern allows us to efficiently
create eviction sets without ever determining the real cache slice. However, this
is also a disadvantage: As we do not know the correct slice, we cannot simply
use the same cache set and slice for sender and receiver.

3.2 Negotiating Cache Sets

The second prerequisite for a Prime+Probe-based covert channel are common
cache sets between sender and receiver. The receiver listens to the agreed cache
sets using Prime+Probe. To transmit a binary ‘0’, the sender does nothing and
the receiver measures a low access time. For a binary ‘1’, the sender evicts the
cache set and thus the receiver measures a high access time.

Agreeing on the same cache sets on both sender and receiver side before-
hand poses two problems. First, we cannot determine the real cache slice of the
addresses. Second, some of the sets might not be usable as a stable communi-
cation channel as there is too much noise from other applications. Thus, sender
and receiver require a dynamic method to negotiate cache sets to use for their
communication.

Maurice et al. presented the following method for cache set negotiation.

1. Both sender and receiver start at the same (fixed) cache set to generate
eviction sets for this and the following cache sets.

2. The sender starts at the first cache set and evicts it for a certain period of
time ts by accessing the eviction set (jamming). Then, the sender measures
the access time to the set for a period of 2ts to detect whether the receiver
acknowledges the cache set by jamming back (i.e., the receiver evicts the
cache set).

3. The receiver measures the access time to one of its own cache sets for a
period of tr. If there are more cache misses than a specified threshold, the
receiver acknowledges the set by evicting the set for 2tr (jamming back).
Otherwise, the receiver moves on to the next cache set.

4. If the sender receives the acknowledgment from the receiver, a common cache
set for communication is found and the sender moves on to the next cache
set. This procedure is repeated until sufficient common cache sets are found.

After this cache-based jamming agreement, both sender and receiver have the
same number of eviction sets for the same cache sets. Thus, they can simply use
Prime+Probe to transmit bits on these channels. Refer to Maurice et al. [12] on
how to use the common cache sets as communication channel to build a robust
covert channel.

4 CJAG Implementation

We provide an open-source implementation of CJAG which can be used as a
basis for cache-based covert channels. The source and build instructions can be
found on GitHub: https://github.com/IAIK/CJAG. In this section, we show
the implementation details and how to use the implementation.

CJAG: Cache-based Jamming Agreement 7

Function Description

int jag init(cjag config t* config) Initializes a CJAG session based on the parame-
ters in config.

int jag free(cjag config t* config) Cleans up a CJAG session.

void jag send(cjag config t* config,

jag callback t cb)

Function used by the sender. Every time a
set is acknowledged, cb is called. After calling
the function, the eviction set can be found in
config->addr.

void jag receive(void **addrs,

size t* sets, cjag config t *config,

jag callback t cb)

Function used by the receiver. Every time a set is
acknowledged, cb is called. addrs and sets have
to be allocated by the caller. These variables con-
tain the eviction set and set numbers respectively.

Table 2: The CJAG API.

4.1 API

CJAG provides a very simple to use API. Table 2 shows the API which consists
of only 4 functions. The most important part is the configuration structure. This
structure contains the parameters describing the last-level cache, timeouts, and
the number of channels to establish. The hardest part is to provide the correct
parameters to this structure. However, CJAG also provides an auto-detection
mode for the last-level cache parameters (cf. Section 4.2).

If the configuration structure is correctly initialized, the cache set negotiation
is straight forward. First, both sender and receiver have to call jag init to
allocate memory and generate cache sets and eviction sets.

The second step differs for sender and receiver. The sender calls jag send to
start the cache set negotiation. A callback function can be specified as optional
parameter which—if given—is called after a set is acknowledged. The receiver
calls jag receive instead. The addrs and sets parameters have to be allocated
before calling the function with a size of ways × channels × sizeof(void∗) and
channels× sizeof(size t) respectively. Again, a callback function can be specified
as optional parameter which—if given—is called after a set is acknowledged.
Both functions provide the eviction sets for the common cache sets after com-
pletion. They can be found in config->addr for the sender and in addrs for the
receiver. CJAG provides a macro GET EVICTION SET(addr, set, config) for
easy access to the eviction set addresses.

