
DROP THE ROP:
Fine Grained Control-Flow Integrity for The Linux Kernel

João Moreira
Sandro Rigo, Michalis Polychronakis, Vasileios Kemerlis

joao.moreira@lsc.ic.unicamp.br

:/# whoami

João Moreira, lvwr, Brazilian…

PhD Candidate @ University of Campinas

:/# whoami

João Moreira, lvwr, Brazilian…

PhD Candidate @ University of Campinas

Live Patching Engineer @ SUSE

Agenda

Quick review of Kernel-based ROP

Control-Flow Integrity

Limitations and known issues

kCFI

Implementation

Improvements

Performance

Memory (un)safety bugs enable code pointer corruption

Memory (un)safety bugs enable code pointer corruption

Control-flow hijacking: Arbitrary code execution

W^X, ASLR

Code-reuse, memory disclosure, ret2usr

Strong Address Space Isolation

ROP

ROP reuses (executable) kernel code

GADGETS, FREELY chained through the stack

&payload

0xff8118991d

0xff8105b8f0

SMEP Killer

pop rax
ret

&payload

0xff8118991d

0xff8105b8f0

SMEP Killer

pop rax
ret

&payload

0xff8118991d

0xff8105b8f0

SMEP Killer

pop rax
ret

rax = SMEP Killer

&payload

0xff8118991d

0xff8105b8f0

SMEP Killer

pop rax
ret

mov rax,cr4
ret

rax = SMEP Killer

SMEP IS DEAD
THE WALL IS D0WN

&payload

0xff8118991d

0xff8105b8f0

Turn 0ff SMEP

pop rax
ret

mov rax,cr4
ret

rax = SMEP Killer

SMEP IS DEAD
THE WALL IS D0WN

&payload

0xff8118991d

0xff8105b8f0

Turn 0ff SMEP

pop rax
ret

mov rax,cr4
ret

rax = SMEP Killer

SMEP IS DEAD
THE WALL IS DOWN

paWNeD!

What if we confine indirect branches to safe,
previously-computed locations?

Control-Flow Integrity

Paths defined by application's Control-Flow Graph

Different methodologies for computing and
enforcing the CFG

What could possibly go wrong?

Relaxed permissiveness (granularity)
Coverage

False positives

Granularity issues...

<A>:
...
call B;
... Fine-grained CFICoarse-grained CFI

A

C

B A

C

B

Coarse-grained: All functions can return to call site A
Fine-grained: Only B can return to call site A

Coarse-grained CFI is known to be BYPASSABLE

kCFI

Fine-grained CFI scheme for the Linux kernel

Compiler-based instrumentation (LLVM)

Statically-computed CFGs

Source code + Binary analysis

How to compute a fine-grained CFG?

Backward Edges (returns)
Functions must return to their respective call sites
Easy to compute statically

Forward Edges (indirect calls)
Valid indirect calls targets must be computed
Hard: Complete points-to analysis is infeasible

How to compute a fine-grained CFG?

Forward edge computation requires heuristics

kCFI follows the proposal by Abadi et al.:
Pointer and Function prototypes must match!

Functions are clustered by prototype

void function(){
...
float (*fptr)(int);
...
}

float dog(int a);

float cat(int a);

int fish();
X

CFG

Protected
Linux
Binary

Source Code
Analysis

Binary
Analysis

Instrumentation

Linux
Binary

<main>:
...

1: callq <f1>
2: nopl 0xdeadbeef

<f1>:
...

1: mov (%rsp),%rcx
2: cmpl $0xdeadbeef,0x4(%rcx)
3: je 7
4: push %rcx
5: callq <ret_violation_handler>
6: pop %rcx
7: retq

return
instrumentation

<main>:
...

1: cmpl $0xc00lc0de,0x4(%rcx)
2: je 6
3: push %rcx
4: callq <call_violation_handler>
5: pop %rcx
6: call *%rcx

<f1>:
1: nopl 0xc00lc0de
...

<f2>:
1: nopl 0xc00lc0de
...

indirect call
instrumentation

So… is this approach really fine-grained?

Well, it is fine-grained,
but we can do better!

