
1

All your emails belong to us: exploiting vulnerable
email clients via domain name collision

Ilya Nesterov Maxim Goncharov
 Shape Security Shape Security

ilya@shapesecurity.com maxim@shapesecurity.com

ABSTRACT
The Autodiscover HTTP Service Protocol provides a way for Autodiscover clients to find Autodiscover servers. This protocol

extends the Domain Name System (DNS) and directory services to make the location and settings of mail servers available to
clients. In this paper, we take a closer look at the Autodiscover protocol and identify its threat model. We analyse Autodiscover
client implementations in two mobile built-in email clients to discover flaws which allow remote attackers to collect user
credentials through domain name collision. We discover how many clients have vulnerable implementations by collecting and
analysing HTTP request information received by our servers, registered with specially crafted domain names. We make our
analysis based on on data we collect from 25 different domains. Our dataset contains information on about 11,720,559 requests
and we observe 9,726,028 requests containing authentication information. We identify 2473 different email clients which use
vulnerable Autodiscover client implementation. Finally we propose different mitigation techniques for users, enterprises, and
application developers to improve their email clients.

Keywords: email; Autodiscover protocol; Autodiscover client; Microsoft Exchange

I. INTRODUCTION

One of the central points of failure is an email address.
We use email addresses to get access to bank accounts,
social networks and much more. For SMB and Enterprise,
email addresses are the most often targeted entry point for
advanced persistent threat (APT) attacks. But how good are
we are at protecting our email accounts? There's always a
tradeoff between security and usability. There was a time
when you would need to obtain all the information about
SMTP/POP/IMAP servers in order to configure your email
account. Now it is as simple as just typing your email and
password. But when you rely on technology that simplifies
your life, but is complex and sophisticated inside, there is
always a risk of failure in implementation.

Email infrastructure is old and mature, and serves billions
of emails a year. Considering email service as a safe way of
communication is not a valid viewpoint today, but still
email communication is one of the most important and
prevalent means of information exchange. The design of
email clients, and how they communicate using Simple
Mail Transfer Protocol, Internet Message Access Protocol
or Post Office Protocol is defined by RFCs from the mid
80s [1],[2],[3]. The deployment and updating of email
configuration for an email client has always been a
challenge and this is why the Autodiscover protocol was
introduced.

Autodiscover protocol overview

The Exchange Autodiscover service provides an easy
way for an email client to configure itself with minimal user
input. Most users know their email address and password,
and with those two pieces of information, the email client
can retrieve all the other details it needs to run. For
Exchange Web Services (EWS) clients, Autodiscover is
typically used to find the EWS endpoint URL, but
Autodiscover can also provide information to configure
clients that use other protocols. [4]

Simply explained, the Autodiscover client expands the
email address provided by users during initialization to
derive a list of Autodiscover server URLs which are then
used to get all the information needed for the email client to
operate.

Overview of the generic autodiscover process

Essentially the Autodiscover process has two main
phases:

- Phase one: client generates list of potential
Autodiscover servers

- Phase two: Autodiscover client tries each server
from a list until it gets a response

Other Microsoft documentation [4] suggests a 3 phase
process which is essentially the same. The only difference is
that the list of potential Autodiscover services is split into

2

two categories. First the Autodiscover service tries to
connect high priority groups of URLs. Then, if none of the
potential Autodiscover servers works out, the client
switches to a "last ditch" attempt to find an Autodiscover
endpoint.

Let’s take a closer look at these phases.

Phase 1: Defining the candidate pool

Before the Autodiscover client can communicate with the
Autodiscover server it must locate the right Autodiscover
server. The protocol defines the following ways to add
Autodiscover servers into the pool:

- Query a well-known LDAP or AD servers [4]
- Perform text manipulations on the domain portion

of the email address
- Search the DNS for Autodiscover SRV records
- Send an unauthenticated GET request to an

endpoint derived from the user's email address

Query Well known LDAP or AD DS servers

Depending on the chosen protocol, the Autodiscover
client performs LDAP or SCP queries. Upon success, the
results are added to a pool of potential autodiscover servers.