Finally, the CJAG sessions has to be cleaned up by calling jag free. If the
functions complete successfully, both programs share channels common cache
sets with the corresponding eviction sets. These common sets can then be used
to build the covert channel as described in Maurice et al. [12].

4.2 Parameter Detection

As setting the correct parameters for CJAG requires detailed knowledge of the
processor, our implementation provides auto detection of the last-level cache

8 Michael Schwarz and Manuel Weber

parameters. The CPUID instruction provides a function to get the last-level cache
parameters. Specifically, CPUID-function 4 retrieves the “Deterministic Cache
Parameters”. The cache parameters include the number of cache ways, cache
sets, and cache line size, allowing to furthermore calculate the size of the last-
level cache.

CPUID does not provide the number of cache slices, however we can simply
get that by parsing the number of physical CPU cores from /proc/cpuinfo.

One disadvantage of the automatic detection is that it might be wrong inside
virtual machines, as the CPUID function might be emulated. However, the CJAG
auto detection can be run on the host once to discover the parameters. When
running CJAG inside virtual machines, the beforehand discovered parameters
can simply be hardcoded into the application.

4.3 Application

We provide a demo application to test CJAG on native and virtual machines.
The demo application implements both the CJAG technique as well as the pa-
rameter auto detection. When running natively, it can simply be started as
./cjag for the sender and ./cjag -r for the receiver. All parameters should
either be auto detected, or at least be set to a sane default value.

Figure 2 shows the combined output of running CJAG in sender and receiver
mode. At startup, CJAG displays the last-level cache parameters (1) which are
either auto detected or given via the command-line arguments. A description of
all available command-line arguments is shown using ./cjag --help.

In the first phase (2), the sender jams the candidate cache sets, while the
receiver listens to the candidate cache sets. After a cache set is acknowledged by
the receiver, the sender continues with the next cache set until all cache sets are
negotiated. The receiver displays the mapping (3) between the cache set names
as seen by sender and receiver. At this point, the actual jamming agreement
is already completed. However, to validate the cache sets, sender and receiver
switch roles and test the common cache sets.

To verify the common cache sets (4), the receiver jams the common cache
sets, and the sender switches to listening mode. If the sender measures activity
on the same cache sets that were used to in the first phase, the common cache
sets can indeed be used, and the verification succeeds. At this point, the sender
has a proof that the common cache sets can be used as communication channels.

Common Errors. If CJAG does not work, this can have various reasons. As
the Prime+Probe side channel requires the correct parameters to work reliably,
CJAG provides multiple parameters that can be tweaked. The following checklist
lists some common errors.

Cache parameters. It is of utmost importance that the last-level cache pa-
rameter are correct. If only a single parameter is wrong, the communication
will most likely not work. Note that the auto detection will probably not
work inside a virtual machine.

CJAG: Cache-based Jamming Agreement 9

Send mode: start jamming...

[#] Jamming set...
[+] ...set #1
[+] ...set #2
[+] ...set #3
[+] ...set #4
[+] ...set #5
[+] ...set #6

Verification mode: start receiving...

[#] Checking sets...
[+] Sender[0] <-> Sender[0] [OK]
[+] Sender[1] <-> Sender[1] [OK]
[+] Sender[2] <-> Sender[2] [OK]
[+] Sender[3] <-> Sender[3] [OK]
[+] Sender[4] <-> Sender[4] [OK]
[+] Sender[5] <-> Sender[5] [OK]

[#] Done. 100.00% of the channels
system is

[V U L N E R A B L E].

are established, your

Receive mode: start listening...