The presented scheme is prone to a problem that we call

Transitive Clustering Relaxation

Valid targets for indirect calls are clustered
Same tags on call sites and prologues

A directly calls B
B has the same prototype of C
C can return to B’s call site in A

C ...B

A

<A>:
call b
tag 0xdeadbeef

<Z>:
if(something) ptr = &B
else ptr = &C
call ptr
tag 0xdeadbeef

:
check 0xdeadbeef
ret

<C>:
check 0xdeadbeef
ret

In our code base, only for ‘void()’, we have
10645 call sites to 4484 void() functions

Other prototypes add to that

So yes, this is overly permissive

kCFI fixes Transitive Clustering Relaxation
through Call Graph Detaching (CGD)

Functions callable both directly and indirectly are cloned
Direct calls to function are replaced by calls to clone

Clone has unique tags, different from cluster tags

C ...B

A

<A>:
call b_clone
tag 0xdeadc0de

<Z>:
if(something) ptr = &B
else ptr = &C
call ptr
tag 0xdeadbeef

:
check 0xdeadbeef
ret

<B_clone>:
check 0xdeadc0de
ret

<C>:
check 0xdeadbeef
ret

B'

Allowed call sites reduced to 220 for
indirectly called ‘void()’ functions

Directly invoked callees return to their exclusive
call sites

No more transitiveness

It is also important to support Assembly code

…otherwise it raises false alerts and, even worse,
becomes a clear target

We support Assembly through Lua-based
automatic source-code rewriting

(plus very few handcrafted fixes)

We evaluated performance with 3 benchmarks

Instrumented SPEC2006 (~2%)
Instrumented kernel running LMbench (~8%)
Instrumented kernel running Phoronix (~2%)

Details are available on white-paper or in the bonus-slides,
just ask in the end :-)

Fine-grained CFI is not perfect either ...

Control-Flow Bending [USENIX SEC ‘16]
Control Jujutsu [CCS ‘16]

Non-control data attacks [Black Hat Asia 2017]

Yet, the complexity behind these methods shows
how relevant CFI is in raising the bar for attacks!

DEMO!

Fine-grained CFI in the OS context is achievable

CFI can be used to provide a meaningful level of
protection, pushing attackers towards more

constrained and complex exploitation techniques

Current existing methods for refining the granularity
of CFI can (and must) be improved

Black Hat Sound Bytes

DROP THE ROP:
Fine Grained Control-Flow Integrity for The Linux Kernel

João Moreira
Sandro Rigo, Michalis Polychronakis, Vasileios Kemerlis

joao.moreira@lsc.ic.unicamp.br

BONUS

SLIDES

Performance Overhead (LMbench)

Performance Overhead (LMbench)

Performance Overhead (Phoronix)

kCFI: 2% space overhead (718MB/705MB)
kCFI+CGD: 4% space overhead (732MB/705MB)

Code base: 132,972 functions
No. of cloned functions: 17,779 functions (~7.5%)

Space Overhead

kCFI Pipeline

CFI Map (1/2)

Data structure that describes CFGs in kCFI

CFI Map (2/2)

Special Cases: Syscalls

All must return to same site: i.e., the syscall dispatcher
Some have very common prototypes: e.g., i64 (void)
If clustered, syscalls result in a large CFG relaxation

Solution: Secondary Tags

Special Cases: Alternative Calls

Kernel does crazy stuff, like patching itself
(e.g, replaces callees based on available CPU features)

kCFI fixes this behavior by clustering replaceable functions
No CFG harm: only one of the alternative functions is used in

each kernel run

Special Cases: Assembly (1/2)

Automatically handling inline Assembly is hard!
Requires patching the (kernel) source code

#define __put_user_x(size, x, ptr, __ret_pu) \
 asm volatile("call __put_user_" #size "\nnopl 0x00dead04" \
 : "=a" (__ret_pu) \
 : "0" ((typeof(*(ptr)))(x)), "c" (ptr) : "ebx")

Special Cases: Assembly (2/2)

The prototype of indirect calls in Assembly cannot be trivially
inferred :(

Indirect calls missed:
6 calls used only during boot
5 calls that happen through verified tables
5 calls are based on data that need to be moved to .rodata

Control Jujutsu + Control-Flow Bending
Non-control-data attacks may allow arbitrary computation

Not demonstrated in kernel context
printf() vs. printk()

(but, of course, this doesn’t mean that they are impossible)

Attacks on Fine-grained CFI (1/2)

Attacks on backward edges
Defeatable through shadow stacks

In absence of a shadow stack, CGD raises the bar

Attacks on forward edges
Control Jujutsu examples are not feasible under kCFI heuristics

CFI can use composite methods to build tighter CFGs

Attacks on Fine-grained CFI (2/2)

Hardware shadow stack implementation (awesome)

Coarse-grained forward-edge CFI (not awesome)

Feature not yet available on Intel CPUs
Compatibility and performance are unknown

CET: Control-Flow Enforcement Technology

DROP THE ROP:
Fine Grained Control-Flow Integrity for The Linux Kernel

João Moreira
Sandro Rigo, Michalis Polychronakis, Vasileios Kemerlis

joao.moreira@lsc.ic.unicamp.br