Perform text manipulations on the domain portion of the
email address

Autodiscover defines two standard endpoint URL forms
that are derived from the domain portion of the user's email
address. The following URLs must be added:

- https://+ {domain} +
/autodiscover/autodiscover.xml

- https://autodiscover. + {domain} +
/autodiscover/autodiscover.xml

If an HTTP POST to either of the above URIs results in

an HTTP 302 redirect, then the redirect as found in the
location field of the response is added to the list of possible
Autodiscover server URIs.

Note: Autodiscover HTTP Service Protocol specification
[5] and Autodiscover for Exchange [4] define these two
URLs differently. In the first document, the first derived
URL endpoint should use unsecure HTTP protocol. The
second document, however, requires usage of HTTPS.

Search the DNS for Autodiscover SRV records

An Autodiscover client can find an Autodiscover server
URL by querying the DNS server for the autodiscover SRV
record, using the following query format:
_autodiscover._tcp.<domain>.

If the result is <host>, add
"https://"<host>"/Autodiscover/Autodiscover.xml" to the
list of possible Autodiscover URIs.

Send an unauthenticated GET request

An Autodiscover client can also issue an HTTP GET
method with the URI set to
“http://Autodiscover.<domain>/Autodiscover/Autodiscover
.xml”

Autodiscover servers list prioritization

When multiple candidates are found, Autodiscover also
defines a way to generate and prioritize the list [6] as shown
in Figure 1.

Figure 1: Autodiscover servers list prioritization

Phase 2: Trying each candidate

Once the list of potential Autodiscover servers is
generated, the next step is to try each one in the list by
sending a request to the URL and validating the results as
shown in Figure 2.

Figure 2: Autodiscover server discovery process

II. THREAT MODEL

In our work, we wanted to focus on exploitation
techniques that let us gain access to highly protected assets
such as user account data, including email address and
password or other authentication mechanisms.
Since all requests to potential Autodiscover servers should
be authenticated this makes it a perfect target for an attack.

There are a few different ways that an Autodiscover
protocol can be attacked. In our threat model we decided

3

not to focus on man-in-the-middle attacks, although this is
one of the possible high risk threats. Since it is only
possible to attack LDAP or AD servers when the
Autodiscover client is in a protected area behind a firewall,
we chose to investigate a potential flaw in the algorithm
used by the Autodiscover client to build a list of potential
Autodiscover servers derived from the email address.

Email address complexity

The format of an email addresses is local-part@domain.
On first glance, deriving the domain part from any given
email address should be a trivial task. Unfortunately,
however, this is much more complicated thanks to the
multiple RFCs defining the format: RFC 5321 [7], RFC
5322 [8], RFC 6531 [9], RFC 6532 [10].

After reading through all these RFCs, deriving the
domain portion from the user’s email address doesn’t look
like a trivial task. Your application cannot just split an
email address string by ‘@’ character, because
“my@email”@example.org is a valid address as well as
"()<>[]:,;@\\\"!#$%&'-/=?^_`{}| ~.a"@example.org and
simply user@example.org.

Of course, an application should implement input
validation logic for cases when user inputs an invalid email
address like john.doe@example..com (with double dot after
‘@’) or john@doe@example.com (with two ‘@’
characters) before deriving the domain part.

But this is just a part of the problem for the Autodiscover
client. For instance, the email address john.doe@com.au or
any other email address where the domain part is a public
domain suffix [11] or a top level domain (TLD) [12] will be
under a huge risk, because someone can register the
autodiscover.com.au domain and receive autodiscover
client’s requests (which contain the user’s credentials).
Therefore, the Autodiscover client should implement some
logic to understand whether the domain part is not a TLD
and is not a public suffix list.

Autodiscover servers at complex environment

Large organizations usually have a complicated domain
infrastructure with several subdomains, specific to different
parts of a company. It is also quite typical that different
departments, or overseas offices have their own country or
department specific domain, so users can have complicated
email addresses such as user@department.uk.example.com
or user@uk.example.com. This adds another layer of
complexity.