[#] Receiving sets...
[+] ...set #1
[+] ...set #2
[+] ...set #3
[+] ...set #4
[+] ...set #5
[+] ...set #6

[#] Reconstructing mapping...
[+] Sender[0] -> Receiver[8]
[+] Sender[1] -> Receiver[9]
[+] Sender[2] -> Receiver[14]
[+] Sender[3] -> Receiver[15]
[+] Sender[4] -> Receiver[12]
[+] Sender[5] -> Receiver[13]

Test mode: start probing...

[+] Probing set #1 ([8] -> [0])
[+] Probing set #2 ([9] -> [1])
[+] Probing set #3 ([14] -> [2])
[+] Probing set #4 ([15] -> [3])
[+] Probing set #5 ([12] -> [4])
[+] Probing set #6 ([13] -> [5])

[#] Done!

___/\/\/\/\/__________/\/______/\/________/\/\/\/\/_
_/\/__________________/\/____/\/\/\/____/\/_________
_/\/__________________/\/__/\/____/\/__/\/__/\/\/_
_/\/__________/\/____/\/__/\/\/\/\/\/__/\/____/\/_
___/\/\/\/\/____/\/\/\/____/\/____/\/____/\/\/\/\/_
__

 Size Ways Slices Threshold
L3 6 MB 12 4 350 1

2

3

4

Fig. 2: Output of sender (left) and receiver (right) for a successful negotiation of
6 cache sets.

10 Michael Schwarz and Manuel Weber

Environment CPU LLC Size Ways Slices Threshold Delay

HP ProBook 470 G0 i5-3230M 3 MB 12 2 290 ≥ 0.1

Lenovo Thinkpad T460s i7-6200U 3 MB 12 4 280 ≥ 2

Lenovo Thinkpad W530 i7-3630QM 6 MB 12 4 350 ≥ 0.05

Amazon EC2 (G2) Xeon E5-2670 20 MB 20 8 280 ≥ 0.1

Table 3: Test environments with the corresponding parameters.

Cache miss threshold. The cache miss threshold is the minimal number of
cycles at which a data access is classified as a cache miss. If the receiver
receives cache sets although the sender is not running, increase this value.
In contrast, if the receiver never receives cache sets, decrease this value.
Depending on the hardware, this value will usually be between 180 and 500.

Speed. If sender and receiver lose synchronization during the cache set agree-
ment, the timeouts might be too low. CJAG provides a --delay parameter
to increase the timeouts by the given factor.

Huge pages. Huge pages might not be enabled inside a virtual machine. For
example, for VirtualBox, huge page support has to be enabled for a virtual
machine by running VBoxManage modifyvm <VM Name> --largepages on.
Most cloud providers, such as Amazon, have them enabled by default.

Co-location. CJAG only works across virtual machines if they run on the same
physical host. Furthermore, each virtual machines requires at least one CPU
core.

5 Evaluation

We show that CJAG works on native machines as well as across virtual machine
borders. Table 3 shows a selection of the environments we used to test and the
corresponding parameters. On native machines, CJAG takes on average only
0.11 s to establish and verify 6 binary communication channels. When sender
and receiver are running in two co-located virtual machines, it takes on average
0.87 s to establish and verify the channels.

We successfully tested CJAG on all CPU microarchitectures, starting from
Sandy Bridge up to Skylake. We evaluated the cross-VM functionality on Virtu-
alBox on our native machines as well as on the Amazon cloud. CJAG is resistant
against average system noise, e.g., a user surfing on the internet. CJAG can also
cope with noise levels that are above average (cf. Maurice et al. [12]).

Limitations. CJAG has some known limitations. Some of them cannot be
solved at the moment, some will be resolved in future work. First, the number
of compatible CPUs is somewhat limited. Only Intel CPUs from Sandy Bridge
to Skylake having 1, 2, 4, or 8 cores are supported. This limitations might not

CJAG: Cache-based Jamming Agreement 11

be a problem on consumer PCs, however, the majority of physical machines in
the cloud has more CPU cores. Reverse engineering the cache slice functions for
different numbers of CPU cores is future work.