The Autodiscover protocol doesn’t explain how
developers and administrators should deal with the situation
when the domain portion of an email address contains
multiple subdomains. There are several possibilities on
how it can be implemented:

The administrator should redirect all requests from

multiple potential Autodiscover servers to a single one, or
run multiple Autodiscover servers.

The Autodiscover client developers should implement
additional logic and add all autodiscover + subdomains to a
pool of possible Autodiscover servers during Phase 1. e.g.
user@uk.example.com as an email address might produce a
list of domains autodiscover.uk.example.com,
autodiscover.example.com. Of course, in such an
implementation you should check that example.com is not
in a public suffix list for the reason we explained above.

III. METHODOLOGY

In order to find out how secure the implementations of
Autodiscover clients are, we decided to analyse email
clients built into the iOS and Android mobile operating
systems.

Testing mobile Autodiscover clients
According to our threat model, improperly deriving the

domain part from an email address might lead to a leakage
of user credentials. So, to understand if this happens we
needed to build a test environment which allows us to do
the following:

- Capture all network traffic from the mobile device
for future analysis. We are most interested in DNS,
HTTP, TLS/SSL protocols.

- Decrypt TLS/SSL traffic.
We also need to build a set of valid and invalid email

addresses to test the Autodiscover client logic.

Finding more vulnerable clients
It is almost impossible to find all email clients or

services which implement the Autodiscover client, so it is
also impossible to test them all. But after analyzing the
threat model, the only possible scenarios when critical
information can be leaked to external, non-controlled
environments is when an Autodiscover server URL’s host
part is derived as a public domain in the following forms:

- autodiscover + <TLD>
- autodiscover + <public domain suffix>

In order to collect data, we registered a few
AUTODISCOVER domains as shown above, and set up an
HTTP server. To terminate the TLS connection and
support HTTPS we obtained SSL certificates signed by a
publicly trusted certificate authority. All request
information was logged into an http access log for future
analysis. Because request data might potentially contain
access credentials we made sure not to record this data. The
only recorded HTTP header is the User-Agent, which is
obviously the one we are interested in, to see how many
Autodiscover clients potentially might be affected.

4

IV. RESULTS AND ANALYSIS

We tested two mobile built-in email clients from two
vendors to figure out whether they have any issues with the
Autodiscover client implementation. It turns out that the
discovered flaws could be classified in the following way:

- Domain part improperly derived from email
addresses for the second-level domains (SLD). For
instance, john.doe@example.com.au is an email
address for the organization registered domain
example in a second-level public domain .com.ua

- Email address with double @ characters is allowed
which leads to deriving the wrong domain part,
and as a result the Autodiscover client server sends
requests to a different server.

- Email address for a TLD and SLD allowed without
any warning to a user, which leads to leaking
sensitive information such as user credentials to an
unauthorized control sphere.

Samsung mail client analysis results

We used the Samsung Galaxy S5 model
SAMSUNG-SM-G900A running Android version 6.0.1
with Android security Patch level January 1, 2017. Built-in
Mail App version is 5.0.0.0400. The discovered
vulnerability is in the way the Autodiscover client builds a
list of potential Autodiscover servers. In particular, if
company domain is registered in a second-level domain,
then the two following autodiscover servers will be added
to a list:

- autodiscover. + <domain> + SLD
- autodiscover. + SLD

That doesn’t happen in the case when a company domain
is registered in a top-level domain.

For example if the email is john.doe@example.com.au
than the following Autodiscover servers will be added to a
list:

- autodiscover.example.com.au
- autodiscover.com.au

Domain name autodiscover.com.au could be easily
registered by anyone to passively collect information about
email accounts and credentials, for any domains registered
with .com.au, when users use email clients with such flaw.

Apple iOS Mail app analysis results

For Apple iOS tests we used iPhone 6s running iOS
10.2.1 (14D27). We tested the built-in Mail app which has
capabilities to add exchange email account.

The flaw we discovered leads to leaking user credentials
to a third party autodiscover domains in case user email
address contains two @ characters without first one being
included into quotes. For example if a user enters an email
address as john.doe@example@org, the Autodiscover

client will derive the domain as .org and add the
Autodiscover server to a list as autodiscover.org which
could be owned by a different organization and will allow
collect credentials.

Another issue with both the Samsung Mail app and the
Apple iOS Mail app is that they allow users to enter email
addresses, with a domain part that is a TLD or SLD. That
leads to user credentials leaking to publically registered
autodiscover domains. For instance john.doe@com.au is a
valid email address, but whoever is an owner of com.au
should take care about the security of user accounts and not
allow anyone to register and own autodiscover.com.au
domains to protect users. Another possible solution would
be to not allow the Autodiscover client to add potential
Autodiscover servers into a list if the derived domain part
from a given email address is in the IANA Root Zone
Database [12] or in the public suffix list [11].

Autodiscover domains HTTP server access log analysis

To understand the bigger picture and see how many
users might be affected by the issues we discovered in
Samsung and iOS built-in Mail apps, we registered 25
different autodiscover domains and pointed their traffic to a
single http server. The access log data contains about 12GB
of information for the period of time August 27 2016 to
February 25 2017. For this period of time our server
received 11,720,559 requests. 11,097,143 of the requests
are requests from different Autodiscover clients and
9,726,028 of these requests have been sent with user
credentials using Basic authentication. You can see
month-by-month the Autodiscover clients traffic in Figure
3.

Figure 3: Autodiscover clients requests per month

Discovered vulnerabilities affected 212,307 individual

email accounts on 65,576 different domains. The
distribution of affected email accounts per platform is
shown in Figure 4.

5

Figure 4: Number of email addresses affected by platform

in Figure 5 you can see the distribution of Autodiscover

client requests (with credentials) using non secure (HTTP)
and secure (HTTPS) protocols.

Figure 5: Autodiscover client traffic distribution HTTP vs
HTTPS

The total number of different User-Agents affected by
the improper implementation of Autodiscover client is
2,743. Figure 6 shows the number of Apple and Samsung
clients affected by the issues we discussed above, in
comparison with other clients which have similar
Autodiscover client implementation issues.

Figure 6: Comparison of Apple and Samsung vulnerable
clients vs. all other clients

Vulnerability disclosure to vendors

We communicated discovered vulnerabilities to
Samsung and Apple.

MITRE assigned the following CVE IDs for the issues
we described above:

- CVE-2016-9940 Samsung mail client
- CVE-2017-2414 Apple iOS mail client

As a result both issues address and delivered as a
security updates.

Samsung delivered the fix as a part of part of a monthly
Security Maintenance Release (SMR) process in January
2017 [13].

Apple delivered the fix for the vulnerability in March
2017, as a part of iOS 10.3 security update [14].

V. CONCLUSION

The Autodiscover protocol is designed to seamlessly
provide any complex configuration needed for the email
client to communicate with an email server based on user
entered email address and password information It also
makes changes to infrastructure that is easily propagated to
clients. In this paper we reviewed the Autodiscover protocol
implementation and discussed its threat model. We also
explained the complexity of deriving the domain part from
a given email address and how it can lead to leaking user
credentials through vulnerable autodiscover protocol
implementations.

We analysed built-in email clients on two popular
mobile platforms and explained vulnerabilities in their
Autodiscover client implementation.

We developed and deployed an autodiscover server
sinkhole to collect data about different vulnerable
Autodiscover clients. Collected data shows a significant

6

number of the clients which trying to get the Autodiscover
configuration from a different autodiscover domain names
we have registered for our project. The fact that all these
clients blindly send user’s credentials along with
autodiscover requests might allow even non experienced
attackers to passively collect huge amounts of sensitive user
information, such as email address and credentials, which
later might be used for other types of attacks.

The number of available autodiscover domains, which
anyone can register, creates a huge risk for organizations,
taking into consideration the number of vulnerable clients.
In order to lower the risks we suggest the following
possible mitigation approaches as described below.