Second, the maximum number of channels is currently hardcoded to 32. This
should not be a severe limitations, however this hard limit will be removed in
the future.

Third, the cache-parameter auto detection does not work reliably inside vir-
tual machines. The reason is the way virtual machines emulate the cpuid func-
tion. We suggest to only use the auto detection for testing on native machines
and not when running inside a virtual machine.

Finally, CJAG is not yet able to automatically detect the cache miss thresh-
old. Thus, we provide a program cachespeed2 that is able to measure the cache
miss threshold. A guiding value for CJAG ’s threshold value can be obtained
from column “+ mfence” of row “L3 Miss” after running cachespeed.

6 Conclusion

In this paper, we thoroughly described CJAG , a technique for cache-set negotia-
tion across virtual machines. CJAG was initially proposed by Maurice et al. [12]
and used as the basis for a Prime+Probe cross-VM covert channel. We present
a fast and reliable, open source implementation of CJAG which works on the
majority of modern consumer CPUs as well as on cloud providers. Our implemen-
tation includes automatic eviction set generation and a noise-resistant cache set
negotiation, as well as automatic detection of the most important cache param-
eters. CJAG requires only 0.11 s to establish 6 binary communication channels
on a native machine and 0.87 s on Amazon. The straightforward API makes it
an ideal basis for any cache-based covert channel, whether native or in the cloud.

Acknowledgments

We would like to thank Lukas Giner for the first CJAG protocol implementation.

References

1. Boano, C.A., Zuniga, M.A., Römer, K., Voigt, T.: Jag: Reliable and predictable
wireless agreement under external radio interference. In: Real-Time Systems Sym-
posium (RTSS), 2012 IEEE 33rd (2012)

2. Brumley, B.B.: Covert timing channels, caching, and cryptography. Ph.D. thesis
(2011)

3. Fuchs, A., Lee, R.B.: Disruptive Prefetching: Impact on Side-Channel Attacks and
Cache Designs. In: Proceedings of the 8th ACM International Systems and Storage
Conference (SYSTOR’15) (2015)

2 It can be found in the CJAG repository at https://github.com/IAIK/CJAG.

12 Michael Schwarz and Manuel Weber

4. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript. In: DIMVA’16 (2016)

5. Hund, R., Willems, C., Holz, T.: Practical Timing Side Channel Attacks against
Kernel Space ASLR. In: S&P’13 (2013)

6. Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! cross-vm rsa key recovery in a public cloud. Tech. rep., Cryptology
ePrint Archive, Report 2015/898, 2015. (2015)

7. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: A Shared Cache Attack that Works
Across Cores and Defies VM Sandboxing – and its Application to AES. In: S&P’15
(2015)

8. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in intel processors. In: Proceedings of the 2015 Euromicro Conference
on Digital System Design (2015)

9. Lampson, B.W.: A note on the confinement problem. Communications of the ACM
(1973)

10. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-Level Cache Side-Channel
Attacks are Practical. In: IEEE Symposium on Security and Privacy – SP. pp.
605–622. IEEE Computer Society (2015)

11. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
Engineering Intel Complex Addressing Using Performance Counters. In: Research
in Attacks, Intrusions, and Defenses – RAID. LNCS, vol. 9404, pp. 48–65. Springer
(2015)

12. Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano, C.A., Mangard,
S., Römer, K.: Hello from the Other Side: SSH over Robust Cache Covert Channels
in the Cloud. In: NDSS’17 (2017), to appear

13. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
14. Schmidt, W., Hanspach, M., Keller, J.: A case study on covert channel establish-

ment via software caches in high-assurance computing systems (2015)
15. Zhang, Y., Reiter, M.: Düppel: retrofitting commodity operating systems to miti-

gate cache side channels in the cloud. In: CCS’13 (2013)