Mitigation

Users:

Use only the email client approved and recommended by
your IT department. Discovered flaws only affect clients
implemented using the Autodiscover protocol, thus only if
your organization uses Microsoft Exchange.

Enterprises:

Make sure your services are deployed as recommended
by vendor and Autodiscover clients are able to discover and
connect Autodiscover servers inside corporate networks as
well as outside your protected perimeter.

In order to protect your users make sure that you use
clients officially recommended by Microsoft to work with
exchange servers. If you use third-party clients, use the
threat model we described in our work to test your final
deployment and double check that there is no sensitive data
leakage to third-party domains.

Application developers:

If your application needs to implement the Autodiscover
client protocol, follow the Autodiscover HTTP service
protocol specification [2] and best practices recommended
by Microsoft. Remember proper email address validation
and techniques that allow properly derived domain and
local parts from an email address.

ICANN:

Due to the very large number of vulnerable clients
implementing the Autodiscover protocol in such a way to
allow passive attackers to collect sensitive information, and
the possibility that many of these clients will never be fixed
(due to lack of support or other circumstances), we
recommend considering placing a ban on registration of
new autodiscover domain names for top, second level
public domains and assigning existing ones to 127.0.53.53
[11] as it was implemented for the Web Proxy
Autodiscovery protocol. [15]

VI. FUTURE WORK

Active attack vector

We are continuing our work on discovering threat
vectors around the Autodiscover protocol. One of the evil
methods that can be used by the attacker, is the ability to
respond to the GET request of the client with
autodiscover.xml file with IMAP/POP3/SMTP
configurations that differ from the settings the client
intended to receive. IMAP/POP3/SMTP can be pointed to a
man-in-the-middle server where access credentials and mail
communication can be eavesdropped. One of the related
problems to the attack we have described above is that there
is no way to implement certificate pinning for out of the
box email clients.

VII. REFERENCES

[1] Jonathan B. Postel, RFC 821: SIMPLE MAIL TRANSFER
PROTOCOL. Available https://tools.ietf.org/html/rfc821

[2] Network Working Group, RFC 1393: Post Office Protocol - Version
3. Available: https://www.ietf.org/rfc/rfc1939.txt

[3] Network Working Group, RFC 3501: INTERNET MESSAGE
ACCESS PROTOCOL - VERSION 4rev1H. Available
https://tools.ietf.org/html/rfc3501

[4] Autodiscover for Exchange. Available:
https://msdn.microsoft.com/en-us/library/office/jj900169(v=exchg.15
0).aspx

[5] [MS-OXDISCO]: Autodiscover HTTP Service Protocol. Available:
http://interoperability.blob.core.windows.net/files/MS-OXDISCO/[M
S-OXDISCO]-160613.pdf

[6] How to generate a prioritized list of Autodiscover endpoints.
Available:
https://msdn.microsoft.com/en-us/library/office/dn467397(v=exchg.1
50).aspx

[7] Network Working Group, RFC 5321: Simple Mail Transfer Protocol.
Available: https://tools.ietf.org/html/rfc5321

[8] Network Working Group, RFC 5322: Internet Message Format.
Available: https://tools.ietf.org/html/rfc5322

[9] Internet Engineering Task Force, RFC 6531: SMTP Extension for
Internationalized Email. Available: https://tools.ietf.org/html/rfc6531

[10] Internet Engineering Task Force, RFC 6532: Internationalized Email
Headers. Available: https://tools.ietf.org/html/rfc6532

[11] Public suffix list. Available: https://publicsuffix.org
[12] IANA Root Zone Database. Available:

https://www.iana.org/domains/root/db
[13] Security Maintenance Release, January 2017. Available:

http://security.samsungmobile.com/smrupdate.html#SMR-JAN-2017
[14] About the security content of iOS 10.3. Available:

https://support.apple.com/en-sg/HT207617
[15] Max Goncharov, badWPAD. Available:

https://www.trendmicro.co.uk/media/misc/wp-badwpad.pdf

